
Asynchronous Session Types and Progress for
Object Oriented Languages?

Mario Coppo1, Mariangiola Dezani-Ciancaglini1, and Nobuko Yoshida2

1 Dipartimento di Informatica, Università di Torino coppo,dezani@di.unito.it
2 Department of Computing, Imperial College London yoshida@doc.ic.ac.uk

Abstract. A session type is an abstraction of a sequence of heterogeneous val-
ues sent over one channel between two communicating processes. Session types
have been introduced to guarantee consistency of the exchanged data and, more
recently, progress of the session, i.e. the property that once a communication
has been established, well-formed programs will never starve at communication
points. A relevant feature which influences progress is whether the communica-
tion is synchronous or asynchronous. In this paper, we first formulate a typed
asynchronous multi-threaded object-oriented language with thread spawning, it-
erative and higher order sessions. Then we study its progress through a new effect
system. As far as we know, ours is the first session type system which assures
progress in asynchronous communication.

1 Introduction

Distributed and concurrent programming paradigms are increasingly interesting, ow-
ing to the huge amount of distributed applications and services spread on the Internet.
This gives a strong motivation to the study of specifications and implementations of
these programs together with techniques for the formal verification of their properties.
One of the crucial aspects is that of protocol specification: this consists in checking
the coherence and safety of sequences of message interchanges that take place between
a number of parties cooperating in carrying out some specific task. The use of type
systems to formalise this kind of protocols has interested many researchers: in par-
ticular, session types [16, 25] are recently focussed as a promising type discipline for
structuring hand-shake communications. Interaction between processes is achieved by
specifying corresponding sequences of messages through private channels. Such se-
quences are associated with session types, that assures that the two parties at each end
of a channel perform consistent and complementary actions. Session types are assigned
to communication channels and are shared among processes. For example, the session
type begin.?int.!bool.end expresses that, after beginning the session, (begin), an in-
teger will be received (?int), then a boolean value will be sent (!bool), and finally it is
closed (end).

? This work was partly funded by FP6-2004-510996 Coordination Action TYPES, EPSRC
GR/T03208, EPSRC GR/S55538, EPSRC GR/T04724, EPSRC GR/S68071, and EU IST–
2005–015905 MOBIUS project.

Session types have been studied for several different settings, i.e., for π-calculus-
based formalisms [2, 11, 14, 16, 25], for CORBA [26], for functional languages [13, 27],
for boxed ambients [10], and recently, for CDL, a W3C standard description language
for Web Services [3, 4, 17, 24, 28]. In [6] the notion of session types was investigated
in the framework of object oriented languages. Such an integration has been attempted
before only in [7, 26] and more recently in [5].

The integration of type-safe communication patterns with object-oriented program-
ming idioms is done in [6] via the language MOOSE, a multi-threaded object-oriented
core language augmented with session types. The type system of MOOSE has been de-
signed not only to assure the type safety of the communication protocols, but also the
progress property, i.e. that a communication session, when started, is executed without
risk that processes in a session are blocked in a deadlock state. The first property is a
consequence of the subject reduction property, which has been shown to be a critical
one for calculi involving session types. A recent article [29] analyses this issue in de-
tails, comparing different reduction rules and typing systems appeared in the literature
[2, 11, 16, 27].

The progress property, which also is an essential requirement for all kinds of ap-
plications, does not seem to have been considered before [6, 7] in the literature. The
operational semantics of MOOSE, however, requires communications on a channel to
be synchronous, i.e. they can take place only when both processes involved in a com-
munication are ready to perform the corresponding action. This is a strong requirement
that can sometime generate deadlocks. Take for instance the parallel of the following
processes:

1 connect c0 begin.?int.end{
2 connect c1 begin.!int.end{
3 c0.send(3);
4 c1.receive
5 }
6 }

Q0

1 connect c0 begin.!int.end{
2 connect c1 begin.?int.end{
3 c1.send(5)
4 };
5 c0.receive
6 }

Q1

Here connect c0 opens the session over channel c0, c0.send(3) sends value 3 via
c0, and c0.receive receives a value via c0. These two processes in parallel, after having
opened one connection on channel c0 and one on channel c1, cannot mutually exchange
an integer on these channels. The resulting process would be stuck with the reduction
rules of [6], since Q0 and Q1 are both waiting for a receiving action to synchronise.

In this paper we consider an asynchronous version of MOOSE, named AMOOSE:
channels are buffered and can perform input and output actions at different times. This
extension allows the senders to send messages without being blocked, reducing an over-
head waiting for heavy synchronisation which the original synchronous session types
require. Session types with asynchronous communication over buffered channels have
been considered in [12, 22] for functional languages, and in [9] for operating system ser-
vices, to enforce efficient and safe message exchanges. These papers do not consider the
progress property. In Java, this asynchronous semantics is found in many communica-
tion APIs such as Socket [19] and NIO [20]. Further, with the asynchrony, we naturally

(type) t ::= C | bool | s | (s ,s)

(class) class ::= class C extends C { f̃ t̃ ˜meth }
(method) meth ::= tm (t̃ x̃ , ρ̃ ỹ) {e}
(expression) e ::= x | v | this | e ; e | e .f := e | e .f | e .m(ẽ) | new C

| new (s ,s) | NullExc | spawn { e } | connect a s {e}
| u .receive | u .send(e) | u .receiveS (x){e } | u .sendS (u)
| u .receiveIf {e }{e } | u .sendIf (e){e }{e }
| u .receiveWhile {e } | u .sendWhile (e){e }

(identifier) a ::= c | x

(channel) u ::= a | k+ | k−

(value) v ::= c | null | true | false | o | k+ | k−

(thread) P ::= e | P |P

(heap) h ::= [] | h :: [o 7→ (C, f̃ : ṽ)] | h ::c | h :: [kp 7→ v̄]

Fig. 1. Syntax, where syntax occurring only at runtime appears shaded .

obtain more programs with progress: in the above example, for instance, the sending
actions transmit the output values to the buffered channels and running of Q0 and Q1 in
parallel can progress and reach safely its natural end.

In [6] a single type system was defined to assure both type safety and progress.
These two properties, however, are rather orthogonal: there seems to be no strong con-
nection between them. In this paper we have chosen to define a type system for type
safety and an effect system for progress. This de-coupling results in simpler systems
and it allows a better understanding of the conditions needed to assure each property.

Structure of the paper. The syntax and operational semantics of AMOOSE will be
introduced in Section 2, the typing system and the main definitions to formulate the
subject reduction property will be introduced in Section 3. Progress properties will be
discussed in Section 4. The complete proof of the subject reduction theorem is given in
the Appendix.

2 Syntax and Operational Semantics

2.1 Syntax

In Fig. 1 we describe the syntax of AMOOSE, which is essentially that of the lan-
guage MOOSE [6]; AMOOSE and MOOSE differ in the operational semantics, since
in AMOOSE output is asynchronous, and the exchange of data between processes is
realised via buffers in the queues associated to channels. We distinguish user syntax,
i.e., source level code, and runtime syntax, which includes null pointer exceptions,
threads and heaps.

Channels We distinguish shared channels and live channels. They both can be param-
eters of procedures. We deviate from [6] introducing polarised live channels [11, 29].

Shared channels are only used to decide if two threads can communicate. After a con-
nection is established the shared channel is replaced by a couple of fresh live channels
having a different polarity, + or −, one for each of the communicating threads. We de-
note by kp in the same thread both the receiving channel of polarity p and the sending
channel of opposite polarity p̄: this will be clear from the operational semantics. Note
that the meaning of polarities is different from that in [11], where polarities simply rep-
resent the two ends of a (unique) session channel. As a notational convention we will
always use c , . . . to denote shared channels and kp,kp

0,k
p
1, . . . to denote polarised live

channels.

User syntax The metavariable t ranges over types for expressions, ρ ranges over
running session types, C ranges over class names and s ranges over shared session
types. Each session type s has one corresponding dual, denoted s , which is obtained
by replacing each ! (output) by ? (input) and vice versa. We introduce the full syntax of
types in § 3. Class and method declarations are as usual.

