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Abstract. In the UML, sequence diagrams are used to state scenarios, i.e.,
examples of interactions between objects. As such, sequence diagrams are being
developed in the early design phases where requirements on the system are
being captured. Their intuitively appealing character and conceptual simplicity
makes them an ideal tool for formulating simple properties on a system, even
for non-experts. Besides guiding the development of a UML model, sequence
diagrams can thus furthermore be used as a starting point for the verification
of the UML model.

In this paper, we show how the requirements on the system as stated in se-
quence diagrams can be (semi-automatically) validated for UML models con-
sisting of class diagrams, state machines and structure diagrams. The sequence
diagrams that we consider can be universally or existentially quantified or
negated, i.e., state scenarios that should always, sometimes or never occur.
For validating them in a UML model, we translate both model and sequence
diagrams into a formal specification language (the process algebra CSP), and
develop procedures for employing the standard CSP model checker (FDR) for
checking their validity.

1 Introduction

The complexity of software is steadily increasing. Models of software systems have
to reflect this complexity in that they precisely describe all different aspects mak-
ing up the functionality of a complex system. The UML is a modelling language
which supports modelling with different views. Its various diagram types allow for
the description of different though not necessarily disjoint aspects of a system: Class
diagrams model the static behaviour (data and operations), state machines the dy-
namic behaviour (protocols), structure diagrams the architectural composition and
sequence diagrams typical application scenarios (plus possibly further diagrams for
other aspects). Together they model the system to be built. Such a complex model
composition immediately poses the question of consistency: is the architectural com-
position consistent with the interface description of the components, are static and
dynamic behaviour non-contradictory, is the scenario as stated in the sequence dia-
grams actually allowed in the model, etc. In this paper, we develop techniques which
can be used for answering the latter question.

* This research was partially supported by the DFG project ForMooS (grants OL98/3-2
and WE2290/5-1)



The starting point for our study are UML 1.5 sequence diagrams [24] which we
extend with features for stating negation and universal and existential quantifica-
tion (partially coming from UML 2.0 sequence diagrams'). These facilities allow to
dinstinguish between different types of scenarios: those never occuring, sometimes
occuring (i.e., in at least one run) or always occuring (in all runs). The remaining
part of the UML models will consist of class diagrams, state machines and structure
diagrams. To achieve the necessary precision in the model (which is mandatory for
a verification) we additionally use the Z notation [21,13] for writing attributes and
methods in class diagrams. The question is then whether the sequence diagrams are
consistent with the UML model in that the restrictions on the overall behaviour (as
laid down in the diagrams) do not prevent desired or allow forbidden scenarios. We
develop a technique which allows to automatically check for this kind of consistency.
To this end, we translate both sequence diagrams and the rest of the UML model into
a formal specification language. The translation of class diagrams, state machines
and structure diagrams follows a technique proposed in [16], the translation of the
sequence diagrams is inspired by [10] and given in this paper. Since the properties
stated in the sequence diagrams all refer to orderings in the communication between
objects we have chosen the process algebra CSP for this purpose. CSP [12,18] has
been developed to model and analyse systems exhibiting a large degree of parallelism
and communication. Moreover, there is a model checker for CSP (FDR [9]) which can
be used for automatically analysing CSP processes. The translation provides us with
a semantics of UML model and sequence diagrams in terms of the semantic model
of CSP. On this semantic model we formally define validity of a sequence diagram
(in the UML model) with respect to existential and universal quantification; negation
is obtained by negating the definition of existential quantification. For these validity
definitions we develop procedures for automatic checks using the FDR model checker:
the validity checks have to be formulated as refinement checks between CSP processes
which is the type of analysis supported by FDR. To this end we develop testers out
of the CSP semantics of sequence diagrams which are then checked against the CSP
semantics of the UML model.

The paper is structured as follows: The next section will present an example of a UML
model together with a number of allowed or forbidden scenarios stated by sequence
diagrams. Section 3 describes the translation of model and sequence diagram to CSP.
Section 4 formally defines validity and develops procedures for checking validity via
the FDR model checker. The last section concludes.

