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Abstract. The Pict programming language is an implementation of the
π-calculus in which executions of π-calculus terms are specified via an ab-
stract machine. An important property of any concurrent programming
language implementation is the fair execution of threads. After defining
fairness for the π-calculus, we show that Pict abstract machine execu-
tions implement fair π-calculus executions. We also give new proofs of
soundness and liveness for the Pict abstract machine.

1 Introduction

The π-calculus [14, 17] is a minimal language designed to capture and model key
concepts of communicating concurrent systems in a formal setting. It emphasizes
channel-based communication, dynamic channel creation and the ability to com-
municate channels as data. Pict [19, 16] is a high-level programming language
purely based on π-calculus primitives, as well as to explore the applicability of
theoretical work on type systems. Pict’s runtime environment is based on a for-
mal abstract machine specification, but little emphasis has been placed on its
correctness.

The correctness of a programming language runtime is critical since, in order
to be able to reason about programs, we need the guarantee that programs are
executed according to their semantics. Correctness results of implementations
usually relate executions of terms in a high-level language to its implementa-
tion in a low-level language. The low-level language can be an existing process
calculus, or like in Pict, an abstract machine specification.

In recent years, many process calculi based on the π-calculus have been intro-
duced to study the dynamics of existing or new paradigms of computation, such
as distributed computing, global computing, or component-based programming.
Much work has been done on the distributed implementation of these calculi
[5, 7, 22, 20, 10, 8, 11, 12, 1]. On the other hand, since the definition of Pict, there
has been no new insight for the local implementation of these calculi. There-
fore, Pict is still a reference implementation of the π-calculus, and we think that
proving its correctness is a first step toward more general proofs of correctness
of implementations of these calculi.

The π-calculus is a concurrent language where concurrency is modeled us-
ing a non-deterministic reduction relation. The Pict Abstract Machine (PAM)
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implements a particular scheduling strategy that corresponds to a subset of the
possible executions in the π-calculus. It is therefore impossible to state an exact
correspondence between π-calculus executions and PAM executions. Instead, we
will prove the correctness of the abstract machine with three properties:

– A soundness property that states that PAM executions correspond to valid
π-calculus executions.

– A liveness property that ensures that the abstract machine is not stuck when
its state corresponds to a π-calculus term that can reduce.

– A fairness property that characterizes PAM executions among possible π-
calculus executions.

These properties are fairly standard but have not been proven for Pict yet (see
section 5 for details). The main contribution of this paper lies in the statement
and proof of a fairness property for Pict. To our knowledge, no implementation
of a process calculus has been proven fair so far, although fairness is conjectured
in [21, 19]. Moreover, the technique we propose is general enough to be adapted
to similar settings.

Informally, we say that an execution is weakly fair if a prefixed process able
to communicate continuously will eventually do so. An execution is strongly fair
if a prefixed process able to communicate infinitely often will eventually do so.
Consider for instance the π-calculus term

x!(a) | ∗x?(z).x!(z) | y!(0) | y?(z).0

where ∗P represents replicated input. There are valid infinite executions in which
the communication on y never takes place even though at any time this commu-
nication is possible. Similarly, in the term

x!(a) | ∗x?(z).y!(z) | ∗y?(z).x!(z) | ∗x?(z).x!(z)

there are infinite executions in which the communication on the last process
never takes place, even though such a communication might happen infinitely
often (but not continuously). The intuitive expectation of a programmer is that
all processes running in parallel will be interleaved fairly and so such executions
are considered unsatisfactory.

Stating a fairness property for the π-calculus is not immediate. The definition
of the π-calculus makes it difficult to identify subprocesses within a process, and
in particular, it is difficult to state properties about fair executions of these
processes. When considering π-calculus processes, mainly two kinds of confusion
can arise.

– Processes are identified up to renaming of bound names and lead to possible
confusion of channels. For instance, we have

νx.νy.x!() | y!() | R → νx.νy.x!() | R′

Because of possible renamings of x and y, we do not know which channel
reacted.



– Confusion of structurally equivalent processes.

P = x!() | x?().x!() | ∗x?().x!()
P ′ = x!() | x?().x!() | x?().x!() | ∗x?().x!()

We have P ≡ P ′ and P ′ → P , and we do not know which receivers react
with x!().