The syntax of user expressions e ,e ′ is standard but for the channel constructor
new (s ,s), which builds a fresh shared channel used to establish a private session,
and the communication expressions, i.e., connect u s{e} and all the expressions in the
last three lines.

The first line gives parameter, value, the self identifier this, sequence of expressions,
assignment to fields, field access, method call, and object creation. The values are chan-
nels, null, and the literals true and false. Thread creation is declared using spawn { e },
in which the expression e is called the thread body. The expression connect u s{e}
starts a session: the channel u appears within the term {e} in session communications
that agree with session type s . The remaining eight expressions, which realise the ex-
changes of data, are called session expressions, and start with “u . ”; we call u the
subject of such expressions. In the below explanation session expressions are pairwise
coupled: we say that expressions in the same pair and with the same subject are dual to
each other.

The first pair is for exchange of values (which can be shared channels): u .receive
receives a value via u , while u .send(e) evaluates e and sends the result over u . The
second pair expresses live channel exchange: in u .receiveS(x){e} the received channel
will be bound to x within e , in which x is used for communications. The expression
u .sendS(u ′) sends the channel u ′ over u . The third pair is for conditional communica-
tion: u .receiveIf {e}{e ′} receives a boolean value via channel u , and if it is true con-
tinues with e , otherwise with e ′; the expression u .sendIf (e){e ′}{e ′′} first evaluates
the boolean expression e , then sends the result via channel u and if the result was
true continues with e ′, otherwise with e ′′. The fourth is for iterative communication:
the expression u .receiveWhile{e} receives a boolean value via channel u , and if it is
true continues with e and iterates, otherwise ends; the expression u .sendWhile(e){e ′}
first evaluates the boolean expression e , then it sends its result via channel u and if the
result was true continues with e ′ and iterates, otherwise it ends.

Runtime syntax The runtime syntax (shown shaded in Fig. 1) extends the user syntax:
it adds NullExc to expressions, denoting the null pointer error; includes polarised live
channels; extends values to allow for object identifiers o , which denote references to

instances of classes; finally, introduces threads running in parallel. Single and multiple
threads are ranged over by P, P′. The expression P |P′ says that P and P′ are running in
parallel.

Heaps, ranged over h, are built inductively using the heap composition operator ‘::’,
and contain mappings of object identifiers to instances of classes, shared channels and
mappings of polarised channels to queues of values. In particular, a heap will contain
the set of objects and fresh channels, both shared and live, that have been created since
the beginning of execution. The heap produced by composing h :: [o 7→ (C, f̃ : ṽ)] will
map o to the object (C, f̃ : ṽ), where C is the class name and f̃ : ṽ is a representation
for the vector of distinct mappings from field names to their values for this instance.
The heap produced by composing h :: c will contain the fresh shared channel c . The
heap produced by composing h :: [kp 7→ ṽ] will map the live channel kp to the queue
ṽ . Heap membership for object identifiers and channels is checked using standard set
notation, we therefore write it as o ∈ h, c ∈ h, and kp ∈ h. Heap update for objects is
written h[o 7→ (C, f̃ : ṽ)], for polarised channels h[k p 7→ ṽ], and field update is written
(C, f̃ : ṽ)[f 7→ v]. We assume that the heap is unordered, i.e. satisfying equivalences like

υ :: υ
′ ≡ υ

′ :: υ, h1 ≡ h′1,h2 ≡ h′2 ⇒ h1 :: h2 ≡ h′1 :: h′2

where υ denotes generic heap elements. With some abuse of notation the operator “ :: ”
denotes heap concatenation without making distinction between heaps and heap ele-
ments.

2.2 Operational Semantics

This subsection presents the operational semantics of AMOOSE: the main difference
with respect to [6] is that in AMOOSE output is asynchronous and the values are ex-
changed through queues associated to live channels in the heap. In the reduction rules
then the heap plays an essential role also in communications.

We only discuss the more interesting rules. First we list the evaluation contexts.

E ::= [−] | E .f | E;e | E .f := e | o .f := E | E.m(ẽ) | o .m(ṽ ,E, ẽ)
| kp.send(E) | kp.sendIf (E){e}{e ′}

Since heaps associate queues only to live channels, we can reduce only session
expressions whose subjects are live channels. Moreover shared channels are sent by
send , while live channels are sent by sendS . For this reason there are no evaluation
contexts of the shapes E.send(e), kp.sendS(E) etc.

Fig. 2 defines auxiliary functions used in the operational semantics and typing rules.
We assume a fixed, global class table CT, which as usual contains Object as topmost
class.

Expressions Fig. 3 shows the rules for execution of expressions which correspond to
the sequential part of the language. The rules not involving communications are stan-
dard [1, 8, 18], but for the addition of a fresh shared channel to the heap (rule NewS→).
In rule NewC→ the auxiliary function fields(C) examines the class table and returns the
field declarations for C. The method invocation rule is Meth→; the auxiliary function

Field lookup

fields(Object) = •
fields(D) = f̃

′
t̃ ′ class C extends D {f̃ t̃ M̃} ∈ CT

fields(C) = f̃
′
t̃ ′, f̃ t̃

Method lookup

methods(Object) = •
methods(D) = M̃′ class C extends D {f̃ t̃ M̃} ∈ CT

methods(C) = M̃′,M̃

Method type lookup

class C extends D {f̃ t̃ M̃} ∈ CT tm (τ̃ x̃) {e} ∈ M̃

mtype(m ,C) = τ̃ → t

class C extends D {f̃ t̃ M̃} ∈ CT m 6∈ M̃

mtype(m ,C) = mtype(m ,D)

Method body lookup

class C extends D {f̃ t̃ M̃} ∈ CT tm (τ̃ x̃) {e} ∈ M̃

mbody(m ,C) = (x̃ ,e)

class C extends D {f̃ t̃ M̃} ∈ CT m /∈ M̃

mbody(m ,C) = mbody(m,D)

τ is either t or ρ.

Fig. 2. Lookup Functions.

mbody(m ,C) looks up m in the class C, and returns a pair consisting of the formal pa-
rameter names and the method’s code. The result is the method body where the keyword
this is replaced by the object identifier o , and the formal parameters x̃ are replaced by
the actual parameters ṽ .

The operator “:” denotes queue concatenation without making distinction between
elements and queues. Thus v : ṽ ′ denotes a queue beginning with v and ṽ ′ : v a queue
ending with v .

The send communication rules put values in the queues associated to the live chan-
nels with the same names and opposite polarity of the expression subjects. The receive
communication rules instead take values in the queues associated to the expression
subjects. In rules SendS→ and ReceiveS→ standard values are exchanged from expres-
sions to queues. Rule SendSS→ puts a live channel in the queue: the opposite rule
ReceiveSS→ (see Fig. 4) is discussed below since it spawns a new thread. In the condi-
tional rules (SendSIf-true→, SendSIf-false→, ReceiveSIf-true→, ReceiveSIf-false→)
depending on the value of the boolean, the execution proceeds with either the first or the
second branch. The iterative rules (SendSWhile→, ReceiveSWhile→) simply express
the iteration by means of the conditional.

Standard Reduction

Fld→
h(o) = (C, f̃ : ṽ)
o .fi ,h −→ v i ,h

Seq→

v ;e ,h −→ e ,h

FldAss→
h′ = h[o 7→ h(o)[f 7→ v]]

o .f := v ,h −→ v ,h′

NewC→

fields(C) = f̃ t̃ o 6∈ h

new C,h −→ o ,h :: [o 7→ (C, f̃ : ˜init(t))]

NewS→
c 6∈ h

new (s ,s),h −→ c ,h ::c

Cong→

e ,h −→ e ′,h′

E[e],h −→ E[e ′],h′

Meth→
h(o) = (C, . . .) mbody(m ,C) = (x̃ ,e)

o .m(ṽ),h −→ e [o/this][ṽ/x̃],h

NullProp→

E[NullExc],h −→ NullExc ,h

NullFldAss→
null .f := v ,h −→ NullExc ,h

NullFld→
null .f ,h −→ NullExc ,h

NullMeth→
null.m(ṽ),h −→ NullExc ,h

In NewC→, init(bool) = false otherwise init(t) = null.