2 Example

In this section we start with introducing the example which will be used for illus-
trating our technique for checking the validity of scenarios. The example concerns
the modelling of cash machines and banks. For the modelling we use a UML profile
for reactive systems proposed in [16] and inspired by the ROOM method [19]. This

! We do not treat other new features of UML 2.0 sequence diagrams here (like combined
fragments) since our main interest is in checking validity not in developing a semantics
for UML 2.0.



profile allows to describe reactive systems as being built out of processes (active ob-
jects) working concurrently and communicating with each other. Each process has
an associated interface which describes its communication capabilities. An interface
description contains both the methods callable on the active object/process as well
as those called by the object.

«protocol» «capsule» «protocol»
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Fig. 1. Class Diagram for capsules Bank and ATM

In the UML profile these active object or processes are modelled by special capsule
classes and their interfaces by protocol classes. Capsules which share a common pro-
tocol can be connected to each other. The dynamic behaviour of the processes, viz.
capsules, are given by UML state machines. Figure 1 gives the class diagram for
capsules ATM (the cash machine) and Bank. Capsule Bank has one protocol which
describes its interface, namely the methods auth, debit and result that it offers to
other processes. Class Account is a passive component which is associated to Bank
(every bank has a number of accounts). Capsule ATM has two protocols, one for com-
munication with the Bank and the second one for communication with users. The
stereotypes «base» and «conjugated» describe the direction of communication for the
protocols.

auth
start debit
n _
result

Fig. 2. State Machine for Capsule Bank

Figures 2 and 3 depict the protocol state machines for ATM and Bank. They model the
allowed ordering of method invocation for objects of class Bank and ATM, respectively.
The reactive system itself is modelled by a structure diagram. Structure diagrams
describe the architecture of systems, i.e., their components and their interconnection.
A capsule in a structure diagram is drawn as a rectangle with ports (white or black
boxes) indicating their protocols. Two ports (and thus two capsules) can be connected
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Fig. 3. State Machine for Capsule ATM

if they refer to the same protocol. A port residing on the border of the outermost
capsule (capsule System) describes the interface of the system towards its environment.

:System

b:Bank

Fig. 4. Structure Diagram

Here, our banking system consists of one bank b connected with two cash machines
a; and az communicating over the joint protocol Withdraw_P. The interface to users
of the banking system is given by the protocol Use_P.

In order to get the necessary precision in the model the UML profile furthermore
allows to formally specify the signatures of methods in interfaces, and the attributes
and methods in classes (both for capsules and passive classes). For this purpose the
specification formalism Z [21,13] is employed. If such a specification is supplied for all
methods and attributes a precise and unambigious meaning can be given to the UML
model. This is the prerequisite for formally checking the validity of scenarios. For our
example, we only show the signatures of methods in interface since we will refer to
them when translating sequence diagrams. For the Bank the interface specification in
Z is (assuming given types ID and PIN):

method auth : [from : ATM; to: {self}; id? : ID; pin? : PIN; ok! :B]
method debit : [from : ATM; to : {self}; id? : ID; amt? : N]

chan start : [ from : {self}; to: ATM |

chan result : [ from : {self}; to: ATM; ok!:B]



There are two types of operations in the interface: those being declared as method are
methods of the Bank itself and can be called by other objects; those declared by chan
are methods that Bank calls on other objects. The parameters of these operations can
be divided into input (marked with ?), output (!) or simple parameters. The latter
one are used for addressing particular objects. Every method must have two simple
parameters specifying the caller (parameter from) and callee (parameter to) of the
method. The value self refers to the object itself. If a parameter has type {self}
then the only possible value that the parameter can take is self.