A possible solution is to define an auxiliary calculus in which prefixes are anno-
tated with labels in such a way that labels uniquely denote prefixes and that this
property is invariant throughout reduction [4, 3]. A live action of a term is then
defined as a couple of labels corresponding to prefixed processes that can react.
An infinite labeled execution is strongly fair if there are no labels appearing in
an infinity of live actions.

2 Fairness in the π-calculus

2.1 The π-calculus

We suppose given a set of names N ranged over by x, y, . . .. We define the set of
π-calculus processes P as follows:

P,Q, . . . ::= 0 | π.P | νx.P | P | P
π ::= x!(y) | x?(y) | ∗x?(y)

The π-calculus evaluation contexts are given by:

E ::= · | νx.E | P | E | E | P

The operational semantics is defined as the smallest relation such that rules in
Figure 2 hold. It makes use of a structural equivalence relation defined as the
smallest equivalence relation satisfying the rules in Figure 1. As usual, fn(P )
denotes the set of free names of process P , and =α equates two processes that
differ only by their bound names. We write E[P ] for the context E in which the
hole . has been substituted with P .

(P | Q) | R ≡ P | (Q | R) S.Par.Assoc P | Q ≡ Q | P S.Par.Com

P | 0 ≡ P S.Par.Nil νx.0 ≡ 0 S.Nu.Nil νx.νy.P ≡ νy.νx.P S.Nu.Com

x 6∈ fn(Q)

(νx.P ) | Q ≡ νx.P | Q
S.Nu.Par

P =α Q

P ≡ Q
S.α

P ≡ Q

E[P ] ≡ E[Q]
S.Ctx

Fig. 1. Structural Equivalence

Without loss of generality, we restrict the usual replication operator to input
processes. Rule R.Rep models communication with a replicated input process.



x!(y).P | x?(z).Q → P | Q{y/z}
R.Red

x!(y).P | ∗x?(z).Q → P | Q{y/z} | ∗x?(z).Q
R.Rep

P → Q

E[P ] → E[Q]
R.Ctx

P ≡ P ′ P ′ → Q′ Q′ ≡ Q

P → Q
R.Str

Fig. 2. Reduction Relation

2.2 A Labeled π-calculus

Informally, a fair execution of a process is an execution in which no subprocess
is ready to participate in a communication infinitely often. To formalize this
statement, we need to identify in a process the subprocesses that can participate
in a communication, and keep track of their identities throughout reductions.

To do so, we follow [4, 3] and define a labeled version of the π-calculus in which
prefixes are annotated with labels. A label has to identify a prefix uniquely in an
entire execution of a process. In other words, not only do prefixes have distinct
labels in a process, but when new prefixes are created, their labels are new with
respect to all the labels in the past execution of the term. We then characterize
the labels belonging to prefixes that can participate in a communication. Finally,
we give the definition of fairness.

We denote by L a set of labels such that L ∩ N = ∅. We use Pf (L) to denote
the finite subsets of L. A labeled process is a pair made of a π-calculus process in
which prefixes are labeled, and a finite set of labels. The set of labeled processes
LP is generated by the grammar given below.

C,D, . . . ::= P ,L
P ,Q, . . . ::= 0 | πl.P | νx.P | P | P

l ∈ L

L ∈ Pf (L)

We also extend contexts with labels and we denote labeled contexts E.
We need several auxiliary functions. The function lab returns the set of all

labels of a process or a context. The function unl erases all labeling information
from a labeled process.

In order to ensure that labels occur uniquely in a process, we define a well-
formation predicate wf as the smallest relation on LP such that rules in Figure
3 hold. We write A ]B for A ∪B when A ∩B = ∅. A labeled process C is said
to be well-formed if we have wf(C). We denote by WFP the set of well-formed
labeled processes.



wf(0,L)
Wf.Nil

lab(P ) ] lab(P
′
) ⊆ L

wf(P | P ′
,L)

Wf.Par
wf(P ,L)

wf(νx.P ,L)
Wf.New

wf(P ,L)

wf(πl.P ,L ] {l})
Wf.Prefix

Fig. 3. Well-Formed Labeled Process

The operational semantics is defined in the same way as for the π-calculus
via a structural equivalence relation ≡ and a reduction relation →, both binary
relations over LP. The structural equivalence is defined, as before, as the smallest
equivalence relation that verifies rules in Figure 1 (where prefixes are labeled and
equivalent processes have the same set of labels). The reduction relation is the
smallest relation that verifies the rules in Figure 4. The main difference with the
unlabeled reduction relation appears in the rule LR.Rep for replicated input in
which fresh labels are generated.