Asynchronous Communication Reduction

SendS→

kp.send(v),h :: [k p̄ 7→ ṽ ′] −→ null,h :: [k p̄ 7→ ṽ ′ : v]

ReceiveS→

kp.receive ,h :: [kp 7→ v : ṽ ′] −→ v ,h :: [kp 7→ ṽ ′]

SendSS→

kp.sendS(kq
0),h :: [k p̄ 7→ ṽ ′] −→ null,h :: [k p̄ 7→ ṽ ′ : k

q
0]

SendSIf-true→

kp.sendIf (true){e1}{e2},h :: [k p̄ 7→ ṽ] −→ e1,h :: [k p̄ 7→ ṽ : true]

SendSIf-false→

kp.sendIf (false){e1}{e2},h :: [k p̄ 7→ ṽ] −→ e2,h :: [k p̄ 7→ ṽ : false]

ReceiveSIf-true→

kp.receiveIf {e1}{e2},h :: [kp 7→ true : ṽ] −→ e1,h :: [kp 7→ ṽ]

ReceiveSIf-false→

kp.receiveIf {e1}{e2},h :: [kp 7→ false : ṽ] −→ e2,h :: [kp 7→ ṽ]

SendSWhile→

kp.sendWhile(e){e1},h −→ kp.sendIf (e){e1;kp.sendWhile(e){e1}}{null},h

ReceiveSWhile→

kp.receiveWhile{e},h −→ kp.receiveIf {e ;kp.receiveWhile{e}}{null},h

Fig. 3. Expression Reduction.

Struct
P |null≡ P P |P1 ≡ P1 |P P |(P1 |P2)≡ (P |P1) |P2 P ≡ P′ ⇒ P |P1 ≡ P′ |P1

Spawn→

E[spawn{ e }],h −→ E[null] |e ,h

Par→
P,h −→ P′,h′

P |P0,h −→ P′ |P0,h′
Str→
P′1 ≡ P1 P1,h −→ P2,h′ P2 ≡ P′2

P′1,h −→ P′2,h
′

Connect→

E1[connect c s{e1}] |E2[connect c s{e2}], h
−→ E1[e1[k

+
/c]] |E2[e2[k

−
/c]], h :: [k+ 7→ ε] :: [k− 7→ ε] k+, k− 6∈ h

ReceiveSS→

E[kp.receiveS(x){e}],h :: [kp 7→ k
q
0 : ṽ] −→ e [k

q
0/x] | E[null],h :: [kp 7→ ṽ]

Fig. 4. Thread Reduction.

An elementary expression reduction is a reduction defined by any of the expression
reduction rules except rule Cong→.

Threads The reduction rules for threads, shown in Fig. 4, are given modulo the stan-
dard structural equivalence rules of the π-calculus [21], written ≡. We define multi-step
reduction as: →→def= (−→∪≡)∗.

When spawn{ e } is the active redex within an arbitrary evaluation context, the
thread body e becomes a new thread, and the original spawn expression is replaced by
null in the context. This is expressed by rule Spawn→.

Rule Connect→ describes the opening of sessions: if two threads require a ses-
sion on the same shared channel name c with dual session types, then two new fresh
live channels k+ and k− with the same name but opposite polarities are created and
added to the heap with empty queues. The freshness of the name k guarantees privacy
and bilinearity of the session communication between the two threads. Finally, the two
connect expressions are replaced by their respective session bodies, where the shared
channel c has been substituted by the live channels k+ and k−, respectively.

In rule ReceiveSS→ one thread awaits to receive a live channel, which will be bound
to the variable x within the expression e . Notice that the receiver spawns a new thread
to handle the consumption of the delegated session. This strategy avoids deadlocks in
the presence of circular paths of session delegation [6].

We say that a heap h is balanced if kp ∈ h implies k p̄ ∈ h. We only consider balanced
heaps: it is easy to verify that reduction rules preserve balance of heaps.

Proposition 2.1. If P,h −→ P′,h′ and h is balanced, then h′ is balanced too.

3 The Type Assignment System and its Properties

The type system discussed in this section is designed to guarantee linearity of live chan-
nels and communication error freedom. These properties are consequences of the Sub-
ject Reduction Theorem. Instead this system does not assure progress, which we will
consider in next section.

3.1 Types

The full syntax of types is given in Fig. 5.

† ::= ! | ? direction
π ::= ε | π.π | †t | †〈π,π〉 | †〈π〉∗ | †(η) partial session type
η ::= π.end | †〈η,η〉 | π.η ended session type
ρ ::= π | η running session type
s ::= begin.η shared session type
θ ::= s | ρ session type
t ::= C | bool | s | (s ,s) standard type

Fig. 5. Syntax of types.

Partial session types, ranged over by π, represent sequences of communications,
where ε is the empty communication, and π1.π2 consists of the communications in π1
followed by those in π2. We use † as a convenient abbreviation that ranges over {!,?}.
The partial session types !t and ?t express respectively the sending and reception of a
value of type t .

The conditional partial session type has the shape †〈π1 ,π2 〉. When † is !, †〈π1 ,π2 〉
describes sessions which send a boolean value and proceed with π1 if the value is true,
or π2 if the value is false; when † is ?, the behaviour is the same, except that the boolean
that determines the branch is to be received instead. The iterative partial session type
†〈π〉∗ describes sessions that respectively send or receive a boolean value, and if that
value is true continue with π, iterating, while if the value is false, do nothing.

The partial session types !(η) and ?(η) represent the exchange of a live channel,
and therefore of an active session, with remaining communications determined by the
ended session type η. Note that typing the live channel by η instead of π ensures that
this channel is no longer used in the sending thread.

An ended session type, η, is a partial session type concatenated either with end or
with a conditional whose branches in turn are both ended session types. It expresses a
sequence of communications with its termination, i.e., no further communications on
that channel are allowed at the end. A conditional ended session type allows to type
spawns or connects in the branches.

We use ρ to range over both partial session types and ended session types: we call
it a running session type.

A shared session type, s , starts with the keyword begin and has one or more end-
points, denoted by end. Between the start and each ending point, a sequence of session
parts describe the communication protocol.

A session type θ is a running session type or a shared session type.
Standard types, t , are either class identifiers (C), or booleans (bool), or shared

session types (s), or pairs of shared session types with their duals (i.e., (s ,s)).
Each session type θ has a corresponding dual, denoted θ, which is obtained as fol-

lows

– ? =! ! =?
– begin.ρ = begin.ρ
– π.end = π.end π.†〈η1,η2〉= π.†〈η1,η2〉
– ε = ε †t = †t †(η) = †(η) †〈π1,π2〉= †〈π1,π2〉 †〈π〉∗ = †〈π〉∗ π1.π2 = π1.π2

Note that θ = θ′ if and only if θ′ = θ.
We type expressions and threads with respect to the global class table CT, as re-

flected in the rules of Fig. 6 which define well-formed standard types. By dom(CT) we
denote the domain of the class table CT, i.e., the set of classes declared in CT. In Fig. 6
we also define subtyping, <:, on class names: we assume that the subclassing is acyclic
as in [18]. In addition, we have (s ,s) <: s and (s ,s) <: s , as in standard π-calculus
channel subtyping rules [15]: a channel on which both communication directions are
allowed may also transmit data following only one of the two directions.

3.2 Typing Rules

The typing judgements for expressions and threads have two environments, i.e., they
have the shape:

Γ;Σ ` e : t Γ;Σ ` P : thread

where the standard environment Γ associates standard types to this, parameters and
objects, while the session environment Σ contains only judgements for channel names
and variables. Fig. 6 defines well-formedness of standard and session environments,
where the domain of an environment is defined as usual and denoted by dom().

In Fig. 7, Fig. 8 and Fig. 9 we give the typing rules for expressions and threads. In
the typing rules for expressions the session environments of the conclusions are ob-
tained from those of the premises and possibly other session environments using the
concatenation operator, ◦, defined below. We consider different cases for the concate-
nation of running session types since we want to avoid to have meaningless ε. As usual,
⊥ stands for undefined.

– ρ◦ρ′ =


ρ if ρ′ = ε

ρ′ if ρ = ε

ρ.end if ρ′ = ε.end and ρ is a partial session type
ρ.ρ′ if ρ is a partial session type
⊥ otherwise.