The interface of ATM towards Bank is specified in a complementary way (channels
and methods, and input and output reversed):

method start : [ from : Bank; to : {self} |
method result : [from : Bank; to: {self}; ok?: B]

chan auth : [ from : {self}; to: Bank; id! : ID; pin!: PIN; ok? : B|
chan debit : [fmm : {self}; to: Bank; id!: ID; amt!: N]

Additionally the interface contains operations for interaction with a user. We always
assume to have one class (here called User) which models the environment of our
system. The interface of this class can be determined from the structure diagram: all
protocols of ports residing on the borders of the outermost capsule System are also
protocols of the environment class (complementing methods and channels, inputs and
outputs). The behaviour of the environment remains unspecified, thus we assume it
to behave chaotically (all behaviour allowed). Thus for our interface of ATM towards
a user we assume a class User to be given.

method insert : [ from : User; to : {self}; id? : ID ]
method pin : [from : User; to: {self}; pin?: PIN]
method amount : [from : User; to: {self}; amt? : N]
chan answer : [ from : {self}; to: User; ok!:B]
chan idle : [ from : {self}; to: User]

chan money : [from : {self}; to: User; amt!: N]
chan eject : [ from : {self}; to: User|

This completes the UML model. The development of the model might have been
preceeded by the modelling of typical (allowed or forbidden) scenarios of the system
to be modelled. Such scenarios can be described by sequence diagrams. Here, we use
a very simple form of sequence diagrams since our main focus is not on giving a
semantics but on checking their validity (for semantics for message sequence charts,
the precursors of sequence diagrams, see for instance [10,14,15]; for a semantics for
UML 2.0 interactions diagrams see [22]). For the banking system we might for instance
like to specify that a user never gets money when the ATMs question for enough credit
is answered with "no”. Thus the scenario in Figure 5 is forbidden for our system.

In general, sequence diagrams consist of a number of lifelines for objects. These
lines are connected by arrows labelled with methods. The sequence diagram thus
models orderings for interactions between objects. We use particular objects here
(although the scenario should be forbidden for all banks, ATMs and users) since we
need to refer to specific objects in our addressing parameters. In principle object
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Fig. 5. Forbidden Behaviour Bank-ATM-User

names could be left out first and later be instantiated when the validity of scenarios
is checked.

The next sequence diagram shows a possible scenario between bank, ATM and
user: when the answer of the bank following the request for an authentification of a
pin is not ok then the card should be ejected.

existential

| b:Bank | a2.ATM | u:User

auth
{ok = false}

answer
{ok = false}

eject

Fig. 6. Possible Behaviour Bank-ATM-User

The previous scenario showed some behaviour which is possible but must not neces-
sarily occur in all runs. The following is a scenario which should always occur: after
ejecting and idling for a while an insert of another card should be possible.

universal

al:ATM | u:User |

eject

idle

insert

Fig. 7. Required Behaviour ATM-User



3 Translating the UML model to CSP

Given a UML model of a system and a number of sequence diagrams specifying
allowed or forbidden scenarios we are interested in knowing whether these scenarios
are actually possible (or not possible) in the model. We refer to this as the validity of
the scenario in the model. Checking the validity of scenarios should at the best be fully
automatic; here we propose a technique which is partially automatic. For checking the
validity we first of all have to compute the semantics of model and sequence diagrams.
This so far has to be done by hand, but can be automated. Given this semantics the
check can be carried out with the CSP model checker FDR.

3.1 Translating class diagrams, state machines and structure diagrams

As a semantic domain for model and sequence diagrams we have chosen the process
algebra CSP. A translation of models in our specific UML profile to CSP can be found
in [16]. Roughly, the translation proceeds as follows: The class diagram together with
the Z formalisation of interfaces, attributes and methods is translated to Object-Z [20].
The Object-Z classes of capsules are then augmented with CSP process descriptions
which are derived from the state machines. A specific CSP process is computed for
the outermost capsule System. This process describes the architecture of the system
and consists of the parallel composition of the capsules in the system. Together, these
classes form a CSP-OZ [8] specification. CSP-OZ is a combination of Object-Z and
CSP and has a semantics in terms of the semantic model of CSP. Thus we hereby
end with a CSP semantics for our UML model. To show at least a small part of the
resulting CSP process:

main = Bank[b] H{| auth,debit,result,start |} Clients
Clients = ATM[al] ||| ATM[a2]

is the CSP process of class System (derived from the structure diagram). It describes
the behaviour of the overall system. The operator ||| is the interleaving operator of
CSP (parallel composition with no synchronisation) whereas ||4 (A4 being a set of
methods) is a parallel composition which requires joint execution of methods in A.
This synchronisation set is derived from the joint protocol (Withdraw_P) of Bank and
ATM.

