
A Sound and Complete Shared-Variable Concurrency Model
for Multi-Threaded Java Programs

F.S. de Boer

CWI, Amsterdam, Netherlands
F.S.de.Boer@cwi.nl

Abstract. In this paper we discuss an assertional proof method for multi-threaded Java pro-
grams. The method extends the proof theory for sequential Java programs with a generalization
of the Owicki/Gries interference freedom test to threads in Java.

1 Introduction

We present a simple proof method which captures the main aspects of the multi-threaded
flow of control in Java. In the object-oriented programming language Java instances of thread
classes can be dynamically allocated and start their own thread of control. A thread class
(defined as an extension of the public built-in Java class ’Thread’) defines a run method and
a call of the start method creates a new thread of computation initiated by the execution of
the run method. The following Java syntax,

class MyThread extends Thread {
...
public void run() {
· · · }
...
}

specifies a thread class ’MyThread’ with a run method. The following code would then create
a thread and start it running:

MyThread t = new MyThread();
t.start();

The thread executing this code continues its own execution, i.e., it does not wait for the start
method to return. Operationally, a thread is described by a stack of calls generated by the run
method. In this model of computation the different threads share the global object structure
which consists of the values of the instances variables of the dynamically allocated objects
and the static variables of the classes.

Our proof method consists of annotating each class definition of the given program with
assertions which express certain global properties of the dynamically allocated program vari-
ables. Such an annotated class definition is locally correct if certain verification conditions hold
which characterize the sequential flow of control within one thread. On the other hand, rea-
soning about the multi-threaded flow of control within an object involves a global interference
freedom test. This test is modeled after the corresponding test in [13] for concurrent systems
consisting of a statically fixed number of processes which interact via shared variables.

The main contribution of this paper is the generalization of the interference freedom test
to dynamic thread creation. Furthermore, this paper also provides a formal justification of
this generalization in terms of soundness and completeness proofs.

Related work To the best of our knowledge the only other (proven) sound and complete proof
method for annotated multi-threaded Java programs is described in [1]. The proof method
in [1] combines the Owicki&Gries method for shared variable concurrency with the proof
method for Communicating Sequential Processes (CSP) as introduced in [4]. The latter proof
method is used to reason about method calls in terms of message passing between objects.
By restricting to Java programs that have no static variables and do not allow dereferencing,
in [1] objects only interact via message passing. Consequently the interference freedom test
in [1] only involves the local state of an object. In contrast, in this paper we extend the
proof method for sequential Java programs, which is based on the standard proof theory of
recursive procedures (see [2]), with a global interference freedom test. In other words, the main
difference is that the proof method in [1] is based on a model of concurrent objects (along
the lines of [8]) whereas the proof method in this paper is strictly thread-based. The model of
concurrent objects integrates shared-variable concurrency and message passing, whereas the
thread-based model integrates shared-variable concurrency with recursive method call. We
think the latter integration more faithfully captures the semantics of the Java programming
language.

2 Assertions

Assertions are used to annotate the control points of method bodies. In this paper we abstract
from the syntax of assertions (we denote by ¬, ∧, → the logical connectives of negation,
conjunction and implication). An assertion P is evaluated in a configuration. A configuration γ
consists of an object structure and a local context. For every existing object an object structure
assigns values to its instance variables (static variables belong to the object representing their
class). A local context assigns values to the the local variables of the method. The local
variables of a method include its formal parameters. We view the keyword ’this’ as an implicit
local variable which denotes the current object. We denote by

γ |= P

that the configuration γ satisfies the assertion P . An assertion is valid, denoted by |= P , if
γ |= P , for every configuration γ.

For a (sequential) statement S in Java, we denote by

WP(S, P)

the weakest precondition which guarantees that every terminating execution of S satisfies P .
Formally, this weakest precondition is semantically defined in terms of a structural operational
semantics for transitions

〈S, γ〉 → γ′

where γ denotes an initial configuration and γ′ denotes the resulting configuration of the
execution of S. Note that the current object is given by the local context of the initial
configuration. Given such an operational semantics, we have the following standard definition

γ |= WP(S, P) if and only if γ′ |= P , for 〈S, γ〉 → γ′

We refer to [6] for a weakest precondition calculus which formalizes aliasing and object
creation at an abstraction level that coincides with that of the Java programming language.