x!(y)l.P | x?(z)l′ .Q,L → P | Q{y/z},L
LR.Red

α injective and L′ = L ] α(L)

x!(y)l.P | ∗x?(z)l′ .Q,L → P | Q{y/z} | α(∗x?(z)l′ .Q),L′ LR.Rep

P ,L → P
′
,L′ lab(E) ⊆ L

E[P ],L → E[P
′
],L′ LR.Ctx

D ≡ D′ D′ → C′ C′ ≡ C

D → C
LR.Str

Fig. 4. Labeled Reduction Relation

Labeling is stable under reduction and structural equivalence. Hence, in the
following, we consider only well-formed processes.

Lemma 1 (Stability of Labeling).

(i) If C ≡ D and C ∈ WFP, then D ∈ WFP.
(ii) If C → D and C ∈ WFP, then D ∈ WFP.

The following lemma shows that the labeling system has been designed so
that no label can occur more than once in a labeled term, and once a label
disappears, it does not reappear in the system.

Lemma 2 (Uniqueness of Labeling).



(i) If C ∈ WFP then no label l occurs more than once in C.
(ii) If C ∈ WFP, C →∗ C ′ →∗ C ′′ and l ∈ lab(C) ∩ lab(C ′′), then l ∈ lab(C ′).

The labeled π-calculus is a conservative extension of the π-calculus. A labeled
process has exactly the same reductions as the corresponding unlabeled process.
Moreover, we can label any process into a well-formed labeled process

Proposition 1 (Operational Correspondence). Let P ∈ P and C ∈ WFP
such that P = unl(C). We have

(i) P → P ′ implies ∃C ′ ∈ LP such that C → C ′ and unl(C ′) = P ′.
(ii) C → C ′ implies P → unl(C ′).

Proposition 2 (Existence of a Labeling). For all P ∈ P there exists C ∈
WFP such that unl(C) = P .

We now define the live actions of a labeled process. A live action is a pair of
labels corresponding to prefixed processes that can immediately react.

Definition 1 (Live Actions). The set of live actions of a labeled process C =
P ,L is defined as

LA(C) ={{l, l′}/C ≡ νx̃.y!(v)l.P 0 | y?(z)l′ .P 1 | P 2,L
or C ≡ νx̃.y!(v)l.P 0 | ∗y?(z)l′ .P 1 | P 2,L}

We also define the set of labels belonging to a live action as

L(C) = {l ∈ x/x ∈ LA(C)}

The following lemma states a correspondence between live actions and re-
ductions.

Lemma 3. C → C ′ for some C ′ if and only if LA(C) 6= ∅.

Definition 2 (Execution). For an arbitrary relation →, an execution is a se-
quence of terms T0, T1, . . ., possibly infinite, such that T0 → . . . → Tn → . . ..

We can now define a strong fairness property for the labeled calculus. An
execution is fair if a prefix cannot potentially participate in a reduction infinitely
often. According to this definition, we only need to consider infinite executions.

Definition 3 (Strong Fairness in the Labeled π-calculus). An infinite
execution C0 → . . . → Cn → . . . is fair if for any strictly increasing sequence
(un)n∈N, we have

⋂
n∈N L(Cun) = ∅.

An execution in the π-calculus is fair if it corresponds to a fair execution in
the labeled calculus.

Definition 4 (Strong Fairness in the π-calculus). An infinite execution
P0 → . . . → Pn → . . . is fair if there is a fair execution C0 → . . . → Cn → . . .
such that ∀i ∈ N.unl(Ci) = Pi.



3 Abstract Machine

3.1 Syntax and Operational Semantics

The syntax of the Pict abstract machine is given in Figure 5 and follows closely
[19] 3. A machine state, or PAM term, consists of a queue of π-calculus processes
P (the runqueue), a heapH and a set of namesN . A heap is a function that maps
channel names to processes queues. We denote by M the set of machine states.
We often omit the set of names N in PAM terms when it is not important, in
particular in reduction rules where it remains unchanged. We also write P :: Q for
the appending of P andQ. The operational semantics is defined via two reduction

M ::= 〈P,H,N〉 State

P,Q, . . . ::=[] | P :: P Processes Queue

H ::= {x → Px}x∈N Heap

Fig. 5. Syntax of PAM Terms

relations, defined as the smallest binary relations over machine states that satisfy
the inference rules given in Figure 6. Intuitively, the relation  corresponds to
the implementation of ≡, whereas 7→ implements the actual communication. An
actual implementation of this abstract machine does not need to distinguish these
relations and would implement →= ] 7→, but this distinction will help us to
prove correctness properties. In rule AM.New, we suppose there is a function
freshn : Pf (N) → N such that freshn(N ) /∈ N . We also suppose that names
generated by the freshn function never appear in the π-calculus processes in
the PAM term (this could be enforced by defining a new syntactic category of
names).