3.2 Translating sequence diagrams

In the next step we equip the sequence diagrams with a CSP semantics as well. To
this end, we first formalise sequence diagrams, i.e., give description of their syntax.
This will be the basis for the translation to CSP. As a language for formalising the
diagrams we again employ Z.



We start with the definition of some basic data types (in particular for the names
appearing in the diagrams).

[Name, [Channel names]
Param, [Parameters]
Object, [Object names]
D, [Data values for parameters]
UID] [Unique identifier for arrows]

The sets which can actually be used here depend on the UML model and can be
derived from it. In the banking example, we for instance would have auth € Name,
amt € Param, al € Objects etc. The set D is the basic type of values for parameters.
As we have already explained, all channels must have two special parameters which
are used for adressing the partners in a communication. These are declared in the
following axiomatic definition:

| to, from : Param

Communication channels between components are described by protocols in the UML
model. A protocol describe the interface of a class, i.e. the methods it provides (with
their signature) and the methods it requires. Components that are to be connected
with each other in the structure diagram share one (or more) protocols. From this
interface information in the protocols we just need the names of channels and their
parameters here.

_ Channel
name : Name
params : P Param

{to, from} C params

CSP processes are built over events. An event consists of a channel name together
with values for parameters, e.g. answer.b.al.true is an event consisting of the name
answer plus values b (for parameter from), al (for to) and true (for ok). The notation
?_ denotes that any value can be accepted for a parameter. A partial event is one in
which some of the values for parameters are missing, e.g. answer.b.al is only a partial
event. Given a set of partial events Fv we use the CSP notation {| Fv |} to denote
the set of completions of Fv. Formalised in Z events are as follows.

__ Fvent
ch : Channel
val : Param - D U{?_}

dom val = ch.params

In sequence diagrams events will appear as labels of arrows between objects. Whenever
values for parameters are left out (which is most often the case) we assume the value
to be 7_.



Arrows in sequence diagrams are connecting the lifelines of two objects and are
labelled with events. To distinguish two arrows with the same label connecting the
same lines we attach a unique identifier to each arrow. The values for parameters to
and from of an event attached to an arrow have to agree with the objects connected
by the arrow.

__Arrow
from, to : Object
event : Event

utd @ UID

to # from [no loops]
event.to = to A\ event.from = from

These definitions form the basis for formalising sequence diagrams. A sequence dia-
gram simply consists of a set of arrows and lifelines. Each line belongs to an object
and has a number of arrows going out of it or coming in. On one line arrows are always
ordered (hence we describe them as a sequence). A number of additional conditions
ensure well-formedness of sequence diagrams. Additionally, every sequence diagram is
equipped with an occurrence condition stating whether the specified scenario should
never/sometimes or always happen.

Condition ::= negative | existential | universal

_5Q
¢ : Condition
arrows : F Arrow
lines : Object + iseq Arrow

arrows = ran | ran lines
[the set arrows contains exactly those appearing on lifelines]

Ya: arrows e
#({a.from, a.to} Ndom lines) = 2 A
[an arrow belongs to exacty 2 different lifelines]
a € ran(lines a.from) Nran(lines a.to) A
[to and from are set to the correct lifelines]
a & ran|Jran({a.from, a.to} < lines)
[an arrow cannot belong to a wrong lifeline]

AR : Arrow < Arrow e
Vay,ay : arrows | a1 # az @ —(a; BT a;) A
(1 R ag < Fs:ranlines o s [ {a1, a2} = (a1, a2))
[arrows cannot go back in time]

This formalisation of sequence diagrams is the basis for our translation to CSP. Next
we define a function from sequence diagrams to CSP processes which defines the



translation. The range of the function is the set of CSP processes defined by the
following given type:

[CSP]

The precise syntax of processes will not be defined here, for an introduction to CSP
see [18]. In the translation we use two operators of CSP: — is the prefiz operator for
modelling sequencing and || is the parallel composition. Here we employ alphabetised
parallel composition: for every process in a parallel composition its alphabet of events
is given, and synchronisation has to take place on events in the intersection of alpha-
bets. Syntactically this takes the form || (P;, «;) where ¢ ranges over some index set
and the P; are CSP processes with alphabets a;. When there are just two processes
we write P4||p @. In contrast to ordinary parallel composition alphabetised parallel
composition is associative which is convenient here.