In this paper, we denote by Pσ the result of applying the substitution σ to the assertion
P . An application of a substitution

[e1/u1, . . . , en/un]

simply consists of replacing simultaneously every occurrence of the local variable ui by the
corresponding expression ei.

3 Proof-outlines

A proof-outline is a correctly annotated program. An annotation of a multi-threaded Java
program associates with every sub-statement S (appearing in a method body) a precondi-
tion Pre(S) and a postcondition Post(S). Validation of verification conditions establish the
correctness of an annotated program. We first discuss the verification condition which estab-
lishes that assertions are interference free. Then we discuss the verification conditions which
establish that assertions specify correctly the sequential control flow.

Interference freedom test

In order to characterize the interference between different threads we assume that each method
has a distinguished local variable ’thread’ which is used to identify the executing thread. A
thread itself is uniquely identified by the initial object executing its run method (in Java calling
the start method twice on an object throws the exception ’ IllegalThreadStateException’).

We define an assertion P to be invariant over the execution of a statement S by a different
thread if the following verification condition holds:

|= (P ∧ Pre(S) ∧ thread! = thread′) → WP(S, P)

For notational convenience, we implicitly assume that the local variables of P and Pre(S)
are named apart by ’priming’ the local variables of P . Note that these local variables include
’this’ and ’thread’, which are thus renamed in P by ’this′’ and ’thread′’. Furthermore, it is
important to note that an unqualified instance variable x of the class of the current object
denoted by ’this’, is transformed by this renaming into ’this′.x’.

The above verification condition models the situation that the execution of the thread
denoted by the fresh local variable ’thread′’ in the object denoted by the fresh local variable
’this′’ is interleaved by the execution of the statement S by the thread denoted by the dis-
tinguished local variable ’thread’ in the object denoted by the distinguished local variable
’this’. That we are dealing with two different threads is simply described by the disequality
thread! = thread′.

Example 1. As a (very) simple example, given a boolean instance variable ’b’, the assertion
’thread.b’ is invariant over the execution of an assignment ’thread.b=false’ by another thread.
This is captured by the valid verification condition

|= (thread′.b ∧ thread! = thread′) → WP(thread.b=false, thread′.b)

Example 2. In example 7 we introduce an instance variable ’lock’ to reason about synchro-
nized methods. This variable stores the identity of the thread that owns the lock of the object.
That is, for every synchronized method we have the invariant

thread==lock

With this additional information any annotation of a synchronized method is trivially inter-
ference free:

|= (thread′ == lock ∧ thread == lock ∧ thread! = thread′) → false

Local correctness

An annotated program is locally correct if the verification conditions hold which characterize
the sequential flow of control within one thread. We have the standard verification condi-
tions which characterize control structures like sequential composition, choice, and iteration
constructs.

Method invocation and return Without loss of generality, we restrict discussion to the verifi-
cation conditions for method calls

x = e0.m(e1, . . . , en)

where x is an instance variable or a local variable, and e0, e1, . . . , en are expressions without
side-effect and which are not affected by the call itself. Furthermore, we assume that the
formal parameters of the method m are read-only. Given such a call we denote by σ the
(simultaneous) substitution

[e0, e1, . . . , en/this, u1, . . . , un]

This substitution describes the context switch which consists of passing control to the callee,
modeled by substituting every occurrence of ’this’ by e0, and initializing the formal parameters
u1, . . . , un of the method m, modeled by substituting every local variable ui by ei, i = 1, . . . , n.

Let S denote the body of the method m. We have the following verification condition for
the precondition P of the call x = e0.m(e1, . . . , en):

|= P → Pre(S)σ

Here we assume that the local variables of the precondition Pre(S) of the method body,
excluding the formal parameters of the method and the local variables ’thread’ and ’this’, are
named apart from those in P . Note that the distinguished local variable ’thread’ thus may
occur both in the precondition P of the caller and the precondition Pre(S) of the callee. We
do not need to distinguish these different occurrences because the local variable ’thread’ in
both preconditions denotes the same thread executing the method call.

