
Theoretical Foundation of Scope-based

Compensable Flow Language for Web Service

Geguang Pu†, Huibiao Zhu†, Qiu Zongyan§,
Wang Shuling§, Zhao Xiangpeng§, and Jifeng He‡

†Software Engineering Institute, East Normal China University
Shanghai, China, 200062

§LMAM and Department of Informatics, School of Math.
Peking University, Beijing, China, 100871

‡International Institute for Software Technology
United Nations University, Macau.

Abstract. Web Services have been becoming more and more impor-
tant in these years, and BPEL4WS is a de facto standard for the web
service composition and orchestration. In this paper, we propose a lan-
guage BPEL0 to capture the important features of BPEL4WS, with the
scope-based compensation handling mechanism, which allow the users
to specify the compensation behaviors of processes in application-specific
manners. The formal operational semantics of BPEL0 is given, with some
key concepts related to compensation handling, i.e., the compensation
closure and compensation context. Based on the semantics proposed, a
new bisimulation called n-bisimulation is proposed, which is used to de-
fine the equivalence between BPEL0 programs. At the same time, some
examples are presented to illustrate how the semantics works and to
unclose the relationship between BPEL0 and BPEL4WS.

Keywords: Web Service, BPEL4WS, Compensation Handling, Business
Process, Semantics

1 Introduction

Web services and other web-based applications have been becoming more and
more important in practice. In this blooming field, various web-based business
process languages are introduced, such as XLANG [18], WSFL [13], BPEL4WS
(BPEL) [9], and StAC [6], which are designed for the description of services
composed by a set of processes across the Internet. Their goal is to achieve the
universal interoperability between applications by using web standards, as well
as to specify the technical infrastructure for carrying out business transactions.
However, BPEL has become the de facto standard for specifying and executing
workflow specification for web service composition.

The important feature of BPEL is that it supports the stateful, long-running
interactions involving two or more parties. Therefore, it provides the ability to
define fault and compensation handing in application-specific manner, resulting
in a feature called Long-Running (Business) Transactions (LRTs). The concept
compensation is due to the use of Sagas [11] and open nested transactions [15].

Aimed to be a language for web service composition and LRTs, BPEL pro-
vides a special form of compensation mechanism, with the scope-based fault and
compensation handling. The mechanism adopted by BPEL is very flexible and
powerful, and of course, it brings the complexity of the BPEL and increases
the difficulty of the usage. As a result, not surprisingly, the formal semantics of
scope-based workflow language, such as BPEL, is not very clear at present.

In this paper, we focus on the theoretical foundation of scope-based flow
language, and propose a language called BPEL0 which can be regarded as the
foundation of BPEL. The operational semantics of BPEL0 is carefully studied,
and with the help of the key concepts of compensation closure and compensation
context, BPEL0 clearly illustrates how the scope-based compensation mechanism
works. For the discussion of the equivalence of BPEL0 program, which not only
includes the normal programs, but also contains the compensation programs, we
propose a new bisimulation relation called n-bisimulation (n ≥ 0), which reflects
the scope-based compensation mechanism, as the scopes in BPEL0 are allowed
to be nested arbitrarily.

This paper is organized as follows. Section 2 introduces the BPEL0 language
with its informal illustrations. Section 3 presents the semantics of BPEL0. Sec-
tion 4 studies the equivalence of BPEL0 by means of bisimulation in hierarchy
structure. Section 5 discusses the related work on compensational workflow lan-
guage. The last section gives the conclusion and future work.

2 The BPEL0 Language

The design of BPEL0 is enlightened by BPEL, where the complicated XML syn-
tactical style of BPEL is abandoned, but all the important features are included.
BPEL0 process is constructed by activities, as what is in BPEL. The syntax of
BPEL0 is as follows:

BA ::= skip | x̄ := ē | wait t | rec a x | rep a v | inv a x y | throw | ε

A ::= BA | A; A | A / b . A | b ∗ A |
g → A[]g → A | LA ‖L LA | A u A | {A ? C :F}n

LA ::= b {ľ1, ľ2} ◦ A | A ◦ {b1 . l̂1, b2 . l̂2}

g ::= rec a x | wait t

C, F ::= �n | . . . (similar to A)

BP ::= {|A : F |}

Basic Activities. The basic activity skip does nothing and terminates imme-
diately. x̄ := ē is a multiple assignment which modifies the global state of the
business process. Activity wait t makes the process to wait for a given time period
t. Activities rec a x and rep a v communicate with the environment of the busi-
ness process, while inv a x y calls a web service offered by its environment, with
two kinds of functions: synchronous request/response or asynchronous one-way
operation. Here we assume inv is a two-way operation. The behavior of one-way
inv is similar to that of activity skip.

Activity throw generates a fault from inside the business process explicitly.
We assume any fault produced in an activity can be captured by its correspond-
ing fault handler when the fault handler does exist. We use ε to denote the empty
text.

Sequential, Conditional, and Iterative Activities. A; B is the sequential
composition of activities A and B. The behavior of the conditional A / b . B is
the same as that of A if boolean variable b is evaluated to true, otherwise, it is
the same as B. Activity b ∗ A supports repeated performance of the specified
activity A, until the given boolean condition b no longer holds.

Choice Activities. BPEL0 provides two kinds of choice: the external choice
g1 → A [] g2 → B and the internal choice A u B. In BPEL, there is only the
external choice, which awaits the occurrence of one of a set of events and then
performs the activity associated with the event that occurred. We added the
internal choice into BPEL0 to facilitate the reasoning about programs.

Flow and Link Activities. Flow activity A ‖L B executes activities A and B

in parallel, where A and B are synchronized over the link set L.
The link construct is a mechanism in BPEL to provide additional synchro-

nization in flow activities. Each link must have exactly one activity within the
flow as its source and exactly one activity as its target. The source and tar-
get of a link may be nested arbitrarily deeply within the flow activity, except
for the boundary-crossing restrictions [9]. To model this, two link structures

A ◦ {b1 . l̂1, b2 . l̂2} and b {ľ1, ľ2} ◦ A are introduced into BPEL0. In fact, an
activity can be the source or target of arbitrary number of links in BPEL. We
make them two here to simplify the discussion. It is easy to be generalized.