The translation proceeds in two steps. The CSP process of the sequence diagram is
the parallel composition of the CSP processes belonging to every lifeline of an object.
These processes synchronise on shared events. Due to the parameters to and from in
events, an event belongs to the alphabet of exactly two objects (and thus to exactly
two CSP processes).

‘ trans : SQ — CSP
Vsq:SQ e

trans sq =|| {0 : dom lines o (transLine o, alpha (o, sq))}

The alphabet of an object in a sequence diagram consists of the events over channels
appearing on arrows of the object’s lifeline with values for parameters to and from
properly filled in.

‘ alpha : Object x SQ — P Fvent

Vo : Object,sq: SQ e
alpha(o, sq) = {| a : ran(sq.lines o) o
(a.event.ch)q(a.event.val)(from)q(a.event.val)(to) |}

Note that the bold dots are those used for separating values of parameters in CSP
events. We cannot just plainly use a.event here since FDR is not accepting the nota-
tion 7_ in sets of events, only in process expressions.

The CSP processes of the lifelines are simply the sequential composition of the
events on their arrows.

transLine : iseq Arrow — CSP

transLine() = SKIP
V sa : iseq Arrow, a : Arrow e

transLine{a) ™ sa = a.event — transLine sa

The occurrence condition plays no role in the translation to CSP. It will be used for
defining validity. As an example for the translation consider the sequence diagram in
Figure 5 (here u is the identity of the user):
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(debit.al.b?_7_ — result.b.al.false — SKIP,
{| debit.al.b, result.b.al}),
(amount.u.al?_ — debit.al.b?_7_ — result.b.al.false — money.al.u?—- — SKIP,
{| amount.u.al, debit.al.b, results.b.al, money.al.u |}),
(amount.u.al?_ — money.al.u?_ — SKIP,
{| amount.u.al, money.al.u |})}

4 Checking Validity

Having defined the CSP semantics of simple sequence diagrams and UML models, it
is now possible to check the validity of the scenario in the UML model. For the check
we employ the CSP model checker FDR, [9]. FDR performs checks for deadlock- and
divergence-freedom as well as refinement checks between processes. It is based on the
semantic models of CSP. To see how we can use FDR for checking validity of sequence
diagrams we first give a short summary of CSP’s semantic models.

We assume X to be a global set of events (of type Fvent). The traces model 7 iden-
tifies a process P with the (prefix closed) set traces(P) C X* of sequences of events
it can perform. Refinement in 7 is defined as P C7 @ < traces(P) 2 traces(Q). A
more powerful model is the stable failures model F, which, in addition to traces(P),
records for any trace t of P the set of events R that P can stably refuse after perform-
ing t. The set of all these pairs (¢, R) € X* x P X' is called failures(P). A pair (¢, X)
identifies deadlock in F, i.e., a trace after which P refuses all events?. The standard
model for CSP is the failures-divergences model N. Besides deadlock this model can
deal with divergence. The (extension closed) set divergences(P) C X* contains all
traces after which P can diverge. The failures in A/ differ slightly from those in F;
failures | (P) includes all (¢, X), X C X, for any ¢ € divergences(P) in addition to the
stable failures. All three models are supported by the FDR model checker, and refine-
ment checks in these models all amount to checking inclusion between the semantics
of processes. Finally, we need the set infinites(P), which belongs to the infinite traces
models of CSP. It contains all infinite traces of P including the infinite extensions of
divergent traces. It is not supported by FDR, but this does not concern our use of
the set.