Example 3. Consider the precondition

account.lock==thread

of a call

newbalance=account.add(amount)

of a synchronized method. This precondition can be obtained from the precondition

lock == thread

of the body of the method ’add’ simply by replacing the (implicit) local variable ’this’ by the
expression ’account’, which transforms the expression ’lock’ into the expression ’account.lock’

Furthermore, we have the following verification condition for the postcondition Q of a call
x = e0.m(e1, . . . , en):

|= Post(S)σ → WP(x = return, Q)

As above, we assume that the local variables of the postcondition Post(S) of the method body,
excluding the formal parameters of the method and the local variables ’thread’ and ’this’, are
named apart from those in Q. Note that since the formal parameters are read-only and the
actual parameters are not affected by the call itself, we can apply the subsitution σ modeling
the context switch and parameter passing. The distinguished local variable ’return’ is used to
store temporarily the return value. That is, the precondition P and the postcondition Q of a
return statement are validated by the verification condition

|= P → Q[e/return]

where e denotes the return value.

Example 4. Consider the postcondition

lock == thread ∧ return == balance + u

of the body S of the synchronized method ’add’ (’u’ denotes its formal parameter). Applying
the context switch and parameter passing of the call

newbalance=account.add(amount)

we obtain the assertion

account.lock == thread ∧ return == account.balance + amount

This assertion clearly implies the weakest precondition of the assignment ’newbalance=return’
and the postcondition

account.lock == thread ∧ newbalance == account.balance + amount

of the call.

Auxiliary variables

In general to prove the correctness of a program we need auxiliary variables which are used
to describe certain properties of the flow of control.

Example 5 (Mutual exclusion). Consider the run method defined by

run(){
sem.acquire();S;sem.release() }

where sem is a static binary semaphore (initialized to 1). In order to prove that no two
threads are executing the critical section S in the body of the run method we introduce
a static variable ’in’ which stores the set of threads that are in their critical section (it is
initialized to the empty set). We extend the run method as follows:

run(){
[sem.acquire();in.add(thread)];S;[sem.release();in.remove(thread)] }

The brackets are used to indicate statements which are assumed to be executed atomically,
that is without interleaving. Note that without loss of generality we can indeed assume that
between acquiring (or releasing) the semaphore and the corresponding update of the auxiliary
variable no other threads are interleaved.

Mutual exclusion then can be expressed by the assertion Mutex defined by

in.size == sem ∧ 0 <= sem ∧ sem <= 1

Note that in the assertion language, the static variable ’sem’ is simply an integer variable,
which takes the values 0 or 1.

The assertion Mutex is introduced as an invariant of the run method which annotates all
its interleaving points, that is, the start and end of the body of the run method itself, and
the start and end of the critical section S.

For the proof of the local correctness of the annotation we use the following (standard)
characterization of the weakest precondition of a postcondition Q (of the operations for ac-
quiring and releasing the semaphore):

WP(sem.acquire(), Q) = (sem == 1 → Q[0/sem])

and

WP(sem.release(), Q) = (sem == 0 → Q[1/sem])

Local correctness of the invariant Mutex then is expressed by the verification conditions

|= Mutex → WP(sem.acquire(); in.add(thread),Mutex)

and

|= Mutex → WP(sem.release(); in.remove(thread),Mutex)

Next we note that these local verification conditions which establish Mutex as an invariant
of the run method, (trivially) imply the verification conditions for the interference freedom
test:

|= (Mutex ∧ thread! = thread′) → WP(sem.acquire(); in.add(thread),Mutex)

and

|= (Mutex ∧ thread! = thread′) → WP(sem.release(); in.remove(thread),Mutex)

In other words, using a local invariant like Mutex makes the inteference freedom test
redundant.