A◦{b1.l̂1, b2.l̂2} denotes that A is the source of l1 and l2 which are assigned
boolean values b1 and b2 when A completes, while in b {ľ1, ľ2}◦B, B is the target

of l1 and l2 with condition b. We use l̂ and ľ to stand for the source and target
of link l respectively. Consider the following example:

ľ ◦ A ‖{l} B ◦ {true . l̂}
Though activities A and B can execute in parallel if there were no link l, but
now, they cannot, because the target activity of links have to wait until the link
make its condition becoming true. Thus, only B finishes and stores true into
link l, activity A can perform when link l enables its condition. So, the behavior
of this program is like B; A. Essentially speaking , the flow activity in BPEL0
provides a kind of synchronization similar to the shared variable.

Suppose l ∈ L, we make l a variable recording the status of the link l. The
value of l is from the three-values set {true, false, �}, where � denotes that
the status of l is not determined. The following table shows the results of the
conjunction operator. Other boolean operators are defined similarly.

∧ true false �
true true false �
false false false �
� � � �

Scope Activity with Compensation and Fault handlers. The interesting
feature in BPEL0 (same as in BPEL) is its scope activity, which provides fault
and compensation handlers, and both of them are important to support the
Long-Running Transactions. Similar to the BPEL, the compensation mechanism
in BPEL0 is:

Scope-based (not activity-based). The compensation handlers can only be
attached to the scopes;

Fault trigged. A compensation handler can only be invoked directly or indi-
rectly by some fault handler, which is triggered by a fault in the execution;

Fully programmable. The compensation handlers are named. The installed
handlers can be invoked in any order, interweaved with any other activities.

{A ? C : F}n denotes a scope with the name n. A is its primary activity, while
C and F are its compensation handler and fault handler respectively. The ex-
ecution of a scope is the execution of its primary activity. The compensation
handler is installed with the same name as its scope when the primary activ-
ity completes its execution (terminates successfully). An installed compensation
handler n is invoked by activity �n, which can only appear in the fault handler
or compensation handler of the scope immediately enclosing the scope named
n. As mentioned earlier, we suppose that any fault can be caught by the fault
handler of the immediately enclosing scope.

Here is a program written in BPEL0:

{{A1 ? C1 :F1}n1
; {A2 ? C2 :F2}n2

; A4; A5; {A3 ? C3 :F3}n3
? C :F}n

When scope n1, n2, n3 all complete, the compensation handlers C1, C2, C3 are
installed, and then C is installed too. On the other hand, if scope n1 completes,
but a fault happens in the execution of A2, then the fault is caught by handler
F2. If F2 completes, the control transfers to A4, as nothing happens. In this case,
handler C1 is installed, but C2 is not. If a fault appears in F2, it will be caught by
fault handler F of the enclosing scope n, and at that time, only C1 is installed,
the compensation handlers of other scopes after scope n2 are all abandoned.

In the case of parallel activity, execution of compensations can be performed
in parallel. Consider the following example:

{P1 ? C1 :F1}n1
‖L {P2 ? C2 :F2}n2

When two scope activities above terminates successfully, compensations C1 and
C2 are installed as a parallel pair.

Business Process. A complete program in BPEL0 is in the form of a busi-
ness process {|A : F |}, which is actually an outmost scope without name and
compensation handler. If A completes successfully, the whole business process
completes as well. While fault handler F terminates successfully when it catches
the fault occurring in A, the whole business is still regarded as completed. The
last case in which F terminates with a fault denotes that the whole business
process terminates abnormally.

Comparison of BPEL0 and BPEL. The BPEL0 language provides almost
all the features offered by BPEL except the event handlers. In Appendix B,
we present the comparison for the two languages.

3 Semantics

In this section, the operational semantics of BPEL0 will be presented. In the
semantics, the configuration is defined as a tuple:

〈A, σ, α, β〉 ∈ (Activity ∪ {�})× State×Compensation×Compensation

Where Activity is the set of program texts consisted of BPEL0 activities or a
termination mark �, State is the set of functions from variables to values. As
variables are defined in scopes, we suppose each variable in state is qualified with
the scope name it belongs to. This means all variables are distinct in the state
no matter how the scopes are nested.

The compensation context set Compensation is the key to deal with the
scope-based compensational flow language. Contexts α, β ∈ Compensation are
sequences of compensation closures of the form (Cn : α1), where n is the same
name as the scope where the handler C is defined, and α1 is still a compensation
context. When handler C is invoked, it runs in company with the context α1.

There are two compensation contexts α and β in the configuration. As men-
tioned earlier, compensation handler C in scope {P ? C : F}n is installed only
when P completes. We use α to record the accumulated compensation handlers
installed in the immediately enclosing scope before the current scope starts. We
call α static compensation context. On the other hand, β records the accumulated
compensation closures during the execution of P , which can be changed with
the execution of P . We denote β as the active compensation text. The following
example illustrates the difference of α and β.

{{P1 ? C1 :F1}n1
; A;︸ ︷︷ ︸

α

{
β︷︸︸︷
P2 ? C2 :F2}n2

; {P3 ? C3 :F3}n3
? C :F}n

In this example, when P2 is under running, β records the compensation closures
installed in the execution of P2, while α records the context for the scope n.
When the control enters scope n3, β will be reset empty and start to record the
context accumulated in the execution of P3 in scope n3.

〈ε, σ, α, 〈〉〉 is a terminated configuration. As a process might complete
(terminate successfully) or fail (terminate with a fault), we use 〈�, σ, α, 〈〉〉 to
denote the failure configuration.

We distinguish three kinds of events: visible event a, time elapsing event
√

,
and silent event τ . The visible event set mainly contains the events communi-
cating with the external environment. The time elapsing event denotes the time
elapses one time-unit in the real world. The silent event stands for a silent action
of the corresponding activity. We assume that when a fault occurs in program

P , the event η with fault transition belongs to {τ, a}, which leads to make the
control flow enter the fault handler from the primary activity. For simplicity, we
suppose δ ∈ {τ, a,

√}.
Because compensation text α is a sequence, we list some operators to deal

with sequences, which will be used later.

a0 · 〈a1, . . . , an〉 = 〈a0, a1, . . . , an〉
hd(〈a1, a2, . . . , an〉) = a1

tl(〈a1, a2, . . . , an〉) = 〈a2, . . . , an〉
〈a1, , . . . , an〉̂〈b1, . . . , bm〉 = 〈a1, . . . , an, b1, . . . , bm〉
〈〉 ‖ 〈a0, a1, . . . , an〉 = 〈a0, a1, . . . , an〉

The last operator ‖ on sequence denotes two sequences are composed in parallel.
If one part of parallel sequence is empty, then this part can be omitted.