We refer the reader to [19, 16] for detailed explanations of these rules. We
briefly summarize here the main ideas. An execution of the abstract machine
starts with an empty heap (we denote it with H[]) that maps all names to empty
queues of processes, and a runqueue containing the π-calculus process to be
executed. Depending on the form of the process at the top of the runqueue, and
the state of the heap, exactly one rule can apply. The execution stops when the
runqueue is empty.

A nil process is discarded from the runqueue (rule AM.Nil). Parallel com-
position of processes is split into two processes that are split in the runqueue
(rule AM.Par). Rule AM.New implements name restriction by generating new
fresh names. When the first term of the runqueue is a prefixed process willing to
communication on a name x, there are two possible cases. If there is no corre-
sponding process in the heap, the process is pushed on the heap queue for x (rules

3 In particular, this presentation makes use of synchronous communications.



AM.PushMessage, AM.PushReceiver, AM.PushRepReceiver). If there
is a corresponding process in the heap queue (the first element), the communi-
cation is performed and the continuation of the receiver and sender are placed
in the runqueue (rules AM.Com1, AM.RCom1, AM.Com2, AM.RCom2 ).

We can show that processes appearing in an association x → P are of the
form π.P , where all prefixes are either output on x, or input (replicated or not)
on x. Moreover, this property is invariant by reduction. In the following, we only
consider machine states of this form. We also suppose that H is finite. Moreover,
we can notice that the relation → is deterministic. In particular, generated fresh
names are fully determined by the function freshn in rule AM.New.

〈0 :: Q,H〉 〈Q,H〉
AM.Nil

〈(P | Q) :: Q,H〉 〈P :: Q :: Q,H〉
AM.Par

z = freshn(N )

〈νx.P :: Q,H,N〉 〈P{z/x} :: Q,H,N ] {z}〉
AM.New

P =[] ∨ P = x?(z).Q :: P ′ ∨ P = ∗x?(z).Q :: Q
〈x?(y).P :: Q,H⊕ {x → P}〉 〈Q,H⊕ {x → P :: x?(y).P}〉

AM.PushReceiver

P =[] ∨ P = x!(z).Q :: P ′

〈x!(y).P :: Q,H⊕ {x → P}〉 〈Q,H⊕ {x → P :: x!(y).P}〉
AM.PushMessage

P =[] ∨ P = x?(z).Q :: P ′ ∨ P = ∗x?(z).Q :: P ′

〈∗x?(y).P :: Q,H⊕ {x → P}〉 〈Q,H⊕ {x → P :: ∗x?(y).P}〉
AM.PushRepReceiver

P = x!(z).Q :: P ′

〈x?(y).P :: Q,H⊕ {x → P}〉 7→ 〈P{z/y} :: Q :: Q,H⊕ {x → P ′}〉
AM.Com1

P = x!(z).Q :: P ′

〈∗x?(y).P :: Q,H⊕ {x → P}〉 7→ 〈∗x?(y).P :: Q :: P{z/y} :: Q,H⊕ {x → P ′}〉
AM.RCom1

P = x?(z).Q :: P ′

〈x!(y).P :: Q,H⊕ {x → P}〉 7→ 〈P :: Q :: Q{y/z},H⊕ {x → P ′}〉
AM.Com2

P = ∗x?(z).Q :: P ′

〈x!(y).P :: Q,H⊕ {x → P}〉 7→ 〈P :: Q :: Q{y/z},H⊕ {x → P ′ :: ∗x?(z).Q}〉
AM.RCom2

Fig. 6. PAM Reduction Rules



3.2 Labeled Abstract Machine

We define a labeled version of the Pict abstract machine and essentially follow
section 2. This auxiliary calculus is a technical tool, and it is only used for proving
the correctness of the abstract machine. Its syntax is defined by adding labels to
π-calculus processes appearing in PAM terms. We also extend PAM terms with
a finite set of labels. We write LM for the set of labeled PAM terms, and we use
M and its variants to range over them.