Auxiliary variables are also used to describe the semantics of built-in mechanisms in Java.
Below we describe the semantics for starting a thread, the execution of synchronized methods,
and the semantics of the synchronization mechanism of wait and notify methods.

Start method In order to describe the specific semantics of the start method, we assume
that each thread class has a boolean auxiliary instance variable ’Alive’ which indicates that
the start method of the object has been called and its run method has not yet terminated.
Otherwise it is false. It is initialized to ’false’ by the constructor method. Note that in Java
starting a running thread throws an exception. Since, for technical convenience only, this paper
restricts to invariance properties of normal executions of multi-threaded Java programs, we
can describe the semantics of the start method simply by the code

if !e.Alive {
e.Alive=true;e.start }
else { abort }

Correspondingly, we append the body of a run method by the assignment ’Alive=false’. We
have the following (standard) verification condition of the ’abort’ statement: For arbitrary
postcondition Q

|= false → Q

Note that this verification condition validates any postcondition.
The precondition of a call e.start of the start method is validated like the precondition

of an ordinary call, as described above. The postcondition Q of the call e.start is simply
validated by the verification condition

|= P → Q

where P denotes its precondition.

Example 6. Clearly we can validate by means of the above verification condition for method
calls, for every run method, the precondition

thread = this ∧ this.Alive

Consequently, every local assertion of a run method is trivially invariant over any local as-
signment of any run method: For example, the local assertion ’b’, where ’b’ is an instance
variable, is invariant over an assignment b=false in any run method, because

|= (this′.b ∧ thread′ = this′ ∧ thread = this ∧ thread! = thread′) → WP(b = false, this′.b)

trivially holds (note that the antecedent implies this! = this′).

Example 7 (Synchronized methods). In order to describe the specific semantics of syn-
chronized methods in Java, we introduce an auxiliary (instance) variable ’lock’ which belongs
to the class of the method and which stores the identity of the thread owning the lock. Since
a thread releases the lock of an object only when it has finished executing its synchronized
methods the thread has called on the object, we also need an auxiliary (instance) variable
’count’ which belongs to the class of the thread and which denotes the number of called
synchronized methods in the thread. Every method invocation e0!m(e1, . . . , en) involving a
synchronized method m is prefixed with an await statement

await e0.lock==thread || e0.lock==null{
e0.lock=thread;thread.count++ }

The boolean condition states that either the thread already owns the lock or the lock is not
yet initialized (i.e., is ’free’).

On the other hand, every synchronized method ends with the execution of the await
statement

await true {
thread.count-=1; if thread.count==0 { lock=null}}

We extend our notion of proof outlines with the following standard verification condition
for await statements

|= (P ∧ b) → WP(S, Q)

where P and Q denote the precondition and the postcondition of the await statement, b
denotes its boolean condition and S denotes its main body.

Since the evaluation of the boolean guard of an await-statement and the execution of its
body are assumed to be atomic we only need to apply the interference freedom test to the
pre- and postcondition of the await-statement itself.

Example 8 (Wait and notify). A thread which owns the lock of an object can release it by
calling the wait method on the object. It has to wait until another thread owning the lock
calls the ’notify’ or ’notifyAll’ method on this object. In order to describe the semantics of
this mechanism we denote by ’wait’ an auxiliary instance variable of the object which is used
to store the set of objects waiting for its lock. The semantics of a call

e.wait()

then is described by the following statement

if lock==thread{
u=e;u.lock=null;u.wait.add(thread) }
else { abort };
await u.lock==null & !u.wait.contains(thread) {
u.lock=thread}

Here ’u’ is a ’fresh’ local variable used to keep the identity of the object. This statement
first checks whether the thread owns the lock. If so, the thread simply releases the lock and
is added to the set of waiting threads. If the thread does not own the lock the execution is
aborted because we only consider normal executions (e.g., we abstract from exceptions). The
await statement waits for the lock to be free and for the thread to be removed from the set
of waiting threads. A call

e.notifyAll()

of the ’notifyAll’ method is modeled by the statement

if lock==thread{
e.wait.clear()}
else { abort }

which removes all waiting threads (in case the executing thread owns the lock). In order to
model a call

e.notify()

which involves an arbitrary choice of the thread to be notified, we introduce an (abstract) set
operation ’removeAny()’ which removes an arbitrary element from a set. We then can model
the above call by the statement

if lock==thread{
e.wait.removeAny() }
else { abort }

Given a precondition P , a postcondition Q of a statement

e.wait.removeAny()

is validated by the verification condition

|= (P ∧ e.wait.contains(any)) → WP(e.wait.remove(any), Q)