3.1 Basic Activities

The semantics of basic activities are listed as follows:

〈skip, σ, α, 〈〉〉
τ

−→ 〈ε, σ, α, 〈〉〉

〈inv a x y, σ, α, 〈〉〉
√
−→ 〈inv a x y, σ, α, 〈〉〉

〈inv a x y, σ, α, 〈〉〉
a.v
−→ 〈ε, σ[y 7→ v], α, 〈〉〉

〈rec a x, σ, α, 〈〉〉
√
−→ 〈rec a x σ, α, 〈〉〉

〈rec a x, σ, α, 〈〉〉
a.v
−→ 〈ε, σ[x 7→ v], α, 〈〉〉

〈rep a x σ, α, 〈〉〉
√
−→ 〈rep a x, σ, α, 〈〉〉

〈rep a x, σ, α, 〈〉〉
τ

−→ 〈ε, σ, α, 〈〉〉

〈x̄ := ē, σ, α, 〈〉〉
τ

−→ 〈ε, σ[x̄ 7→ σ(ē)], α, 〈〉〉

〈wait t, σ, α, 〈〉〉
√
−→ 〈wait t − 1, σ, α, 〈〉〉 t > 1

〈wait t, σ, α, 〈〉〉
√
−→ 〈ε, σ, α, 〈〉〉 t = 1

〈inv a x y, σ, α, 〈〉〉
a

−→ 〈�, σ, α, 〈〉〉

〈rec a x y, σ, α, 〈〉〉
a

−→ 〈�, σ, α, 〈〉〉

〈rep a x, σ, α, 〈〉〉
a

−→ 〈�, σ, α, 〈〉〉

The rules for the basic activities show that, a fault might take place when
BPEL0 process communicates with the environment. Note the basic activities
are very simple, and do not embed any scope, so the active compensation context
is empty for each of them.

3.2 Composition Activities

Sequence. Sequential composition is simple. The interesting rule is that when
a fault takes place in activity A, immediately the whole structure A; B goes into
the fault state in which the active compensation text β is reset empty.

〈ε; A, σ, α, β 〉
τ

−→ 〈A, σ, α, β 〉
〈A, σ, α, β〉

δ
−→ 〈A′, σ′, α′, β′〉

〈A; B, σ, α 〉
δ

−→ 〈A′; B, σ′, α′, β′〉

〈A, σ, α, β〉
η

−→ 〈�, σ, α, 〈〉〉

〈A; B, σ, α, β 〉
η

−→ 〈�, σ, α, 〈〉〉

We put the rules for switch, iteration, external and internal choice in Appendix

A, where no interesting point presents.

Link. Link structure provides the synchronization mechanism in parallel com-
position of BPEL0.

〈A, σ, α, β〉
δ

−→ 〈A′, σ′, α′, β′〉

〈A ◦ {b1 . l̂1, b2 . l̂2}, σ, α, β〉
δ

−→ 〈A′ ◦ {b1 . l̂1, b2 . l̂2}, σ′, α′, β′〉

〈ε ◦ {b1 . l̂1, b2 . l̂2}, σ, α, β〉
τ

−→ 〈ε, σ[l1 7→ σ(b1), l2 7→ σ(b2)], α, 〈〉〉

〈A, σ, α, β〉
η

−→ 〈�, σ′, α′, 〈〉〉

〈A ◦ {b1 . l̂1, b2 . l̂2}, σ, α, β〉
η

−→ 〈�, σ[l1 7→ false, l2 7→ false], α, 〈〉〉

σ(b{ľ1, ľ2}) = true

〈b{ľ1, ľ2} ◦ A, σ, α, β〉
τ

−→ 〈A, σ, α, β〉

σ(b{ľ1, ľ2}) = false

〈b{ľ1, ľ2} ◦ A, σ, α, β〉
τ

−→ 〈�, σ, α, 〈〉〉

Note that when a fault occurs in source link structure A◦{b1. l̂1, b2 . l̂2}, then it
enters the fault state with assigning false to all its link variables. This mechanism
ensures that target link structure can work well, even though its corresponding
source link structure has a fault. If the valuation of boolean variable in target
link is false, one standard fault will be thrown immediately. This rule reflects
the non dead-path-elimination semantics in flow structure of the BPEL.

Scope. Scope activity is one of the most important features in BPEL0. By
means of the compensation and fault handlers with the scope activity, BPEL0
can deal with very complicated long running transactions in business process.

〈A, σ, β, γ〉
δ

−→ 〈A′, σ′, β′, γ′〉

〈{A ? C :F}n, σ, α, β〉
δ

−→ 〈{A′ ? C :F}n, σ′, α, β′〉

〈{ε ? C :F}n, σ, α, β〉
τ

−→ 〈ε, σ, (Cn :β) · α, 〈〉〉

〈A, σ, β, γ〉
η

−→ 〈�, σ, β, γ′〉

〈{A ? C :F}n, σ, α, β〉
η

−→ 〈F, σ, β, 〈〉〉

The relation between static and active compensation contexts embodied in scope
activity is that the active compensation context of {A ? C : F}n is exactly the
static compensation context of activity A.

The primary activity A is executed with an empty context initially. When
it completes, a compensation closure is created, and put in the front of α. A
sequence of compensation closures will accumulate in this way. When primary
activity A fails, the execution switches to the fault handler, and the termination
status of the fault handler F is the termination status of the scope. The fault

handler can do anything to the state and the environment. Basically, it has
responsibility to recover the process back to a normal state. Note that the fault
handler resets its active compensation context empty again before it starts its
computing task.

Business Process. Business process is just like the scope activity except lacking
of compensation handler. As business process can be regarded as the outmost
scope activity, its static compensation text always keeps empty. The following
rules are similar to those of scope activity.