M ::= 〈P,H,N ,L〉 State

P,Q, . . . ::=[] | P :: P Processes Queue

H ::= {x → Px}x∈N Heap

L ∈ Pf (L)

We define the set of well-formed PAM terms in Figure 7 and call it WFM. Re-
duction of labeled PAM terms is defined almost exactly as for the unlabeled
calculus, apart from the rules AM.RCom1 and AM.RCom2. The functions lab
and unl extend as expected on processes queues, heaps and machine states.

wf(P) wf(H) lab(P) ] lab(H) ⊆ L
wf(〈P,H,N ,L〉)

WF.State

wf(P) wf(P ) lab(P ) ∩ lab(P) = ∅
wf(P :: P)

WF.ProcQueue

∀x, y ∈ N.x 6= y =⇒ lab(H(x)) ∩ lab(H(y)) = ∅ ∀x ∈ N.wf(H(x))

wf(H)
WF.Heap

Fig. 7. Well-Formed PAM Term

Lemma 4 (Stability of Labeling).

(i) If M≡M′
and M∈ WFM, then M′ ∈ WFM.

(ii) If M→M′
and M∈ WFM, then M′ ∈ WFM.

Proposition 3 (Operational Correspondence). Let M ∈ M and M ∈
WFM such that M = unl(M). If ⇒ denotes either 7→ or  , we have

(i) M⇒M′ implies there is M′ ∈ LM such that M⇒M′
and unl(M′

) = M′.
(ii) M⇒M′

implies M⇒ unl(M′
).



P = x!(z)l′ .Q :: P ′
α injective and L′ = L ] α(L)

〈∗x?(y)l.P :: Q,H⊕ {x → P},L〉 7→
〈α(∗x?(y)l.P ) :: Q :: P{z/y} :: Q,H⊕ {x → P ′},L′〉

AM.RCom1

P = ∗x?(z)l′ .Q :: P ′
α injective and L′ = L ] α(L)

〈x!(y)l.P :: Q,H⊕ {x → P},L〉 7→
〈P :: Q :: Q{y/z},H⊕ {x → P ′

:: α(∗x?(z)l′ .Q)},L′〉

AM.RCom2

Fig. 8. Labeled PAM Reduction Rules

We now define the live actions of a labeled PAM term as the live actions of a
corresponding π-calculus term. Intuitively, {l, l′} is a live action whenever there
are two matching prefixed processes somewhere in the PAM term that could
potentially react.

Definition 5 (Live Actions). The set of live actions of a labeled PAM term
M is defined as

LA(M) = LA([[M]]r)

where [[.]]r is defined inductively on the structure of M.

[[〈P,H,N ,L〉]]r = νN .[[P]]r | [[H]]r,L
[[ [] ]]r = 0

[[P :: P]]r = P | [[P]]r

[[{x → Px}x∈N]]r =|x∈N [[Px]]r

We also define the set of labels belonging to a live action as L(M) = {l ∈ x/x ∈
LA(M)}.

Lemma 5. If LA(M) 6= ∅ then ∃M′
. M ∗ 7→ M′

.

The following theorem can be seen as a fairness property for the labeled
abstract machine.

Theorem 1. If M0 → . . . → Mn → . . . is an infinite execution then for any
strictly increasing sequence (un)n∈N, we have

⋂
n∈N L(Mun

) = ∅

The proof is technical but it relies on intuitive ideas. Informally, it follows
from two key properties of the abstract machine reduction system:

– If a process πl.P appears in an evaluation context in the runqueue, it will
eventually reach the top of the runqueue.

– The heap queues are organized following a FIFO policy.



4 Correctness

From an operational point of view, the correctness of an abstract machine can
be stated by relating abstract machine executions of a process P with π-calculus
executions of the same process P executed by the abstract machine. The ini-
tial state of an abstract machine running P is 〈P,H[]〉, hence we introduce the
following translation function.

Definition 6 (Translation from π-calculus to PAM).

[[P ]] = 〈P ::[],H[], ∅〉 [[P ,L]] = 〈P ::[],H[], ∅,L〉

The first property we consider is the soundness of the abstract machine with
respect to the calculus. Intuitively, this means that abstract machine executions
correspond to valid π-calculus executions. If a machine state M, corresponding
to a process state P , reduces to a machine state M′, then M′ must correspond
to a process state P ′ where P reduces to P ′. One reduction in the π-calculus
may be implemented by several reductions of the abstract machine. In order to
model a one-to-one correspondence, we identify two kinds of reductions. Admin-
istrative reductions denoted by model structural equivalence. Communication
reductions are denoted by 7→. We will establish a correspondence between the
relations  ∗ 7→ over PAM terms and → over π-calculus terms. For that, we de-
fine a relation M � P to mean that P corresponds to M, read M implements
P .