By definition of the validity of assertions the ’fresh’ local variable ’any’ is here implicitly
universally quantified.

In general, auxiliary variables can be introduced as local variables, instance variables and
static variables. Assignments to auxiliary variables can be introduced which are side-effect
free (e.g., assignments which do not involve methods calls or object creation) and which
do not affect the flow of control of the given program. It is important to note that we also
allow auxiliary variables as additional formal parameters of method definitions. Such auxiliary
variables can be used to reason about invariance properties of method calls.

Example 9 (Faculty function). Consider for example the following recursive method for
computing the faculty function.

fac() {
if x>0 { x-=1;this.fac();x++;y=y*x } else { y=1 }}

Here ’x’ and ’y’ are instance variables. Upon termination ’y’ stores the faculty of the value
stored by ’x’. In order to prove that the value of ’x’ upon termination equals its old value, we
introduce as auxiliary variable a formal parameter u and extend the method by

fac(u) {
if x>0 { x-=1;this.fac(u-1);x++;y=y*x } else { y=1 }}

We then can express the above invariance property by introducing the assertion ’u==x’ both
as precondition and the postcondition of the method body. This specification of the method
body can be validated by introducing ’u==x+1’ as the precondition and the postcondition of
the recursive call. We have the following trivial verification conditions for method invocation
and return

|=u==x+1→u-1==x and |=u-1==x→u==x+1

where the assertion ’u-1==x’ results from replacing the formal parameter ’u’ in ’u==x’ by
the actual parameter ’u-1’.

4 Soundness and completeness

In this section we sketch soundness and completeness proofs. These proofs are based on a
formal semantics of multi-threaded Java programs. This semantics is described in terms of a
structural operational semantics which defines a transition relation on global states. A global
state Θ of a program consists of a set of threads and an object structure which specifies for
every existing object the values of its instance variables. Operationally, a thread is a stack
of closures, i.e., pairs (S, τ) consisting of a statement S and a local context τ specifying the
values of the local variables of S. For any two closures (S, τ) and (S′, τ ′) belonging to the
same thread we have that

τ(thread) = τ ′(thread)

because the local variable ’thread’ denotes the initial object (executing its run method). That
is, for the bottom closure (S0, τ0) of a thread we have that

τ0(thread) = τ0(this)

The thread itself is executing the closure on top of the call stack, which is also called its active
closure. All other closures represent pending calls. The details of the definition of the global
transition relation

Θ → Θ′

which represents the execution of an atomic statement by one thread in Θ resulting in the
global state Θ′, are straightforward and omitted (see also [1]).

For notational convenience only, we assume throughout this section that every interleaving
point of the given program is uniquely labeled. Such labels we denote by l, l′, By

l : S : l′

we denote a statement S with its start and end labeled by l and l′, or the label l itself
(’: S : l′’ thus being optional). A label on its own marks the termination of a method body.
The assertion annotating an interleaving point l we denote by @l.

Soundness

Let π be an annotated program. A global state Θ satisfies an annotated program π, denoted
by

Θ |= π

if for every thread in the global state Θ with active closure (l : S : l′, τ), we have

γ |= @l

where γ denotes the configuration consisting of the global object structure of Θ and the local
context τ . Roughly, a global state satisfies an annotated program if every thread satisfies
the assertion annotating the statement of its active closure. We can now state the following
theorem.

Theorem 1 (Soundness). For any correctly annotated program π (possibly extended with
auxiliary variables),

Θ |= π and Θ → Θ′ implies Θ′ |= π

Roughly, this theorem states the invariance of the assertions of a correctly annotated
program. The proof involves a straightforward but tedious case analysis of the computation
step.