〈P, σ, β, γ 〉
δ

−→ 〈 P ′, σ′, β′, γ′ 〉

〈 {|P : F |}, σ, 〈〉, β 〉
δ

−→ 〈 {|P ′ : F |}, σ′, 〈〉, β′ 〉

〈 {|ε : F |}, σ, 〈〉, β 〉
τ

−→ 〈 ε, σ′, 〈〉, 〈〉 〉

〈 P, σ, β, γ 〉
η

−→ 〈 �, σ, β, γ′ 〉

〈 {|P : F |}, σ, 〈〉, β 〉
η

−→ 〈 F, σ, β, 〈〉 〉

Flow (Parallel). The activities in flow structure are synchronized by the link
set defined within parallel activity. As the link activities are introduced earlier,
the semantics of flow activity are not complicated, and obey the following rules:

〈 A, σ, αA, βA 〉
δ

−→ 〈 A′, σ′, α′
A, β′

A 〉

〈 A ‖L B, σ, (αA ‖ αB) · α, βA ‖ βB 〉
δ

−→ 〈 A′ ‖L B, σ′, (α′
A ‖ αB) · α, β′

A ‖ βB 〉

〈 B, σ, αB , βB 〉
δ

−→ 〈 B′, σ′, α′
B , β′

B 〉

〈 A ‖L B, σ, (αA ‖ αB) · α, βA ‖ βB 〉
δ

−→ 〈 A ‖L B′, σ′, (αA ‖ α′
B) · α, βA ‖ β′

B 〉

The operator ‖ on ε and � is defined in the following table:

‖ ε �

ε ε �

� � �

Only when all of activities in the flow complete, the flow activity completes.
Note there is an interesting thing about a fault occurring in one branch of the
flow activity. If one branch in a flow fails, the other branches can still run until
they complete or fail. This seems a little unreasonable in real system, because
all branches are supposed to be terminated when one of the branch in flow fails.
In the next section, forced termination is introduced to modify the semantics
provided here in order to conform to the behavior of fault in real system.

Operation �n looks up the compensation closure with the name n in current
compensation context. If no closure with the name is found, it acts like a skip,
otherwise, the handler in the closure is executed in company with its context:

〈 �n, σ, α, 〈〉 〉
τ

−→ 〈 gp(n,α), σ, ge(n,α), 〈〉 〉

The lookup rules for parallel operator are as follows:

gp(n, (α′ ‖ α′′) · α) = gp(n, α′̂α′′̂α)
ge(n, (α′ ‖ α′′) · α) = ge(n, α′̂α′′̂α)

where gp(n, α) and ge(n, α) extract the process and the context of the compen-
sation closure with name n from α, respectively (where n 6= m):

gp(n, 〈〉) = skip ge(n, 〈〉) = 〈〉
gp(n, (Cn :β) · α′) = C ge(n, (Cn :β) · α′) = β
gp(n, (Cm :β) · α′) = gp(n, α′) ge(n, (Cm :β) · α′) = ge(n, α′)

3.3 Forced Termination

In a BPEL flow activity, when one branch fails, the fault handler of the innermost
enclosing scope begins its behavior by implicitly terminating all other (concur-
rent) activities in the scope, and then starts the execution of its body. This is
called the forced termination. To deal with this mechanism, a new termination
mark � is introduced to describe this new kind of termination.

We have to add some rules to handle the forced termination. First of all, all
basic actives will be allowed to complete their work as before and the completion
can be regarded as a forced termination as well. We use Pba to denote any basic
activity, such as rec, inv etc.

〈Pba, σ, α, 〈〉〉
δ

−→ 〈ε, σ′, α, 〈〉〉

〈Pba, σ, α, 〈〉〉
δ

−→ 〈�, σ′, α, 〈〉〉

A rule for sequential composition is added:

〈A, σ, α, β〉
δ

−→ 〈�, σ′, α, 〈〉〉

〈A; B, σ, α, β 〉
δ

−→ 〈�, σ′, α, 〈〉〉

A rule for link construct is added:

〈A, σ, α, β〉
δ

−→ 〈�, σ′, α, 〈〉〉

〈A ◦ {b1 . l̂1, b2 . l̂2}, σ, α, β〉
δ

−→ 〈�, σ′[l1 7→ false, l2 7→ false], α, 〈〉〉

A new rule for scope is added as well.

〈P, σ, β, γ〉
δ

−→ 〈�, σ′, β, 〈〉〉

〈{P ? C :F}n, σ, α, β〉
δ

−→ 〈�, σ′, α, 〈〉〉

At last, we should modify the results of operator ‖ while � is added

‖ ε � �

ε ε � �

� � � �

� � � �

Example 1. (Forced Termination) Consider a BPEL0 program P = {{A1 ? C1 :
F1}n1

; A2; A3 ‖{} A4; A5; A6 ? skip : � n}n, where Ai(i = 1...6) are all basic
activities. Suppose a fault occurs in the execution of A2, and all the other basic
activities can complete. Using the semantic rules above, we can reason about the
execution of P . For simplicity, we use some abbreviations P1 = {A1 ? C1 :F1}n1

,
P11 = {A1 ? C1 : F1}n1

; A2; A3 and P12 = A4; A5; A6. In the following , we use
−→∗ to denote zero or multiple transitions.