As a first step in the validation, we are interested in the language of a sequence
diagram sq : SQ: L(sq) = runs(trans sq), where for a CSP process P runs(P) is
used for ‘all runs of P’. With ‘run’ we denote only those finite traces which cannot
be extended (apart from termination) and the infinite traces, i.e,

runs(P) = {t :seq X' | (¢, X) € failures | (P)} U infinites(P)

Note that this differs from traces(P) since the latter set also contains all prefixes. For
the simple sequence diagrams defined in this paper, there are of course only finite
runs; in fact, all of the examples here define exactly one sequence of events, i.e., a

2 We do not explicitly treat successful termination here.



singleton set as their respective language. The focus in this section is therefore on
validating an occurrence condition for a single word; generalization to a set of words
is discussed at the end.

4.1 Occurrence of a Single Word

In the following let P denote the CSP process of the UML model (specified in the class
diagram, state machine and structure diagrams) obtained by the translation sketched
in Section 3.1. We assume E to be the alphabet of P and let Seq F denote the set of
finite and infinite sequences of elements in F.

Definition 1. Let sq : SQ be a sequence diagram with L£(sq) = {s} and P be the
CSP process belonging to the UML model. The sequence diagram sq is valid in P iff
the following hold:

— sq.condition = negative = =3t : runs(P); u:seqFE; v:SeqFE et =u"

)

»w »

— sq.condition = existential = 3t : runs(P); u:seqE; v:SeqFE o t = u™

~
v
~
v,
~

)

— sq.condition = universal = VYt : runs(P) e Ju :seqF; v:SeqF e t = u" s v.

To establish these occurrence conditions, it is sufficient to verify the following asser-
tions:

As: 3t : traces(P); u:seqF et =u""s
for negative and existential conditions and
A, Vit:runs(P)e3u:seqF; v:SeqE et =u"s"v

for universal conditions3.

Since this is neither a refinement check in one of CSP’s semantic models nor a
check for deadlock- or divergence-freedom, we cannot directly use FDR but first have
to reformulate the problem in a way tractable by FDR. The general idea is to use an
auxiliary process (‘tester’), which performs pattern matching for the sequence s on
the stream of events it is offered. This process is then put in parallel to the process
P for the system to be analysed, synchronizing on the whole alphabet of the system.

The pattern matching consists of keeping track of the longest prefix of s already
matched, and calculating the resulting longest prefix after performing the next event.
For this, a function ¢ is defined, which, for some alphabet F : P Fvent and a word s :
seq E, maps an already matched prefix s; of s together with an event e to the maximal
prefix of s resulting from appending e to s, e.g., §({a, b, ¢}, {(a, b, a, ¢), (a, b, a),b) =
(a, b).

3 Although runs(P) contains all possible (infinite) extensions of divergent traces, this is not
relevant for Ay, since for any infinite trace included in runs(P) due to divergence, the
finite prefix leading to divergence is already included. If s is contained in such a prefix,
then all extensions contain it, too, and if it is not contained, then this prefix alone suffices
as a counterexample, regardless of the extensions.



‘ 0 : (P Event x seq Fvent x seq Event x Fvent) - seq Event

VE :P Event; s,81,5 :seqE; e: E | syprefixs @ 6(E, s, 81,€) = 52 <
soprefix s A spsuffix sy (e) A=TFx: E e (z) " sysuffix s (e)

This is basically the transition function of a deterministic finite automaton, where
states are represented as sequences of events; s; is the current state, s the final state,
e the current input and E the alphabet of the automaton.

Checking Assertion A5

In order to perform this check for some specific sequence of events s, a process Smatch
is constructed from s, which always accepts all events in E until it has performed s; in
that case it performs an event match ¢ E and stops (deadlocks). Define Syatcn = S
with

Sy = match — STOP

Ss1 = De:E € — S(S(E,s,sl,e)
for all true prefixes s; C s. The traces model (7') is sufficient for this test, where
Smaten looks like this:

traces(Smaten) = {t,t1 : seq E | =(sinfix t) A (& C t" s (match)) e t;}

Example. As an example, Sy,q¢ch 18 now constructed for the sequence diagram of Fig. 5.
Using the abbreviations A = amount.u.al?_, D = debit.al.b7_7_, M = money.al.u?_
and R = result.b.al.false, as well as E = {| amount, debit, result, money |}, the
language defined by that diagram is the set {(A, D, R, M)} and we therefore only need
to check for the single word in that set, i.e., we can use the construction described
above, yielding:

Smatch = ()
Sp=A—540 De:E\{A} e — 5
Siay =D — Sa,py O DG:E\{D} e — S
Sia,py =R — Siapry O DG:E\{R} e — S
S(A,D,R) =M — S<A,D,R7M> O De:E\{M} e — 5(>

S(A,D,R,M} = match — STOP

Next we put P and S,qtcn in parallel, synchronising on the whole alphabet F of P
and hide all of F, since we are only interested in the occurrence of match. Then we use
FDR for a refinement check in the traces model in order to check for said occurrence:

(P ||E Smatch) \ E ET match — STOP (*)



This is correct since the following correspondence holds
(P ||y Smaten) \ E T match — STOP & As

because (P || z Smatch) \ E cannot, due to hiding E, perform any event but match and
match can be performed at most once due to the construction of S;,4¢chn; furthermore,
the refinement relation holds, if and only if (P || 5 Smatch) \ E can perform match at
least once, which again means that P must have a trace which contains s.

Thus, for checking validity of sequence diagrams with negative conditions we use
FDR to check (x), if this fails the sequence diagram is valid in the UML model; for
sequence diagrams with existential conditions we use (*) as well and validity holds if
the test is successful.

Checking Assertion Ay

This task is a little more complicated, because of the universal quantification. We
cannot use the simple traces model here, but need to take deadlock and divergence
into account: if s is to occur on all runs of P, then P must neither be able to deadlock
nor to diverge until it has performed s. Furthermore, each (non diverging) infinite run
of P has to contain s. Therefore we split this task into two checks. For the first one
a process Sg;p is constructed from s, which differs from S,q¢cn only in the definition

Ss = div

that is, it diverges immediately after performing s instead of performing an additional
event and stopping. The test using this process is carried out in the stable failures
model (F), where Sy;, is described as

traces(Saiv) = {t,t1 : seq F | ~(sinfixt) A (ty Ct"s et}
failures(Sgiv) = {t : traces(Sqiv) ® (t,2)}

Proposition 1. P || Sy, deadlock free (F) < P cannot deadlock (in a stable state)
until it has performed s.

Proof. Suppose P|| 5 Sqiv is deadlock free in F. Sy, is constructed as not to constrain
the behaviour of P unless it has performed s, in which case it diverges and thus
prevents P from performing any further events without introducing deadlock. Since
Sqiv cannot cause deadlock, it follows that P cannot deadlock in a stable state on
all behaviours allowed by Sy, i.e, until it has performed s. If on the other hand, P
cannot deadlock in a stable state until it has performed s, it follows that P || 5 Sgiv is
deadlock free in F, since Sg;,, does not refuse any event until it has performed s, and
then stops P by diverging, which (in F) does not introduce deadlock. O

The second test requires an auxiliary process Spot, which always accepts any event
in E, except when it has already performed all but the last event of s, in which case
Snot refuses exactly that event, but no other. Let s (f) = s, then

Sso = De:E\{f} € — SS(E,s,so,e)
Ss1 = I:‘e:E € — SS(E,s,sl,e)



for any prefix s; C s with #s1 < #s — 2. Finally, Spor = 5.
This test is carried out using the failures-divergences model (N). In this model
Shot looks like this:

failures | (Spot) = {t, 51,82 :seq E; e: E; R:P{e} |
S(sinfixt) A s =975 (e) o
(t7s1,if 5o = () then Relse @)}
divergences(Spot) = .

Proposition 2. (P || Snet) \ E divergence free < P cannot diverge until it has
performed s and P has no infinite trace (non-diverging), which does not contain s.