Completeness

Conversely, we show completeness by proving the correctness of an extended program anno-
tated with so-called reachability predicates. These predicates are introduced in [3] and [12]
and adapted to (extended) multi-threaded Java programs as follows: Given a program we
define for every interleaving point l the predicate @l by

γ |= @l
if there exists a reachable global state Θ that realizes the object structure of γ and
that contains a thread with an active closure (l : S : l′, τ), where τ is the local context
of γ.

A global state Θ is reachable if there exists a partial computation

Θ0 →∗ Θ

starting from a fixed initial global state Θ0. Here →∗ denotes the reflexive, transitive closure
of →.

Using the encoding techniques of [14] it can be shown that the above reachability predicates
can be expressed in the assertion language. Of particular interest to note here is that pure
methods,. i.e., methods that do not affect the program state, in assertions greatly facilitates
such an encoding.

By a straightforward, though tedious, induction on the length of the computation we can
prove that a program annotated with the above reachability predicates is locally correct. The
main case of interest is a proof of the verification condition

|= (@l)σ → WP(x = return,@l′)

for validating the postcondition of a method call x = e0.m(e1, . . . , en). The label l marks
the end of the method body of m and l′ the termination of the call. The context switch
and parameter passing are modeled by the substitution σ (as described above). In order
to validate this verification condition we extend every method definition with an additional
formal parameter which stores the local context of the caller and an additional parameter for
passing the label identifying the call. The local context of the caller, i.e., the values of its local
variables, are stored in an array. These additional formal parameters we denote by ’con’ and
’lab’ (run methods contain these variables as local variables). In order to initialize the local
context of the callee (to be passed in subsequent calls), we add to each method the following
initialization:

Objects [] mycontext;
mycontext=new Objects[n+1];
mycontext[0]=u1;
...
mycontext[n-1]=un;
mycontext[n]=con;
mycontext[n+1]=lab;

Here u1, . . . , un are the formal parameters of the method (as specified by the given program).
A call x = e0.m(e1, . . . , en) is extended by

x = e0.m(e1, . . . , en,mycontext, l′)

(the label l′ marks its termination). Note that in Java arrays are objects, e.g., the actual
parameter ’mycontext’ is an object which refers to an array.

The additional parameters ensure that the predicate (@l)σ indeed describes the return of
the method m to the given call (σ is also extended with these new parameters). To see this,
let

γ |= (@l)σ

By the usual substitution lemma of the logic underlying the assertion language, this is equiv-
alent to

γ |= WP(ū = ē,@l)

where ū = ē denotes the sequence of assignments corresponding to the substitution σ. Let

〈ū = ē, γ〉 → γ′

that is, γ′ is the resulting configuration of the execution of the statement ū = ē in γ. It follows
that

γ′ |= @l

Note that the local context τ ′ of the configuration γ′ in fact denotes the result of switching
the context from the caller back to the callee.

By the above definition of the reachability predicates it follows that there exists a partial
computation

Θ0 →∗ Θ′

that realizes the object structure of γ′ (which equals that of γ) and that contains an active
closure (l, τ ′) which marks the termination of the body of m.

From
〈ū = ē, γ〉 → γ′

it follows immediately that

τ ′(con) = τ(mycontext) and τ ′(lab) = l′

So we know that this invocation of m has been called by the given call statement. More
specifically, we know that Θ′ contains a thread

· · · (x = return; l′ : S : l′′, τ)(l, τ ′)

Let
Θ′ → Θ

be the computation step which models the context switch from callee to caller. That is, the
closure (l, τ ′) is removed from the above call stack. Since Θ realizes the object structure of γ
we conclude that

γ |= WP(x = return,@l′)

Remains to show that the reachability predicates are interference free. More specifically,
we have to show that for any interleaving points l and l′, with l′ marking the start of an
atomic statement S, we have

|= (@l′ ∧ @l ∧ thread! = thread′) → WP(S, @l′)

Roughly, this verification condition states that if one thread reaches l′ and if another thread
reaches l, then l′ is still reachable after the execution of the statement S. This follows trivially
if there exists one computation where both threads reach l′ and l at the same time. However,
in general this is not the case, e.g., the reachability of l′ may require a scheduling of the
threads which is incompatible with the reachability of l.