When there is no forced termination:

(1) 〈P1, σ, 〈〉, 〈〉〉 −→∗ 〈ε, σ′, (Cn : 〈〉), 〈〉〉
(2) 〈P11, σ, 〈〉, 〈〉〉 −→∗ 〈�, σ′′, (Cn : 〈〉), 〈〉〉
(3) 〈P12, σ, 〈〉, 〈〉〉 −→∗ 〈ε, σ′′, 〈〉, 〈〉〉
(4) 〈P11 ‖{} P12, σ, 〈〉, 〈〉〉 −→∗ 〈�, σ′′, (Cn : 〈〉), 〈〉〉
(5) 〈P, σ, 〈〉, 〈〉〉 −→∗ 〈�n, σ′′, (Cn : 〈〉), 〈〉〉
(6) 〈P, σ, 〈〉, 〈〉〉 −→∗ 〈Cn, σ′′, 〈〉, 〈〉〉

Now we take the forced termination into account:

(1) 〈P1, σ, 〈〉, 〈〉〉 −→∗ 〈ε, σ′, (Cn : 〈〉), 〈〉〉
(2) 〈P11, σ, 〈〉, 〈〉〉 −→∗ 〈�, σ′′, (Cn : 〈〉), 〈〉〉
(3) 〈P12, σ, 〈〉, 〈〉〉 −→ 〈ε; A2; A3, σ1, 〈〉, 〈〉〉

(4) 〈P12, σ, 〈〉, 〈〉〉 −→∗ 〈�, σ1, 〈〉, 〈〉〉
(5) 〈P11 ‖{} P12, σ, 〈〉, 〈〉〉 −→∗ 〈�, σ′′, (Cn : 〈〉), 〈〉〉

From the second deduction, we can see that when a branch in parallel process
fails, the other activities that are currently active are forced to terminate by
means of force termination rules.

4 Bisimulation

The behavior of a program can be represented in terms of execution steps. Two
syntactically different programs may have the same observable behavior. Thus,
a reasonable abstraction is desirable in defining program equivalence via opera-
tional semantics. Bisimulation is a useful approach in defining program equiva-
lence. Algebraic laws can be explored using the formalized bisimulation.

Here are some auxiliary definitions for the definition of bisimulation.

Definition 1 The transition relation
id

=⇒ is defined as:

〈P, σ, α, β〉 id
=⇒ 〈P ′, σ, α, β〉

=df ∃n, P1, . . . , Pn • 〈P, σ, α, β〉 η1−→ 〈P1, σ, α, β〉 . . .
ηn−→ 〈Pn, σ, α, β〉

where
ηi−→ can be of the form

τ−→ or
a−→. ut

Definition 2 The transition relation
δ

=⇒ (δ ∈ {τ, a,
√}) is defined as:

〈P, σ, α, β〉 δ
=⇒ 〈P ′, σ′, α′, β′〉

=df

{
〈P, σ, α, β〉 δ−→ 〈P ′, σ′, α′, β′〉 or

∃P1 • 〈P, σ, α, β〉 id
=⇒ 〈P1, σ, α, β〉 δ−→ 〈P ′, σ′, α′, β′〉

In a BPEL0 program configuration, the third element stores a sequence
of programs. This gives the complexity of defining bisimualtion for the pro-
grams. In order to deal with the definition, we firstly introduce the concept of
0-Bisimulation, which forms the basis for defining program equivalence.

Definition 3 (0-Bisimulation) A symmetric relation R is a 0-Bisimulation if
and only if ∀ 〈P, σ, α, β〉R 〈Q, σ, α1, β1〉

(1) if 〈P, σ, α, β〉
√

=⇒ 〈P ′, σ′, α′, β′〉,
then ∃Q′, α′

1, β
′
1 • 〈Q, σ, α1, β1〉

√
=⇒ 〈Q′, σ′, α′

1, β
′
1〉 and

〈P ′, σ′, α′, β′〉R 〈Q′, σ′, α′
1
, β′

1
〉

(2) if 〈P, σ, α, β〉 η
=⇒ 〈P ′, σ′, α′, β′〉 (η ∈ {τ, a}),

(2-1) if σ 6= σ′, then

∃Q′, α′
1, β

′
1 • 〈Q, σ, α1, β1〉

η
=⇒ 〈Q′, σ′, α′

1, β
′
1〉 and

〈P ′, σ′, α′, β′〉R 〈Q′, σ′, α′
1
, β′

1
〉

(2-2) if σ = σ′, then

either 〈P ′, σ′, α′, β′〉R 〈Q, σ, α1, β1〉
or ∃Q′, α′

1
, β′

1
• 〈Q, σ, α1, β1〉

η
=⇒ 〈Q′, σ′, α′

1
, β′

1
〉 and

〈P ′, σ′, α′, β′〉R 〈Q′, σ′, α′
1
, β′

1
〉

(3) if 〈P, σ, α, β〉 η−→ 〈�, σ′, α′, 〈〉〉 (η ∈ {τ, a}),
then ∃α′

1
• 〈Q, σ, α, β〉 η−→ 〈�, σ′, α′

1
, 〈〉〉 �

Item (1) indicates that if process P makes time transition, so does the process
Q and the two result configurations are also 0-bisimilar.

Item (2) stands for the case of atomic-like transitions. It can be devided
into two types. If the two states before and after the transition are different,
the bisimilarity analysis is similar to item (1). The second type models the case
that the two states are the same. For this sub case, although process P has
made transitions, process Q may not make further transitions and the result
configuration of P is directly bisimilar to the configuration of process Q. On the
other hand, process Q may also need to do atomic-like transition and the result
configurations of process P and Q after transitions are bisimilar.

Item (3) represents the failure case. If a process makes a failure transition,
the corresponding process must also make a failure transition.

Definition 4 (1) Configurations 〈P1, σ, α1, β1〉 and 〈P2, σ, α2, β2〉 are 0-bisimilar,
written as 〈P1, σ, α1, β1〉 ≈0 〈P2, σ, α2, β2〉, if there exists a 0-bisimulation rela-
tion R such that 〈P1, σ, α1, β1〉 R 〈P2, σ, α2, β2〉.
(2) Programs P and Q are 0-bisimilar, written as P ≈0 Q, if ∀σ, α1, α2, β1, β2 •
〈P, σ, α1, β1〉 ≈0 〈Q, σ, α2, β2〉. ut

This definition indicates that ≈0 is the largest relation for 0-bisimulation over
configurations. Further, the concept of 0-bisimulation has also been extended to
the domain of processes.

Now we give the definition of the simple compensation sequence:

(1) 〈 〉 is a simple compensation sequence;
(2) (C1 : α1)̂ . . . ̂(Cn : αn) is a simple compensation sequence if α1, . . . , αn

are also simple compensation sequences.