We still need to define the relation �. It has to be convincing enough that it
effectively relates equivalent process state and machine state. It should at least
enjoy the following two properties:

– [[P ]] � P and – If M M′ and M� P then M′ � P .
The first property follows the idea that the initial state of an abstract ma-

chine executing [[P ]] is P . The second property follows the intuition that  is
a structural, or administrative, reduction and that abstract machine states still
implement the same π-calculus process after such reductions. We define � as the
smallest relation enjoying these two properties.

Definition 7. M� P ⇐⇒ [[P ]] ∗ M.

The definition of � extends naturally to labeled processes.
Note that we do not have a notion of observables, although it would make the

correspondence relation � more convincing. However, it should be straightfor-
ward to define an observation predicate on π-calculus processes and PAM terms
(such as those in [1, 7, 11]) and show that � preserves the observables.

The following lemma relates the live actions of a labeled PAM term and a
labeled process it implements.

Lemma 6. If M� C then LA(M) = LA(C).

To prove the soundness property, we need a translation function from PAM
terms to π-calculus processes. This function is very similar to [[.]]r. We do not
give its full definition here but the following lemma states the properties needed
for the proof of soundness.



Lemma 7. There exists a function [[.]]−1 from M to P such that

– M� [[M]]−1

– [[[[P ]]]]−1 ≡ P
– if M M′ then [[M]]−1 ≡ [[M′]]−1

– if M 7→M′ then [[M]]−1 7→ [[M′]]−1.

Theorem 2 (Soundness). If (M  ∗ 7→ M′ ∧M � P ) then (∃P ′.P → P ′ ∧
M′ � P ′).

Proof. The theorem follows from [[P ]]  ∗ 7→ M =⇒ (∃P ′.P → P ′ ∧M � P ′)
which is a consequence of Lemma 7 with P ′ = [[M]]−1.

This property is not sufficient to prove the correctness of the abstract ma-
chine. Other properties are needed to characterize which executions of the π-
calculus are actually implemented. First, a liveness property ensures that a PAM
term is never blocked when it corresponds to a π-calculus term that can reduce.

Theorem 3 (Liveness). If P → P ′ ∧M � P then ∃M′.M ∗ 7→ M′.

Proof. We first prove: P → P ′ =⇒ ∃M.[[P ]]  ∗ 7→ M. If P → P ′, we have
C → C ′ with unl(C) = P and unl(C ′) = P ′, by propositions 2 and 1. Moreover,
by Lemma 6, LA([[C]]) = LA(C) with LA(C) 6= ∅, by Lemma 3. We deduce
[[C]]  ∗ 7→ M′

for some M′
, by Lemma 5. We conclude, by Proposition 3, that

[[P ]] = unl([[C]]) ∗ 7→ unl(M′
).

We know now that [[P ]]  ∗ M′′ 7→ M′ for some M′′ and M′. Moreover
we have [[P ]]  ∗ M, by definition of M � P . Because → is deterministic, we
conclude M ∗ [[P ]] ∗ M′′ 7→ M′.

Finally, our main result is a fairness theorem.

Theorem 4 (Fairness). If M0  ∗ 7→ . . .  ∗ 7→ Mn  ∗ 7→ . . . is an infinite
execution then there exists a fair execution P0 → . . . → Pn → . . . such that
Mi � Pi for all i.

Proof. Let M0  ∗ 7→ . . .  ∗ 7→ Mn  ∗ 7→ . . . be an infinite execution. we have
an execution M0  ∗ 7→ . . .  ∗ 7→ Mn  ∗ 7→ . . . such that for all i, unl(Mi) =
Mi, by Proposition 3.

The soundness theorem (Theorem 2) extends to the labeled calculus and
gives us an execution C0 → . . . → Cn → . . . such that

M0  ∗ 7→
//

�
��

M1  ∗ 7→
//

�
��

M2  ∗ 7→
//

�
��

. . .

C0 →
// C1 →

// C2 →
// . . .