Example 10 (Scheduling). Consider a thread class with the following method

run() {
if race() {l1 : S1} else {l2 : S2}}

The labels l1 and l2 denote the start of the ’then’ and the ’else’ branch, respectively. The
synchronized method ’race’ is defined by

race() {
u=b;
if b==true { b=false };
return u }

where ’u’ is a local variable and ’b’ is a static variable. which is initially true. Let the main
method of the program initialize ’b’ to ’true’ and then simply create two instances of the thread
class and start their run methods. Let τ be a local context such τ(thread) and τ(thread′) are
two different instances of the thread class. Let t = τ(thread) or t = τ(thread′). Clearly, in
both cases there exists a reachable global state Θ in which ’b=false’ holds and which contains
the active closure (l1 : S1, τ

′), where τ ′(thread) = t. But there exists no reachable global state
in which both threads are at l1 at the same time.

Therefore we introduce a static auxiliary variable ’sched’ which records the scheduling of
the threads. We introduce this variable as a vector of objects in the class containing the main
method. Every read or write operation which involves access to the global object structure is
extended with an update which adds the identity of the executing thread.

Example 11. Returning to the above example, we note that this additional scheduling infor-
mation implies that

|= (@l′1 ∧ @l1 ∧ thread! = thread′) → false

(the predicate @l′1 refers to the thread denoted by the fresh local variable ’thread′’). Note
that @l′1 implies that ’sched’ stores the thread denoted by ’thread′’ first, whereas @l1 stores
the thread denoted by the distinguished local variable ’thread’ first.

Note that the interleaving of the local computations of the threads, i.e., the computations
which only access the local context of the active closures and which do not access the global
object structures (the static variables and the instance variables of the existing objects), does
not affect the global computation. More specifically, the variable ’sched’ enforces the following
confluence property of the global transition relation.

Lemma 1 (Confluence). Let π be a multi-threaded Java program extended with the auxiliary
variable ’sched’ for recording the scheduling of threads, as described above. Furthermore, let
the object structures of the global states Θ and Θ′ assign the same value to the variable ’sched’.
It follows that if

Θ0 →∗ Θ and Θ0 →∗ Θ′

then there exists a global state Θ′′ such that

Θ →∗ Θ′′ and Θ′ →∗ Θ′′

Furthermore, these partial compotations only consist of local compouations steps which do not
involve (read or write) access to the global object structure.

We can now prove the following theorem which states that the reachability predicates are
interference free.

Theorem 2. For any labeled statements l : S and l′ : S′ of a program extended with the
auxiliary variable ’sched’ we have

|= (@l′ ∧ @l ∧ thread′! = thread) → WP(S, @l′)

Proof. Let
γ |= @l′ ∧ @l ∧ thread! = thread′

By definition of the reachability predicates @l′ and @l there exists partial computations

Θ0 →∗ Θ and Θ0 →∗ Θ′

starting from a fixed initial global state Θ0, such that (l : S, τ) is the active closure of the
thread τ(thread) , whereas the (l′ : S′, τ ′) is the active closure of τ(thread′). Here τ denotes
the local context of the configuration γ and τ ′(u) = τ(u′), for every local variable (remember
that primed local variables are introduced in order to avoid name clashes between the local
variables of @l and @l′). Furthermore, the global object structure of γ is realized in both the
global states Θ and Θ′. The auxiliary variable ’sched’ thus has the same value in the global
object structures of Θ and Θ′. By the above lemma, there exists a global state Θ′′ which can
be reached from both Θ and Θ′ by local computations only. But then we can also backtrack
the local computation steps of the two threads (denoted by τ(thread) and τ(thread′)) and
obtain a reachable global state in which τ(thread) is about to execute S and τ(thread′) the
statement S′. Clearly, the thread denoted by τ(thread′) is still about to execute S′ in the
global state which results from the execution of S by τ(thread). It follows by definition of the
reachability predicates that

γ′ |= @l′

where γ′ consists of the object structure resulting from the execution of S′ (by τ(thread))
and the initial local context τ ′ (of τ(thread′)).