Example 2. Let α = (C1 : α1)̂(C2 : α2)̂(C3 : 〈 〉),
α1 = (C4 : α4)̂(C5 : 〈 〉) and α2 = (C6 : α6)̂(C7 : 〈 〉)̂(C8 : α8),

α4 = (C9 : 〈 〉)̂(C10 : 〈 〉),
α6 = (C11 : 〈 〉)̂(C12 : 〈 〉)̂(C13 : 〈 〉) and α8 = (C14 : 〈 〉)̂(C15 : 〈 〉)

¿From the above definition, we know α is a simple compensation sequence. ut

Consider a simple compensation sequence α = (C1 : α1)̂ . . . ̂(Cn : αn). In
order to describe its full structure, we translate the nested sequence structure of
α into a tree structure; namely tree(α):

(1) if α = 〈 〉, then tree(α) is just one node;
(2) if α = (C1 : α1)̂ . . . ̂(Cn : αn), then there are n branches for the root of the

tree, the names for the n edges from left to right are C1, , Cn. Further,
the root of tree(αi) is just another node of edge Ci.

The tree structure of α in Example 2 is shown below. It clearly illustrates the
structure of the compensation sequence.

C
1

C
2

C
3

C
4
 C
5
 C
6

C
7

C
8

C
9
 C
1
0
 C
1
1

C
1
2

C
1
3
 C
1
4
 C
1
5

The path(α) for any simple compensation sequence β is defined as:

path(α) =df { i1̂ . . . ̂in | ∃ edge C • i1, . . . , in are the edge number

from the root of tree(α) to the exact edge C}

The sequence i1̂ . . . ̂in dynamically indices to the exact edge in tree(α). There-
fore, we will use α[i1̂ . . . ̂in] to represent the corresponding edge in tree(α),
which stands for a program. For example, in the simple compensation sequence
α of Example 2, 2̂1̂2 will identify program C12.

Two sequences α1 and α2 are called structural equivalence, written as α1 ≈s

α2, if path(α1) = path(α2).

However, not all compensation sequences are simple. For example, let α =
((C1 : 〈 〉) ‖ (C2 : (C3 : 〈 〉)))̂(C4 : 〈 〉). It is easy to see that α is not simple.

To illustrate the further structure for compensation, we introduce a function
mul(α), which contains all the the simple compensation sequences for compen-
sation sequence α:

mul(〈 〉) =df {〈 〉}
mul((C1 : α1)̂x) =df {(C1 : u)̂t | u ∈ mul(α1) ∧ t ∈ mul(x)}
mul((x ‖ y)̂z) =df mul(x̂ŷz) ∪ mul(ŷx̂z)

Now we introduce the concept of k-bisimulation (k ≥ 1). Together with 0-
bisimulation, they form the basis in defining program equivalence.

Definition 5 (k-Bisimulation) A symmetric relation R is a k-Bisimulation
(k ≥ 1) if and only if for any 〈P, σ, α, β〉R 〈Q, σ, α1, β1〉

(0) Equiv(α, α1, k − 1);

(1) if 〈P, σ, α, β〉
√

=⇒ 〈P ′, σ′, α′, β′〉,

then ∃Q′, α′
1, β

′
1 • 〈Q, σ, α1, β1〉

√
=⇒ 〈Q′, σ′, α′

1, β
′
1〉 and

〈P ′, σ′, α′, β′〉R 〈Q′, σ′, α′
1
, β′

1
〉 and

Equiv(α′, α′
1, k − 1);

(2) if 〈P, σ, α, β〉 η
=⇒ 〈P ′, σ′, α′, β′〉 (η ∈ {τ, a}),

(2-1) if σ 6= σ′, then

∃Q′, α′
1, β

′
1 • 〈Q, σ, α1, β1〉

η
=⇒ 〈Q′, σ′, α′

1, β
′
1〉 and

〈P ′, σ′, α′, β′〉R 〈Q′, σ′, α′
1
, β′

1
〉 and

Equiv(α′, α′
1, k − 1);

(2-2) if σ = σ′, then

either 〈P ′, σ′, α′, β′〉R 〈Q, σ, α1, β1〉 and Equiv(α′, α1, k − 1);

or ∃Q′, α′
1, β

′
1 • 〈Q, σ, α1, β1〉

η
=⇒ 〈Q′, σ′, α′

1, β
′
1〉 and

〈P ′, σ′, α′, β′〉R 〈Q′, σ′, α′
1
, β′

1
〉 and

Equiv(α′, α′
1, k − 1);

(3) if 〈P, σ, α, β〉 η−→ 〈�, σ′, α′, 〈〉〉 (η ∈ {τ, a}),
then ∃α′

1
• 〈Q, σ, α, β〉 η−→ 〈�, σ′, α′

1
, 〈〉〉 and Equiv(α′, α′

1
, k − 1);

where

(1) Equiv(α1, α2, n) =df ∀u ∈ mul(α1) • ∃v ∈ mul(α2) • equiv(u, v, n) ∧
∀v ∈ mul(α2) • ∃u ∈ mul(α1) • equiv(v, u, n)

(2) equiv(u, v, n) =df u ≈s v ∧ ∀t ∈ path(u) • u[t] ≈n v[t] ut

Here, equiv(u, v, n) indicates that the two simple compensation sequences u

and v are strcutural equivalent (described by u ≈s v). Further, it also indicates

that every program in tree(u) is n-bisimilar to the corresponding program in
tree(v).

Reagrding Equiv(α1, α2, n), α1 and α2 may not be simple compensation
sequences. We use mul(α1) and mul(α2) to record all the simple compensa-
tion sequences generated from α1 and α2 respectively. Further, for every simple
compensation sequence u in mul(α1), there should exist a simple compensa-
tion sequence v in mul(α2) such that equiv(u, v, n) is satisfied and vice-versa.
Therefore, Equiv(α1, α2, n) stands for the n-bisimilarity for α1 and α2.

The purpose of k-bisimulation (k ≥ 1) is as follows. As the third element
of a configuration is a sequence recording a set of programs in tree structure.
In k-bisimulation (k ≥ 1), for the sequences appearing as the third elements
in the two bisimilar configurations before and after the transition, their struc-
tures should be the same. Further, before a transition (or after a transition), the
corresponding processes recorded in the two sequences of two k-bisimilar config-
urations should be (k − 1)-bisimilar. This shows the difference of k-bisimulation
and 0-bisimulation, which is shown in item (0) and the extra information (i.e.,
function Equiv()) in other items in the definition of k-bisimulation.