From Lemma 6, we have LA(Ci) = LA(Mi) for all i. Then we deduce from
Theorem 1 that the execution C0 → . . . Cn → . . . is fair. By erasing the labels
in both executions, we deduce the result.



5 Related Work

Comparison with Pict Correctness results in [19] include a soundness and a
liveness property based on the translation function [[.]]r from PAM terms to π-
calculus terms given in Definition 5:

(i) M→M′ =⇒ [[M]]r ≡ [[M′]]r ∨ [[M]]r → [[M′]]r

(ii) P → P ′ =⇒ ∃M. [[P ]] →M

However, these properties are not sufficient for proving soundness or liveness.
The first property means that we can build a π-calculus reduction from a PAM
reduction, but does not prove that PAM reductions implement π-calculus re-
ductions. A property relating M and [[[[M]]r]], such as our Lemma 7 is missing.
The second property tells us that if P reduces to P ′, there is a PAM reduction
[[P ]] → M . However, the property cannot be applied on more than the first step
of execution, as we do not know if there is P ′′ such that P → P ′′ and [[P ′′]] = M.

In [18], the Pict abstract machine is proven correct using a notion of testing,
and a realistic model of the interactions between the abstract machine and its
environment. However, they do not consider fairness issues.

Fairness Fairness has been defined using labels in CCS [3] and in the π-calculus
[4, 2]. We essentially followed the same idea but our presentation is simpler as
we annotate labeled terms with a set of labels that allow us to generate fresh
labels in the replication rules, without relying on a structured labeling language.

In [13], fairness is defined for the π-calculus by considering normal reductions
where α-equivalence is restricted and tags similar to labels are used to distin-
guish processes. Fresh tags are generated using the π-calculus name restriction
operator.

Correctness of Abstract Machine There have been several recent papers devoted
to the formal description of implementations of process calculi based on the π-
calculus or the Ambient calculus. In addition to Pict, one can notably cite the
Jocaml distributed implementation of the Join calculus [6, 5], the Join calcu-
lus implementation of Mobile Ambients [7], Nomadic Pict [22, 20], the abstract
machine for the M-calculus [10], the Fusion Machine [8], the PAN and GCPAN
abstract machines for Safe Ambients [11, 12], the CAM abstract machine for
Channel Ambients [15] and the abstract machine for the Kell calculus [1]. Most
of these works [7, 22, 20, 10, 8, 11, 12, 15, 1] deal with distributed implementations
of calculi, rather than local implementation of concurrent processes like in Pict.
They are defined by a translation to a low-level calculus or abstract machine.
Their correctness is proven in terms of bisimilary that does not apply to our set-
ting, since Pict implementation makes deterministic choice and PAM reductions
do not match all π-calculus reductions. Implementations that consider schedul-
ing of processes are given in [15, 10]. In [15], a soundness result is given similar
to the one given in Pict. In [10], scheduling of processes is done as in Pict using
FIFO lists, but no proof of correctness is given.



6 Conclusion

In this paper, we first defined strong fairness in the π-calculus. We then proved
that Pict abstract machine executions are sound with respect to π-calculus ex-
ecutions and that they enjoy fairness and liveness properties. These correctness
results for Pict are new and in particular, fairness has not been proven for any
implementation of process calculi based on the π-calculus. We believe that these
techniques are simple and general enough to be adapted to other calculi.

Very little work has been done on the scheduling of processes in the π-calculus
or its variants. For future research, we will investigate alternative scheduling
strategies. In particular, we would like to extend Pict and its implementation
with priority constraints. Processes could be prioritized in order to allocate more
processor time to more important processes. In Pict, even though executions are
strongly fair, in a term P | Q, P can monopolize the processor usage by spawning
new subprocesses much faster than Q. One can imagine annotated processes like
in Ph | Ql where the annotations are taken into account by the scheduler. Such
a scheme would fit naturally in a calculus with hierarchical localities such as [1].
For instance, a term of the form a[b[P ] | c[Q]] can be interpreted as two (possibly
untrusted) agents b and c executed by a site a. The parent site a should be able
to control the processor usage of the agents it is executing.

Most correctness results of the implementations of process calculi with local-
ities concern their distributed implementation, but do not deal with the correct-
ness of their local implementation, i.e. the scheduling of processes. On the other
hand, Pict defines a local implementation. It would be interesting to consider cor-
rectness results combining these two approaches. We are currently investigating
the proof of a refined abstract machine based on [1].
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