– Σ\Σ′ = {u :Σ(u) |u ∈ dom(Σ)\dom(Σ′)}

Well-formed Standard Types

Class
C ∈ dom(CT)
`C : tp

Wf-Session

` s : tp

Pair

` (s ,s) : tp

Bool

` bool : tp

Subtyping

(s ,s) <: s (s ,s) <: s

C ∈ dom(CT)
C <: C

C <: D D <: E

C <: E

class C extends D {f̃ t̃ M̃} ∈ CT

C <: D

Standard Environments and Well-formed Standard Environments

Γ ::= /0 | Γ,x :t | Γ,this : C | Γ,o : C

Emp

/0 ` ok

EVar
` t : tp x 6∈ dom(Γ)

Γ,x : t ` ok

EOid
C ∈ dom(CT) o 6∈ dom(Γ)

Γ,o : C ` ok

Ethis
C ∈ dom(CT) this 6∈ dom(Γ)

Γ,this : C ` ok

Session Environments and Well-formed Session Environments

Σ ::= /0 | Σ, u : ρ

SEmp

/0 ` ok

SERC
u 6∈ dom(Σ)
Σ, u :ρ ` ok

Fig. 6. Standard Types, Subtyping, and Environments.

– Σ◦Σ′ =

Σ\Σ′ ∪ Σ′ \Σ ∪ {u :Σ(u)◦Σ′(u) | u∈dom(Σ)∩dom(Σ′)}
if ∀u∈dom(Σ)∩dom(Σ′) : Σ(u)◦Σ′(u) 6=⊥;

⊥ otherwise.

The concatenation of two running session types ρ and ρ′ is the unique running session
type (if it exists) which prescribes all the communications of ρ followed by all those of
ρ′. The concatenation only exists if ρ is a partial session type. The extension to session
environments is straightforward. The typing rules concatenate the session environments
to take into account the order of execution of expressions. We adopt the convention that
typing rules are applicable only when the session environments in the conclusions are
defined.

In the following we discuss the most interesting typing rules for expressions.
Rule Spawn requires that all sessions used by the spawned thread are finally con-

sumed, i.e., they are all ended session types. This is necessary in order to avoid con-
figurations that break the bilinearity condition. The consumption is guaranteed by the
condition ended(Σ), since we define:

ended(Σ) = ∀u :ρ ∈ Σ. ρ is an ended session type.

Typing Rules for Values

Null
Γ ` ok ` t : tp

Γ; /0 ` null : t

Oid
Γ,o : C ` ok

Γ,o : C; /0 ` o : C

True
Γ ` ok

Γ; /0 ` true : bool

False
Γ ` ok

Γ; /0 ` false : bool

Chan
Γ ` ok

Γ; /0 ` c :s

Typing Rules for Standard Expressions

Var
Γ,x : t ` ok

Γ,x : t ` x : t

This
Γ,this : C ` ok

Γ,this : C ` this : C

Fld
Γ;Σ ` e : C f t ∈ fields(C)

Γ;Σ ` e .f : t

Seq
Γ;Σ ` e : t Γ;Σ

′ ` e ′ : t ′

Γ;Σ◦Σ
′ ` e ;e ′ : t ′

FldAss
Γ;Σ ` e : C Γ;Σ

′ ` e ′ : t f t ∈ fields(C)
Γ;Σ◦Σ

′ ` e .f := e ′ : t

NewC
Γ ` ok C ∈ dom(CT)

Γ; /0 ` new C : C

NewS
Γ ` ok

Γ; /0 ` new (s ,s) : (s ,s)

Spawn
Γ;Σ ` e :t ended(Σ)

Γ;Σ ` spawn{ e } :Object

NullPE
Γ ` ok ` t : tp
Γ; /0 ` NullExc : t

Meth
Γ;Σ0 ` e : C Γ;Σi ` e i : t i i ∈ {1 . . .n} mtype(m ,C) = t 1, . . . ,t n,ρ1, . . . ,ρm → t

Γ;Σ0 ◦Σ1 . . .◦Σn ◦{u1 :ρ1, . . . ,um :ρm} ` e .m(e1, . . . ,en,u1, . . . ,um) : t

Fig. 7. Typing Rules for Expressions I.

Rule Meth retrieves the type of the method m from the class table using the auxiliary
function mtype(m,C), defined in Fig. 2. The session environments of the premises are
concatenated with {u1 :ρ1, . . . ,um :ρm}, which represents the communication protocols
of the live channels u1, . . . ,um during the execution of the method body.

Rule Conn ensures that a session body properly uses its shared channel according
to the required session type. The first premise says that the channel identifier used for
the session (a) can be typed with the appropriate shared session type (begin.η). The
second premise ensures that the session body can be typed in the restricted environment
Γ\a with session environment containing a :η.

In rules ReceiveIF and SendIF both ρ1 and ρ2 are either partial session types or
ended session types – this is guaranteed by the syntax of conditional session types.

The rule WeakES, where ES stands for empty session, is necessary to type a branch
of a conditional expression, where the channel which is the subject of the conditional is
not used. Rule WeakE, where E stands for end, allows us to obtain ended session types
as predicates of session environments in order to apply rules Conn, Spawn and Re-
ceiveS.

Fig. 10 defines well-formed class tables. Rule M-ok type-checks the method bod-
ies with respect to a class C taking as environments the association between formal
parameters and their types and the association between this and C.

Typing Rules for Communication Expressions

Conn
Γ ` a :begin.η Γ\a ; Σ,a :η ` e :t

Γ;Σ ` connect a begin.η{e} :t

Send
Γ;Σ ` e :t

Γ;Σ◦{u :!t } ` u .send(e) : Object

Receive
Γ ` ok ` t : tp

Γ;{u : ?t } ` u .receive :t

SendS
Γ ` ok η 6= ε.end

Γ;{u ′ :η,u : !(η)} ` u .sendS(u ′) : Object

ReceiveS
Γ\x ; Σ,x :η ` e :t η 6= ε.end ended(Σ)

Γ;{u : ?(η)}◦Σ ` u .receiveS(x){e} : Object

SendIf
Γ;Σ0 ` e :bool Γ;Σ,u :ρi ` e i :t i ∈ {1,2}
Γ;Σ0 ◦Σ,u :!〈ρ1 ,ρ2 〉 ` u .sendIf (e){e1 }{e2 } :t

ReceiveIf
Γ;Σ,u :ρi ` e i :t i ∈ {1,2}

Γ;Σ,u :?〈ρ1 ,ρ2 〉 ` u .receiveIf {e1 }{e2 } :t

SendWhile
Γ; /0 ` e :bool Γ;{u :π} ` e ′ :t

Γ;{u :!〈π〉∗} ` u .sendWhile(e){e ′} :t

ReceiveWhile
Γ;{u :π} ` e :t

Γ;{u :?〈π〉∗} ` u .receiveWhile{e} :t

Non-structural Typing Rules for Expressions

WeakES
Γ ; Σ ` e :t u 6∈ dom(Σ)

Γ ; Σ,u :ε ` e :t

WeakE
Γ;Σ,u :π ` e :t

Γ;Σ,u :π.end ` e :t

Sub
Γ;Σ ` e :t t <: t ′

Γ;Σ ` e :t ′

Fig. 8. Typing Rules for Expressions II.

Start
Γ;Σ ` e :t

Γ;Σ ` e :thread

Par
Γ;Σi ` Pi :thread (i = 1,2)

Γ;Σ1∪Σ2 ` P1 |P2 :thread

Fig. 9. Typing Rules for Threads.

3.3 Subject Reduction

We will consider only reductions of well-typed expressions and threads. We define types
of run time entities in the standard way. The judgment is defined in Fig. 11. The judg-
ment h ` v : t guarantees that the runtime value v has type t ; for objects we take
subclasses into consideration in rule HObjSubs. The judgment h ` o guarantees that

M-ok
{this : C, x̃ : t̃ } ; {ỹ : ρ̃} ` e :t
tm (t̃ x̃ , ρ̃ ỹ) {e} :ok in C

C-ok
M̃ : ok in C

class C extends D {f̃ t̃ M̃} : ok

CT-ok
class C extends D {f̃ t̃ M̃} : ok CT : ok

CT,class C extends D {f̃ t̃ M̃} : ok

Fig. 10. Well-formed Class Tables.