Definition 6 (1) Configurations 〈P1, σ, α1, β1〉 and 〈P2, σ, α2, β2〉 are k-bisimilar
(k ≥ 1), written as 〈P1, σ, α1, β1〉 ≈k 〈P2, σ, α2, β2〉, if there exists a k-bisimulation
relation R such that 〈P1, σ, α1, β1〉 R 〈P2, σ, α2, β2〉.
(2) Programs P and Q are k-bisimilar (k ≥ 1), the fact is written as P ≈k Q, if
∀σ, α1, α2, β1, β2 • Equiv(α1, α2, k − 1) =⇒ 〈P, σ, α1, β1〉 ≈k 〈Q, σ, α2, β2〉 ut

¿From Definition 5 and 6, k-bisimulation relies on (k − 1)-bisimulation.
Thus, 0-bisimulation is the basis for the definition of all k-bisimulations (for
k ≥ 1). Therefore, n-bisimulation (n ≥ 0) forms a hierarchy structure.

Lemma 1 If P ≈k Q, then P ≈k−1 Q (k ≥ 1). ut

Definition 7 (Program equivalence) ≈=df

⋂
n≥0

≈n ut

Two programs are equivalent, if they are n-bisimilar for any n (n ≥ 0).

Theorem 1 ≈ is a congruence. ut

This theorem indicates that “program equivalence” relation ≈ is preserved by
all BPEL0 processes.

5 Related Work

In recent years, many efforts have been attempted to formalize various workflow
languages [1, 3, 6, 5], especially with some kind of compensation concepts, which
root to the Sagas and open nested transactions, and have been studied for a long
time in the transaction processing world.

M. Mazzara et al. suggested to merge the fault and compensation handling
into a general framework of even handling [14], and presented an operational

semantics for their CCS-like language. In paper [12], Koshkina et al. analyzed
the link structure carefully in BPEL, and presented a language called BPE-
calculus (a CCS-like language as well) to model and verify BPEL specifications.
But they omitted the compensation and fault handling mechanisms totally.

In a recent paper [7], Bruni et al. presented the operational semantics for a
series of languages, and some additional features embodied compensation con-
cept. The compensation in these languages is basic-activity-oriented (each basic
activity is in company with a compensation) with no name. The compensation is
triggered by a special command, and always executed in the reverse order with
respect to the installation. Compared to the work of paper [6], Butler et al. pre-
sented a language called StAC (Structured Activity Compensation), where the
semantics of StAC was defined on its semantic language. The paper [8] illustrated
that the link and difference between the two languages proposed by Bruni [7]
and Butler [6] respectively. Our previous work [16] studied the semantics of the
fault and compensation handling in BPEL specification, and presented a simple
language to catch the features of BPEL related to fault and compensation han-
dling. The big step semantics are adopted by most of researches when studying
the compensation mechanism in workflow language.

Some research groups aim to model and verify the BPEL4WS program, such
as [10, 3]. In paper [10], authors presented a set of tools and techniques for
analyzing interactions of composite web servces which are specified in BPEL.
The BPEL specifications are translated into an intermediate representation, and
then verified use SPIN. In paper [17], we adopted a similar approach to use model
checker UPPAAL [4] to verify the properties of BPEL program including timed
properties. But we find no work on verifying BPEL specification with the features
of the compensation and fault handling.

Of course there are much more informal work on workflow languages, and
especially on BPEL. For example, [1] proposed a general framework to evaluate
the capabilities and limitations of BPEL. Paper [2] presented an informal analysis
from a pattern-based view on workflow language. But their work did not provide
the patterns related to fault and compensation handling as well.

6 Conclusion

BPEL is one the most important business process modelling languages, aimed
to specify the business services which are formed by distributed, interoperatinal
and heterogeneous components over networks. One distinct feature of BPEL is
its scope-based compensation handling and fully programmable compensation
mechanism, which allows users to specify the compensation behaviors of pro-
cesses in application-specific manners.

In this paper, we proposed a language BPEL0 based on BPEL, and regard
it as a foundation to study the scoped-base compensation languages. With the
help of the key concepts of compensation closure and compensation context, the
semantics of BPEL0 has been carefully studied. Based on the semantics, a new

bisimulation, n-bisimulation (n ≥ 0) was proposed, which was used to define the
equivalence between BPEL0 programs

Based on this work, an execution engine of BPEL0 is being developed, and we
also hope to study the verification of BPEL0 relying on the semantic framework
proposed here, which can be added into the developing of execution engine. As
one future work as well, we will consider the design patterns provided by BPEL0,
especially the patterns with compensation handling by means of n-bisimulation.

References

1. W. Aalst, M. Dumas, and A. Hofstede, and P. Wohed, Analysis of web services
composition languages: The case of BPEL4WS. In Proc. of ER’03, LNCS 2813, pp
200-215, Springer, 2003.

2. W. Aalst, A. Hofstede. YAWL: yet another workflow language. In Inf. Syst.,
Vol.30(4), pp245-275, 2005.

3. B. Benatallah and R. Hamadi. A Petri net-based model for web service composi-
tion. Proc. of ADC’03, pp 191-200, Australian Computer Society, 2003.

4. J. Bengtsson, K. G. Larsen, F. Larsson, P. Pettersson, and Y. Wang. UPPAAL -
a tool suite for automatic verification of real-time systems. In Hybrid Systems III:
Verification and Control, pp 232-243, Springer, 1996.

5. A. Brogi, C. Canal, E. Pimentel, and A. Vallecillo. Formalizing web services chore-
ographies. In Pro. of WS-FM’04, 2004.

6. M. Butler and C. Ferreira. An operational semantics for StAC, a language for mod-
elling long-running business transactions. In Proc. of Coordination’04, LNCS 2949,
pp 87-104, Springer, 2004.

7. R. Bruni, H. Melgratti, and U. Montanari, Theoritical Foundations for Compen-
sation in Flow Composition Languages, In Proc. of ACM POPL’05, 2005.

8. R. Bruni, M. Butler, C. Ferreira, C. A. R. Hoare, H. C. Melgratti, U. Monta-
nari. Comparing Two Approaches to Compensable Flow Composition. In Proc. of
CONCUR’05, pp 383-397, 2005.