5 Conclusion and future work

In this paper we presented a sound and complete proof method for multi-threaded Java
programs. The proof method distinguishes a local level which is based on a Hoare logic for
the sequential flow of control of (recursive) method calls within one thread and a global level
which deals with interference between threads. The formal justification of the proof method
is based on a formal semantics of Java programs annotated with assertions.

The proof method incorporates the use of auxiliary variables. These variables are used to
capture specific aspects of the flow of control. Of particular interest is their use introduced
in this paper as additional formal parameters to describe the sequential flow of control of

(recursive) method calls within one thread. This use allows a complete characterization of
method calls in a multi-threading context. More specifically, in this paper we introduced such
a characterization in terms of the reachability predicates instead of the strongest postcondition
as is used in the seminal completeness proof of Gorelick ([9]) for recursive procedure calls in
a sequential context (see also [2]).

In general, auxiliary variables can be used to extend the proof method in a systematic
manner to other mechanisms like synchronized methods, wait and notify methods, and further
details of the underlying memory model as described in [10].

Future work The main challenge is integrated tool support for the annotation of multi-
threaded Java programs with assertions (as provided by [11]), the automatic generation of
the verification conditions and (semi)automated validation of these conditions using theorem
proving (as provided by [7, 5]).

References

1. E. Abraham, F.S. de Boer, W.P. de Roever, and M. Steffen. An assertion-based proof system for
mutithreaded Java. Theoretical Computer Science, Vol. 331, 2005.

2. K.R. Apt: Ten years of Hoare logic: a survey — part I. ACM Transactions on Programming Languages
and Systems, Vol. 3, No. 4, October 1981, pp. 431–483.

3. K.R. Apt. Formal justification of a proof system for Communicating Sequential Processes. Journal of
the ACM, Vol. 30, No. 1, January 1983, pp. 197–216.

4. K.R. Apt, N. Francez and W. P. de Roever. A proof system for Communicating Sequential Processes.
ACM Transactions on Programming Languages and Systems, 2:359-385, 1980.

5. B. Beckert, R. Hhnle, P. H. Schmitt (Eds.). Verification of Object-Oriented Software: The KeY Ap-
proach. LNCS 4334. Springer-Verlag, 2007.

6. F.S. de Boer. A WP-calculus for OO. Proceedings of Foundations of Software Science and Computation
Structures, FOSSACS’99, LNCS Vol. 1578, 1999.

7. The Extended Static Checker for Java (ESC/Java).
URL: http://secure.ucd.ie/products/opensource/ESCJava2.

8. R.T. Gerth and W.-P. de Roever. Proving monitors revisited: A first step towards verifying object
oriented systems. Fundamenta informaticae IX, North-Holland, p. 371-400, 1986.

9. G. A. Gorelick . A complete axiomatic system for proving assertions about recursive and non-recursive
programs. Technical Report 75, Department of Computer Science, University of Toronto, 1975.

10. J. Manson, W. Pugh and S.V. Adve. The Java memory model. Proceedings of the 32nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2005. ACM 2005.

11. The Java Modeling Language (JML).
URL of the JML home page: http://www.cs.iastate.edu/ leavens/JML.

12. S. Owicki. A consistent and complete deductive system for the verification of parallel programs. Pro-
ceedings of the eighth annual ACM symposium on Theory of computing. ACM Press, 1976.

13. S. Owicki and D. Gries. An axiomatic proof technique for parallel programs. Acta Informatika, 6:319-
340, 1976.

14. J.V. Tucker and J.I. Zucker: Program Correctness over Abstract Data Types, with Error-State Seman-
tics. CWI Monograph Series, Vol. 6, Centre for Mathematics and Computer Science/North-Holland,
1988.