HTrue

h ` true : bool

HFalse

h ` false : bool

HNull
C ∈ dom(CT)

h ` null : C

HObj
h(o) = (C, . . .)

h ` o : C

HObjSubs
h ` o : C′ C′ <: C

h ` o : C

WfObj
h(o) = (C, f̃ : ṽ) fields(C) = f̃ t̃ h ` v i : t i

h ` o

Fig. 11. Types of Runtime Entities.

the object o is well-formed, i.e., that its fields contain values according to the declared
field types in C, the class of that object. Note that in rule HObjSubs the equality in the
first premise simply asserts that there is an object o in the heap h, while the conclusion
asserts that o is well-formed.

In order to formalise agreement between session environments and heaps, it is handy
to introduce some definitions. We start by determining the initial and the final parts of
a running session type.

A basic session type (s-basic type for short) is a session type of the form †t or
†(η) or †〈ρ1,ρ2〉 or †〈π〉∗. Let β be a s-basic type. We denote with βψ a session type
which begins with β and has the form β.ρ or β.end or β. In these cases let us call ψ the
continuation of βψ. If βψ stands for β or β.end we say that the continuation ψ is light.
Further let us define

ψ
� =


ρ if ψ stands for .ρ,

ε.end if ψ stands for .end

ε otherwise.

The core domain of a session environment Σ (notation cored(Σ)) is the set of sub-
jects in Σ whose predicates do not belong to {ε,ε.end}.

The channel range of an heap h (notation ranc(h)) is the set of live channels which
occur in h inside value queues:

ranc(h) = {kp | h(kq
0) = ṽ : kp :ṽ ′ for some k

q
0, ṽ , ṽ ′}.

A heap h agrees with a session environment Σ if each value which is in the queue
associated to a live channel kp in h has the type expected by Σ(kp). We formalise this
by means of an inductive definition on the (sum of) the sizes of the queues associated
by h to the live channels in the core domain of Σ. The base step is when all these live
channels are associated to empty queues and there are no channels in the heap waiting
to be activated by receiveS expressions. In the induction cases each top value of a queue
associated to a channel is checked against the running session type of that channel in
the environment. If this check fails the heap and the session environment do not agree,
otherwise both the queue and the environment are updated and the check is inductively
applied to the resulting heap and session environment. The induction terminates since
at each step a top value in a queue is popped out. Note that, when the considered value
is a channel k

q
0 of type η, we add the statement k

q
0 : η to the session environment: this

is necessary to type the expression receiving the channel k
q
0. Clearly the order in which

the live channels in the heap are considered is not influential.

Definition 3.1. Fig. 12 defines the agreement A(Σ;h) of a session environment Σ with
a heap h.

A(Σ;h)=



true if dom(Σ)∩ ranc(h) = /0

and ∀kp ∈ cored(Σ).h(kp) = ε

A(Σ[kp 7→ ψ�];h[kp 7→ ṽ ′]) if h(kp) = v : ṽ ′,v ∈ {true, false}
and Σ(kp) =?boolψ

A(Σ[kp 7→ ψ�];h[kp 7→ ṽ ′]) if h(kp) = o : ṽ ′,h(o) = (C′, f̃),C′ <: C
and Σ(kp) =?Cψ

A(Σ[kp 7→ ψ�];h[kp 7→ ṽ ′]) if h(kp) = c : ṽ ′,t ∈ {s ,(s ,s)} and Σ(kp) =?t ψ

A(Σ[kp 7→ ψ�],kq
0 : η;h[kp 7→ ṽ ′]) if h(kp) = k

q
0 : ṽ ′, Σ(kp) =?(η)ψ and k

q
0 /∈ dom(Σ)

A(Σ[kp 7→ ρ1ψ�];h[kp 7→ ṽ ′]) if h(kp) = true : ṽ ′ and Σ(kp) =?〈ρ1,ρ2〉ψ
A(Σ[kp 7→ ρ2ψ�];h[kp 7→ ṽ ′]) if h(kp) = false : ṽ ′ and Σ(kp) =?〈ρ1,ρ2〉ψ
A(Σ[kp 7→ π.!〈π〉∗ψ�];h[kp 7→ ṽ ′]) if h(kp) = true : ṽ ′ and Σ(kp) =?〈π〉∗ψ

A(Σ[kp 7→ ψ�];h[kp 7→ ṽ ′]) if h(kp) = false : ṽ ′ and Σ(kp) =?〈π〉∗ψ

false otherwise

Fig. 12. Agreement between Session Environments and Heaps.

We are now able to formulate the agreement between environments and heaps though
the following rule:

WfHeap
∀o ∈ dom(h) : h ` o ∀o ∈ dom(Γ) : h ` o : Γ(o) A(Σ;h)

Γ;Σ ` h

In the remaining of this section we outline the proof of subject reduction, while we
give full details and proofs in the Appendix.

Standard ingredients of Subject Reduction proofs are Generation Lemmas. The
Generation Lemmas in this work are somewhat unusual, because, due to the non-
structural rules, when an expression is typed, the session environment used in the typing
can be augmented by ending partial session types or by introducing ε-predicates. For
example, Γ;Σ ` x : t does not imply that Σ = /0; instead, it implies that cored(Σ) = /0.

In order to express the Generation Lemmas, we define the partial order � among
session environments, which basically reflects the differences introduced through the
application of nonstructural rules.

Definition 3.2 (Weakening Order �). Σ � Σ′ is the smallest partial order such that:
(1) if u /∈ dom(Σ), Σ � Σ,u : ε; and (2) Σ,u : π � Σ,u : π.end.

Note that � is defined in such a way that, if Σ is well-formed and Σ � Σ′, then also Σ′

is well-formed.
Generation Lemmas for standard expressions, communication expressions, and pro-

cesses are given in the Appendix (see Lemmas A.2, A.3 and A.4) and make use of the
relation �. For example, Γ;Σ ` u .send(e) : t implies t = Object and Γ;Σ′ ` e : t ′ and
Σ′ ◦{u : !t } � Σ for some Σ′, t ′.

The following lemma states that the ordering relation � preserves the types of ex-
pressions and threads, and its proof is easy using the non structural typing rules and
Generation Lemmas.

Lemma 3.3 (Weakening). Let Σ � Σ′, then

1. Γ;Σ ` e : t implies Γ;Σ′ ` e : t ;
2. Γ;Σ ` P : thread implies Γ;Σ′ ` P : thread .

Using the above lemma and the Generation Lemmas one can show that structural
equivalence preserves typing.

Lemma 3.4 (Preservation of Typing under Structural Equivalence). If Γ;Σ ` P :
thread and P ≡ P′, then Γ;Σ ` P′ : thread .

Lemma 3.5 states that the typing derivation of E[e] can be obtained by composing
the subderivation of a typing for e , with a typing derivation for E[x]. Furthermore, Σ, the
environment used to type E[x], can be broken down into two environments, Σ = Σ1 ◦Σ2,
where Σ1 is used to type e and Σ2 is used to type E[x].

Lemma 3.5 (Subderivations). If Γ;Σ ` E[e] : t , then there exist Σ1,Σ2 and t ′ such
that Σ = Σ1 ◦Σ2, and Γ;Σ1 ` e :t ′ and Γ,x : t ′;Σ2 ` E[x] :t , where x is a fresh variable
in E[−] and Γ.

On the other hand, Lemma 3.6 allows the combination of the typing of E[x] and
the typing of e , provided that the contexts Σ1 and Σ2 used for the two typings can be
composed through ◦, and that the type of e is the same as that of x in the first typing.

Lemma 3.6 (Context Substitution). If Γ;Σ1 ` e : t ′, and Γ,x : t ′;Σ2 ` E[x] : t , and
Σ1 ◦Σ2 is defined, then Γ;Σ1 ◦Σ2 ` E[e] : t .