9. BPEL4WS, Business Process Execution Language for Web Service,
http://www.siebel.com/bpel, 2003.

10. X. Fu, T. Bultan, and J. Su. Analysis of interacting BPEL web services. In Proc.
of WWW’04, pp 621-630, 2004.

11. H. Garcia-Molina and K. Salem. Sagas. In Proc. of ACM SIGMOD’87, pp 249-259,
ACM Press, 1987.

12. M. Koshkina and F. Breugel. Modelling and verifying web service orchestration
by means of the concurrency workbench. In ACM SIGSOFT Software Engineering
Notes, 29(5), 2004.

13. F. Leymann. WSFL: Web Serices Flow Languag, http://www-
3.ibm.com/software/solutions/webservices/pdf/WSDL.pdf.

14. M. Mazzara and R. Lucchi. A framework for generic error handling in business
process. In Proc. of WS-FM’04, ENTCS Vol. 105, pp 133-145, Elsevier, 2004.

15. J. Moss. Nested Transactions: An Approach to Reliable Distributed Computing.
PhD thesis, Dept. of Electrical Eng. and Computer Sci., MIT, 1981.

16. Qiu Zongyan, Wang Shuling, Pu Geguang and Zhao Xiangpeng. Semantics of
BPEL4WS-like Fault and Compensation Handling . In Proc. of Formal Methods’05,
pp 350-365, Springer, 2005.

17. Pu Geguang, Zhao Xiangpeng, Wang Shuling, and Qiu Zongyan. Towards the
semantics and verification of BPEL4WS. In Proc. of WS-FM05, 2005.

18. S. Thatte. XLANG: Web Service for Business Process Design, http :
//www.gotdotnt.com/team/xmlwsspecs/xlang − c/default.html.

Appendix

A. Other Composition Activities

Switch.

σ(b) = true

〈A / b . B, σ, α, β〉
τ

−→ 〈A, σ, α, β〉

σ(b) = false

〈A / b . B, σ, α, β〉
τ

−→ 〈B, σ, α, β〉

Iteration

σ(b) = true

〈b ∗ A, σ, α, β〉
τ

−→ 〈A; b ∗ A, σ, α, β〉

σ(b) = false

〈b ∗ A, σ, α, β〉
τ

−→ 〈ε, σ, α, 〈〉〉

External Choice. The following transformation rules deal with the behaviors of
external choice guarded by input event or time alarm.

〈rec a x −→ A, σ, α, 〈〉〉
a.v
−→ 〈A, σ[x 7→ v], α, 〈〉〉

〈rec a x −→ A [] C, σ, α, 〈〉〉
a.v
−→ 〈A, σ[x 7→ v], α, 〈〉〉

〈rec a x −→ A, σ, α, 〈〉〉
√
−→ 〈rec a x −→ A, σ, α, 〈〉〉,

〈C, σ, α, 〈〉〉
√
−→ 〈C′, σ, α, 〈〉〉

〈rec a x −→ A [] C, σ, α, 〈〉〉
√
−→ 〈rec a x −→ A [] C ′, σ, α, 〈〉〉

〈wait t −→ A, σ, α, 〈〉〉
√
−→ 〈wait (t − 1) −→ A, σ, α, 〈〉〉,

〈C, σ, α, 〈〉〉
√
−→ 〈C′, σ, α, 〈〉〉, t > 1

〈wait t −→ A [] C, σ, α, 〈〉〉
√
−→ 〈wait (t − 1) −→ A [] C ′, σ, α, 〈〉〉

〈wait t −→ A, σ, α, 〈〉〉
√
−→ 〈A, σ, α, 〈〉〉, t = 1

〈wait t −→ A [] C, σ, α, 〈〉〉
δ

−→ 〈A, σ, α, 〈〉〉

Note here activity C in the external choice is also supposed to has a guard ,
so its corresponding active compensation context is empty as well. Due to the
symmetry of external choice, we omit other similar rules when the guard appears
on the right of external choice operator [].

Internal Choice. The following rules presents the semantics of internal choice.

〈A, σ, α, β1〉
δ

−→ 〈A, σ′, α′, β′
1〉,

〈A u C, σ, α, β1 u β2〉
δ

−→ 〈A, σ′, α′, β′
1
〉

〈C, σ, α, β2〉
δ

−→ 〈A, σ′, α′, β′
2〉,

〈A u C, σ, α, β1 u β2〉
δ

−→ 〈C, σ′, α′, β′
2
〉

Here β1 u β2 denotes that the compensation context can be β1 or β2, and the
choice is decided nondeterministic as well.

B. Comparision of BPEL0 and BPEL

Table 1. Comparison of BPEL0 and BPEL

Activities in BPEL0 Activities in BPEL

inv a x y invoking web service operations:
〈invoke partnerLink?portType?operation?

inputVar? outputVar? · · · 〉 · · · 〈/invoke〉

rec a x, rep a v providing web service operations:
〈receive partnerLink?portType?operation?Var? · · · 〉
· · ·

〈/receive〉
〈reply partnerLink?portType?operation?Var? · · · 〉
· · ·

〈/reply〉

x := e updating variable contents:
〈assign · · · 〉 · · · 〈copy〉 · · · 〈/copy〉〈/assign〉

throw signaling faults:
〈throw faultName?faultVariable? · · · 〉 · · · 〈/throw〉

wait t waiting:
〈wait(for = · · · |until = · · ·) · · · 〉 · · · 〈/wait〉

skip, ε doing nothing:
〈empty · · · 〉 · · · 〈/empty〉

A;A A C b B A b ∗ A The ordinary sequential control:
sequence, switch, while

g1 → A [] g2 → B The nondeterministic choice based on external
where gi ::= rec a x|wait t events: pick (onMessage, onAlarm)

LA ‖ LA The concurrency and synchronization between

where LA ::= b {ľ1, ľ2} ◦ A | activities: flow, where the link construct is used

A ◦ {b1 . l̂1, b2 . l̂2} to express these synchronization dependencies.

{A ? C :F}n The behavior context for each activity: scope,
where n is the name of the which includes a primary activity, and also
scope, and A,C, F is defined as fault handlers, event handlers, and
the syntax for BPEL0. compensation handlers.