Proof Suppose (P |5 Snot) \ E is divergence free. Since S,,; does not constrain
the behaviour of P unless P wants to perform the last event of s, it follows that P
cannot diverge unless it has performed s. Furthermore, since the hiding of E turns
any infinite behaviour of (P || Snot) \ E into divergence, it follows that (P || 5 Snot)
does not have infinite traces, i.e., any infinite trace of P contains s. On the other
hand, if P cannot diverge until it has performed s and does not have an infinite trace,
which does not contain s, then (P ||5 Snot) is divergence free and has not infinite
traces. Thus (P || Snot) \ E divergence free. O

Summarising, we have
P || 5 Saiv deadlock free (F) A (P || Snot) \ E divergence free
if and only if

— P cannot deadlock until it has performed s and
— P cannot diverge until it has performed s and
— P has no infinite trace (non-diverging) which does not contain s,

i.e., any finite or (non-diverging) infinite run of P contains s. For the assertion Ay we

thus get the following

Result

P | Saiv deadlock free (F) A (P |5 Suot) \ E divergence free < Ay
Validity of sequence diagrams with universal condition can hence be checked using
the above two tests.

4.2 Occurrence of a Set of Words

Besides single words the language of a sequence diagram can also contain more than
one word. This is the case if the sequence diagram specifies certain interactions to be
concurrent. The corresponding CSP process will then contain all possible interleavings
in its set of runs. Given not just a single word but a (finite) set L = L(sq) of words



from a sequence diagram sq, there are several possible definitions for ‘occurrence’
both in the existential as well as in the universal case: does ‘possible’ mean in some
run r some s € L occurs (313 s), each s € L occurs in some run r (¥ s 3 r) or in some
run r all s € L occur (37V s)? Does ‘required’ mean on all runs r some s € L occurs
(Vr3s), some s € L occurs on all runs v (3sVr) or on all runs r all s € S occur
(Vrvs)?

The third version for each case (3rVs, VrVs) is clearly too strong as a general
interpretation, but all other versions can be justified. In our case, though, since L is de-
rived from a sequence diagram, the actual interleaving of events for which no ordering
is implied by the lifelines is irrelevant. Therefore, the weakest versions (3r3s, Vr 3 s)
are sufficient here.

The simplest, yet slightly inefficient way to perform the necessary tests for a set
L, is to construct the respective processes for all the s € L and to use them all at
once, i.e., to put them in parallel, synchronising on F.

5 Conclusion

In this paper we proposed a method for checking the validity of (simple) sequence
diagrams in a UML model. To this end we supplied both UML model and sequence
diagrams with a CSP semantics and developed procedures for emplyoing CSP’s model
checker FDR for validity checking. The technique can easily be extended to UML 2.0
sequence diagrams by developing a CSP semantics for them or using the semantics of
[22] which defines it as a set of (timed) traces over actions. Our approach of developing
testers for validity checking can then stay as it is.

Related work. The question of consistency in models with multiple views (of which
our issue is one special aspect) is widely studied. A general approach for defining
consistency in models with multiple views is studied in [2]. In the context of UML an
annual workshop with the topic of consistency is carried out [5]. The use of CSP as a
common semantic domain for multiple views in the study of consistency is chosen in
[7,17,1]. While the first two do not consider sequence diagrams the work of Bolton
and Davies addresses sequences diagrams and develops tests for checking whether
a scenario is possible in a UML model. They do, however, only treat the case that
the scenario starts in the initial state; their tests do not cover scenarios happening
sometime later after initialisation. As a consequence, checking validity simply amounts
to checking for trace refinement and thus FDR thus be directly employed.

Syntactic checks of consistency between class and sequence diagrams are proposed
in [23]. Using labelled trasition systems, [4] defines behavioural consistency for combi-
nations of UML behavioural diagrams (including statecharts and sequence diagrams)
as deadlock freedom. They use the SPIN model checker for analysis, but do not give
a formal translation from UML to SPIN’s input language.

The work most closest to us is that carried out in the context of life sequence
charts (LSCs) [6]. LSCs are an extension of sequence diagrams with special features
for modelling liveness requirements. The work [3] proposes validity checking for LSCs
by translating them to the temporal logic LTL and checking them against Statemate
models. Based on LSCs, the play in play out approach [11] uses a collection of ‘played



in’ examples to specify a whole system, instead of using them only as requirements
for an explicit model.
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