For stating the Subject Reduction Theorem we need to introduce a partial order
(called evaluation order) between running session types which takes into account that
session types are consumed by reducing terms (Point 1). This evaluation order is also
extended to pairs of session environments and heaps in two ways. The first order (Point
2) requires the types for the same live channels in the session environments are con-
sistent through an expression reduction, i.e. that they take into account the consumed
actions (first case) and, in the case that a live channel is transmitted or received, that
this is correctly registered in the environment and in the heap (the other two cases). The
second order (Point 3) extends the first one taking into account that new live channels
can be created in a heap via evaluation of connect expressions.

Definition 3.7 (Evaluation Order).
1. v is defined as the smallest partial order on running session types such that: εv ρ;

ε.end v η; πi v †〈π1,π2〉 (i ∈ {1,2}); ηi v †〈η1,η2〉 (i ∈ {1,2}); †〈π.〈π〉∗,ε〉 v
†〈π〉∗; and π v π′ implies π◦ρ v π′ ◦ρ.

2. We define 〈Σ′;h′〉 v 〈Σ;h〉 if whenever kp, k p̄ ∈ h′ we have kp, k p̄ ∈ h and moreover
one of the following conditions is satisfied:
(a) kp :ρ′ ∈ Σ′ and kp :ρ ∈ Σ and ρ′ v ρ;
(b) kp ∈ cored(Σ′) and kp 6∈ cored(Σ) and kp 6∈ ranc(h′) and kp ∈ ranc(h);
(c) kp 6∈ cored(Σ′) and kp ∈ cored(Σ) and kp ∈ ranc(h′) and kp 6∈ ranc(h).

3. We define 〈Σ′;h′〉 v[〈Σ;h〉 if whenever kp, k p̄ ∈ h′ we have:
– either kp, k p̄ ∈ h and one of the conditions (2a), (2b), (2c) is satisfied;
– or kp, k p̄ /∈ h and kp, k p̄ /∈ dom(Σ) and kp :ρ, k p̄ :ρ ∈ Σ′ for some ρ.

Note that v and v[as defined above are partial order relations.

We can now state the Subject Reduction theorem:

Theorem 3.8 (Subject Reduction).
1. Γ;Σ` e : t and Γ;Σ` h and e ,h−→ e ′,h′ via an expression reduction imply Γ′;Σ′ `

e ′ : t and Γ′;Σ′ ` h′, where Γ ⊆ Γ′ and 〈Σ′;h′〉 v 〈Σ;h〉.
2. Γ;Σ ` e : t and Γ;Σ ` h and e ,h −→ e 1 |e 2,h′ via a thread reduction imply Γ;Σ `

e 1 |e 2 : thread and Γ′;Σ′ ` h′ where 〈Σ′;h′〉 v 〈Σ;h〉.
3. Γ;Σ ` P : thread and Γ;Σ ` h and P,h −→ P′,h′ imply Γ′;Σ′ ` P′ : thread and

Γ′;Σ′ ` h′ where Γ ⊆ Γ′ and 〈Σ′;h′〉 v[〈Σ;h〉.

The proof, given in the Appendix, is by induction on the derivation e ,h −→ e ′,h′

or P,h −→ P′,h′. It uses the Generation Lemmas, the Subderivations Lemma, and the
Context Substitution Lemma, as well as further lemmas, stated and proven in the Ap-
pendix, and which deal with properties of the relation �, of the operation ◦, weakening,
and substitutions.

4 Progress Properties

The Subject Reduction Theorem assures that, in well-typed processes, when a receiving
expression is executed, the input value is consistent with the type of receiving channel.
This does not guarantee that once a session started, all required communications will
be really executed: a process could be stuck in a deadlock even if it is well-typed. The
deadlock freedom is usually called progress in the literature, see e.g. [23]. Progress
has not been considered in most previous works on synchronous and asynchronous
session type systems [2, 9, 11, 12, 16, 22, 27]. Also in our system well typing does not
guarantees progress, as the following example shows.

Example 4.1. Take the following processes P0 and P1:

P0 = connect c 0 s 0{connect c 1 s 1{c 1.receive ;c 0.send(3)}}
P1 = connect c 0 s 0{connect c 1 s 1{c 0.receive ;c 1.send(5)}}

where s 0 = begin.?int .end and s 1 = begin.!int .end.
The process P0 |P1 running from an empty heap reduces to:

k+
1 .receive ;k+

0 .send(3) |k−0 .receive ;k−1 .send(5), []

which is stuck even if it is well-typed.

Following essentially ideas from [6] we propose an effect system which assures
progress of AMOOSE processes.

We consider a process being stuck if all its non terminated threads are waiting for a
communication on channels whose associated queues are empty, and which cannot be
fed by any sending expression. More formally we have the following notion.

Definition 4.2. A process P0 has the progress property if P0, []→→ P,h implies that one
of the following holds.

– In P, all expressions are values, i.e., P ≡∏0≤i<n v i ;
– P,h −→ P′,h′;
– P throws a null pointer exception, i.e., P ≡ NullExc |Q;
– P stops with a connect waiting for its dual instruction, i.e., P≡E[connect c s{e}] |Q.

A process with the progress property can stop only if its component threads either
have terminated their associated computation leading to values or at least one of them
either throws an exception or it is waiting for a connection through the execution of a
connect statement. In this last case a new process entering the system can restart the
computation opening a new channel via the execution of the connect expression.

We now give a set of inference rules that assures that all processes satisfying them
have the progress property. A difference with [6, 7] is that there the type system itself
was assuring the progress property, while here we separated the two goals. More inter-
estingly the asynchronicity of output allows more permissive requirements.

With the output being asynchronous, processes can only stop on receiving expres-
sions. For this reason we require that in the body of a session opened on channel c all

receiving expressions have c as a subject. In Example 4.1 we see that the expression
c 0.receive is in the body of the session opened on channel c 1. It is easy to verify that if
this expression is moved past the end of the session opened on c 1, the resulting process
has the progress property. Note that swapping the sending and receiving expressions in
both P0 and P1 the resulting process would be stuck in the system of [6].

Output expressions can always be reduced, but they can in some cases produce
deadlocks by sending channels whose session expressions cannot be executed by the
receiving process (see Example 4.4). For this reason we require that in the body of a
session opened on channel c all expressions sending channels have c as subject.

A method call must respect the same conditions, and this is assured by the new rules
for well-formed methods of Fig. 13.

We will define formally in Definition 4.5 the notion of critical expression: for now
a critical expression is an expression which can produce deadlock if its use is not disci-
plined. Critical expressions are mostly session expressions, but also a method call can
be critical. The set containing the subject of a critical expression (this notion will be
generalised to method calls too) is said to be the hot set of the expression. As motivated
below, we will force all critical expressions occurring in the body a session to have the
same hot set containing only the channel on which the session has been opened. The
notion of hot set can be naturally propagated through composition and spawning.

A channel is used in an expression if it occurs in the expression as subject of a
session expression, or as a channel communicated by a sendS expression, or as actual
parameter with a running session type of a procedure call.

The judgements of our effect system have the form

e �U; H

where U (the used channel set) is the set of used channels in e and H is the hot set of
e . The set of used channels is motivated essentially by rule ReceiveS� (see Fig. 14).

We define the singleton-union of two hot sets H1 and H2 (notation H1] H2) as:

H1] H2 =

{
H1∪ H2 if H1 = H2 or H1 = /0 or H2 = /0,
undefined otherwise.

The used channels and the hot set of an expression are derived by the set of inference
rules given in Fig. 13 and 14. The key observations are:

– a channel which is subject of a critical subexpression of an expression must be used
in the whole expression (i.e., if e �U; H , then H ⊆ U);

– a channel which is used in a typed expression must be the subject of an assumption
in the session environment which types that expression (i.e., if e �U; H and Γ;Σ `
e : t , then U ⊆ dom(Σ)).

The rules in Fig. 13 are quite natural, except for those concerning method calls that
will be discussed later. Rule Seq� takes the union of the two used channel sets and the
singleton-union of the two hot sets.

As for the rules for communication expressions, note that a send expression can stay
everywhere, its hot set is then the hot set of the expression which is sent (rule Send�),

Well-Formed Methods

MCold�

e �U; /0 U ⊆ {ỹ}
tm (t̃ x̃ , ρ̃ ỹ) {e} is ok in C

MHot�
e �U; {y 1} U ⊆ {y 1}∪{ỹ}

tm (t̃ x̃ ,ρ1 y 1, ρ̃ ỹ) {e} is ok in C

Progress Inference Rules for Values

Null�

null� /0; /0

Oid�

o� /0; /0

True�

true� /0; /0

False�

false� /0; /0

Chan�

c � /0; /0

Progress Inference Rules for Standard Expressions

Var�

x � /0; /0

This�

this� /0; /0

Fld�

e �U; H
e .f �U; H

Seq�

e �U; H e ′�U′; H ′

e ;e ′�U∪U′; H] H ′

FldAss�

e �U; H e ′�U′; H ′

e .f := e ′�U∪U′; H] H ′

NewC�

new C � /0; /0

NewS�

new (s ,s)� /0; /0

Spawn�

e �U; H
spawn{ e }�U; H

NullPE�

NullExc � /0; /0

MethCold�

e �U; H e i �Ui; Hi i ∈ {1 . . .n} mtype(m ,C) = t 1, . . . ,t n,ρ1, . . . ,ρm
	→ t

e .m(e1, . . . ,en,u1, . . . ,um)�U∪U1 . . .∪Un∪{u1, ...,um}; H] H1 . . .] Hn

MethHot�

e �U; H e i �Ui; Hi i ∈ {1 . . .n} mtype(m ,C) = t 1, . . . ,t n,ρ1, . . . ,ρm
⊕→ t

e .m(e1, . . . ,en,u1, . . . ,um)�U∪U1 . . .∪Un∪{u1, ...,um}; H] H1 . . .] Hn]{u1}

Fig. 13. Well-Formed Methods and Progress Inference Rules for Values & Standard Expressions.

while the hot set of a receive expression is forced to be the set containing the subject of
the expression (rule Receive�).

We have two rules for the receiveS expressions. If the body of the receiveS expres-
sion has an empty hot set, then there are no restrictions on the possible channels used
in it (rule ReceiveSA�). Instead, if {x} is the hot set of the body of a receiveS(x) , then
we must require that no other channel is used in this body (rule ReceiveS�), as the
following example shows.

Example 4.3. Take the following processes P2 and P3:

P2 = connect c 0 s 0{connect c 1 s 1{c 1.sendS(c 0)}}
P3 = connect c 0 s 0{connect c 1s 1{c 1.receiveS(x){x .receive ;

connect c 2 s 2{c 2.sendS(c 0)}}}}

Progress Inference Rules for Communication Expressions

Conn�

e �U; H H ⊆ {a}
connect a s {e}�U \{a}; /0

Send�

e �U; H
u .send(e)�U∪{u}; H

Receive�

u .receive �{u}; {u}

SendS�

u .sendS(u ′)�{u , u ′}; {u}

ReceiveS�

e �{x}; {x}
u .receiveS(x){e}�{u}; {u}

ReceiveSA�

e �U; /0

u .receiveS(x){e}�U \{x}∪{u}; {u}

SendIf�
e �U; H e i �Ui; Hi i ∈ {1,2}

u .sendIf (e){e1 }{e2 }�U∪U1∪U2∪{u}; H] H1] H2

ReceiveIf�
e i �Ui; Hi i ∈ {1,2}

u .receiveIf {e1 }{e2 }�U1∪U2∪{u}; H1] H2]{u}

SendWhile�

e � /0; /0 e ′�U; H U ⊆ {u}
u .sendWhile(e){e ′}�{u}; H

ReceiveWhile�

e �U; H U ⊆ {u}
u .receiveWhile{e}�{u}; {u}

Fig. 14. Progress Inference Rules for Communication Expressions.

where s 0 = begin.?int .end and s 1 = begin.!(?int .end).end and s 2 = begin.!(!int .end).end.
The process P2 |P3 starting from an empty heap reduces to:

k+
0 .receive ;connect c 2 s 2{c 2.sendS(k−0)}, [k+

0 7→ ε, k0
− 7→ ε]

which is stuck. But also the original program does agree neither with rule ReceiveS�

nor with rule ReceiveSA�. In fact in this case {x} and {c 0} are respectively the hot set
and the set of used channels of the receiveS expression body.

This example shows also that two live channels with the same name and opposite
polarities can occur in the same thread.

The following example shows that some care must be taken also in handling the
sendS expressions, that can as well destroy progress. We avoid this by forcing the hot
sets of sendS expressions to contain their subjects.

Example 4.4. Let’s consider the following processes P4 and P5:

P4 = connect c 0 s 0{connect c 1 s 1{c 0.sendS(c 1)}}
P5 = connect c 0 s 0{connect c 1 s 1{c 1.receive};c 0.receiveS(x){x .send(3)}}

where s 0 = begin.!(!int .end).end and s 1 = begin.!int .end. Then P4 |P5, starting from
an empty heap, reduces to

k−1 .receive ;k−0 .receiveS(x){x .send(3)}, [k+
0 7→ k1

+, k 0
− 7→ ε, k 1

+ 7→ ε, k1
− 7→ ε]

which is stuck. Note that P4 cannot be typed since SendS� requires c0 as hot set.

The rules SendWhile� and ReceiveWhile� are justified by comparing them with
the typing rules SendWhile and ReceiveWhile (see Fig. 8) and taking into account that
the set of used channels must be a subset of the domain of the session environment.

According to the reduction rule Meth→ a method call corresponds to the replace-
ment of the method body for the call statement. So the used channels of the call can be
identified with its live channel parameters. A method can have a non-empty hot set if its
body contains critical expressions: in this case we convene the hot channel to be the first
channel parameter. A method tm (t̃ x̃ , ρ̃ ỹ) {e} is cold if it is well-formed according
to rule MCold� (i.e. if the hot set of its body is empty) and hot if it is well-formed
according rule MHot�, i.e. if the hot set of its body is {y 1}. We add this information to
the method type by decorating the arrow respectively by 	 and ⊕, i.e. we get t̃ , ρ̃

	→ t

and t̃ , ρ̃
⊕→ t . The subject of a hot method call is the actual parameter which replaces

the formal parameter y 1.
A last remark concerns rule Spawn�, in which we require the hot set be preserved

in the spawned expression. Referring to Example 4.1, let P′1 be the process obtained by
replacing c 0.receive ;c 1.send(3) with spawn{c 0.receive ;c 1.send(3)} in P1. Then P′1
could be typed if in rule Spawn� the hot set of the conclusion would be the empty set,
but also P0 |P′1 leads to a deadlock.

We can now formally define the notion of critical expression.

Definition 4.5. We say that an expression e is critical if it is either a receive , receiveS ,
receiveIf , sendS , receiveWhile expression or it is a hot method call. If e is a critical
expression, we denote by sub(e) its subject. A critical expression is live if its subject is
a live channel.

In the remaining of the present section we will show that the above rules assure the
progress property. Obviously we must consider computations whose starting process is
well-typed and closed.

We say that a process P is initial if P = ∏1≤i≤n e i, all e i are user expressions and
/0; /0 ` P, [] and e i � /0; /0 (1 ≤ i ≤ n).

The following two lemmas can be easily proved by induction on derivations.
A direct subexpression of e is a subexpression of e which does not occur in the

body of a connect or receiveS .

Lemma 4.6. Let e �U; H .

1. If H = /0, then there are no critical direct subexpressions of e .
2. If H = {u}, then all critical direct subexpressions of e have u as subject.
3. All critical and live subexpressions of e are direct subexpressions of e .

We use ϕ to range over t , (η), 〈ρ,ρ′〉, and 〈π〉∗ and we define:

ϕ̂ =


t if ϕ = t ,

η if ϕ = (η),
bool otherwise.

By |ρ| we denote the number of symbols which occur in ρ.

Lemma 4.7. Assume /0; /0 ` P, [] and P0, []→→ P,h. Then there are Γ, Σ such that Γ;Σ `
P : thread , and Γ;Σ ` h, and

1. ended(Σ) and
2. if kp ∈ cored(Σ), then one of the following conditions holds:

– Σ(kp) = Σ(k p̄);
– |Σ(kp)|> |Σ(k p̄)| and Σ(kp) =?ϕψ and h = h′ :: [kp 7→ v : ṽ] and Γ; /0 ` v : ϕ̂;
– |Σ(k p̄)|> |Σ(kp)| and Σ(k p̄) =?ϕψ and h = h′ :: [k p̄ 7→ v : ṽ] and Γ; /0 ` v : ϕ̂;
– k p̄ /∈ dom(Σ) and k p̄ ∈ ranc(h).

A last definition is handy for taking into account the order in which expressions are
reduced.

Definition 4.8. Let e be an expression and e 1, e 2 be two subexpressions of e . We say
that e 1 precedes e 2 in e if, for some contexts C[−], E[−] and C′[−] we have e = C[e ′]
and e ′ = E[e 1] = C′[e 2].

Notice that the each expression precedes itself since we can choose all contexts as
the empty one.

Recall that, according to our notational conventions, live channels are denoted by
kp. In the following we convene that the fresh live channels created reducing a thread
take successive numbers according to the order of creation, i.e. they are named k0,
k1, This means that if P,h →→ Q,h′ →→ R,h′′ and k i is a channel created in the
reduction P,h →→ Q,h′, and k j is a channel created in the reduction Q,h′ →→ R,h′′,
then i < j.

The following lemma relating the order of channel creation with their occurrences
as hot sets is the key of our progress proof.

Lemma 4.9. Let P0 be initial and P0, []→→ P,h. Then

1. If e 1 precedes e 2 in P and e 1 is a live critical expression and sub(e 1) = kp
i , then

for all live channels k
q
j occurring in e 2 either i > j or i = j and p = q.

2. If a live channel kp
j is in the queue associated to a channel k

q
i in h, then i > j.

Proof. By induction on the reduction. The induction step is by cases on the last reduc-
tion rule. We give the most interesting cases.
Case Connect→: If the last applied rule was Connect→, then the last step of the reduc-
tion was of the form:

E1[connect c s{e 1}] |E2[connect c s{e 2}] |P′, h
−→ E1[e 1[k

+
i/c]] |E2[e 2[k

−
i/c]] |P′, h :: [k i 7→ ε]

for some P′, where i is the highest index among those occurring in P, h. The only new
channels in P are k p

i, where i is now the highest index and occurs only in subexpressions
of e l [k

p
i/c] (l = 1,2). All expressions that were preceded by e l are now preceded by

subexpressions of e l [k
p
i/c] (l = 1,2). Since the hot set of the connect expression has been

inferred by rule Conn�, then by Lemmas 4.6(2) and 4.6(3), all live critical expressions
inside e l [k

p
i/c] must have k p

i as subject. From this, and induction hypothesis, Point (1)
follows immediately. Point (2) is trivial by induction hypothesis.
Case ReceiveSS→: If the last applied rule was ReceiveSS→, then the last step of the
reduction was of the form:

E[k p
i .receiveS(x){e}],h :: [k p

i 7→ k
q
j : ṽ]−→ e [k

q
j/x] | E[null],h :: [k p

i 7→ ṽ].

Note that Point (1) holds between subexpressions of E[null] by induction hypothesis.
As for e [k

p
j/x] we distinguish two cases.

(a) If the hot set of receiveS expression has been inferred by rule ReceiveSA�, then
by Lemma 4.6(1) in e [k

p
j/x] there are no live and critical subexpressions and Point

(1) holds trivially.
(b) If the hot set of receiveS expression has been inferred by rule ReceiveS�, then only

the channel k p
j can be live in e [k

p
j/x]. Thus Point (1) follows immediately.

In both cases Point (2) is trivial by induction hypothesis.
Case Meth→: If the last applied rule was Meth→ and the method has at least one live
channel has parameter, then the last step in the reduction was of the form:

E[o .m(ṽ ,kp
i , k̃)] |P′,h −→ E[e [o/this][ṽ/x̃][k

p
i/y 1][k̃/ỹ]] |P′,h

where h(o) = (C, . . .) and mbody(m ,C) = (x̃ ,y 1, ỹ , e). The more interesting case is
when the hot set was inferred by rule MHot�. By definition o .m(ṽ ,kp

i , k̃) precedes all
expressions in E[−] and therefore, by induction hypothesis, the index i of its subject is
greater than the index of all live channels occurring in expressions in E[−]. By Lemma
4.6(2) and rule MHot� all critical expressions in e have y 1 as subject, that is replaced
by kp

i . Moreover note that all live channels k
q
j with i 6= j replacing the formal param-

eters in e [o/this][ṽ/x̃][k
p
i/y 1][k̃/ỹ] occur in the hot method call and then, by induction

hypothesis, j ≤ i. Point (1) follows then immediately. Point (2) is trivial.
Case Spawn→: If the last applied rule was Spawn→, then the last step in the reduction
was of the form:

E[spawn{ e }],h −→ E[null] |e ,h

and Points (1) and (2) follow immediately by induction hypothesis.

We conclude now with the desired progress theorem.

Theorem 4.10 (Progress). Assume P0 is initial and it satisfies the progress inference
rules. Then P0 has the progress property.

Proof. If P0 is initial we have /0; /0 ` P0; []. Assume now that P0, [] →→ P,h. By the
subject reduction property we have Γ; Σ ` P : thread and Γ; Σ ` h for some Γ,Σ.

Suppose P≡NullExc |Q or P≡E[connect c s{e}] |Q. Then the proof is immediate.
Also P ≡ e |Q with e ,h −→ e ′,h′ is easy, since we get P,h −→ e ′ |Q,h′.

The only interesting case is P ≡ V |Q, where V is a parallel of values and Q is
a parallel of evaluation contexts containing irreducible session expressions. Note that
an irreducible process can only have a receiving expression in the evaluation context.
Let Q ≡ ∏1≤l≤n El [e l]. Let k i be the live channel name with the higher index which
occurs in P. By Lemma 4.9(1) a receiving expression e r having k p

i as subject must then
be in evaluation position of some thread Er[e r] of P and so there must be a statement
kp

i :?ϕψ ∈ Σ by Lemmas 3.5 and A.3. By Lemma 4.7(2) then:

(a) either h = h′ :: [kp
i 7→ v : ṽ] and Γ; /0 ` v : ϕ̂ , so the process cannot be stuck on a

receiving expression on kp
i ,

(b) or there must be a statement k p̄
i : !ϕψ ∈ Σ. This implies that that there must be a

sending subexpression e ′s (sending a value of type ϕ̂) of some e s (1 ≤ s ≤ n) with
subject k p̄

i that, by Lemma 4.9, cannot be blocked by any receiving expression,
except possibly a receiving expression with subject kp

i itself preceding e ′s in e s.
This is impossible by Lemma 4.9(1).

Acknowlegments The authors are indebted to Sophia Drossopoulou who first suggested
to explore asynchronous communication rules for sessions in object oriented languages.

References

1. G. Bierman, M. Parkinson, and A. Pitts. MJ: An Imperative Core Calculus for Java and Java
with Effects. Technical Report 563, Univ. of Cambridge Computer Laboratory, 2003.

2. E. Bonelli, A. Compagnoni, and E. Gunter. Correspondence Assertions for Process Synchro-
nization in Concurrent Communications. Journal of Functional Programming, 15(2):219–
248, 2005.

3. M. Carbone, K. Honda, and N. Yoshida. A Theoretical Basis of Communication-centered
Concurrent Programming. Web Services Choreography Working Group mailing list, to ap-
pear as a WS-CDL working report.

4. M. Carbone, K. Honda, and N. Yoshida. Structured Communication-Centred Programming
for Web Services. In ESOP’07, LNCS. Springer-Verlag, 2007. To appear.

5. M. Dezani-Ciancaglini, S. Drossopoulou, E. Giachino, and N. Yoshida. Bounded Session
Types for Object-Oriented Languages. http://www.di.unito.it/ dezani/papers/ddgy.pdf, 2007.

6. M. Dezani-Ciancaglini, D. Mostrous, N. Yoshida, and S. Drossopoulou. Session Types for
Object-Oriented Languages. In D. Thomas, editor, ECOOP’06, volume 4067 of LNCS, pages
328–352. Springer-Verlag, 2006.

7. M. Dezani-Ciancaglini, N. Yoshida, A. Ahern, and S. Drossopoulou. A Distributed Object
Oriented Language with Session Types. In R. D. Nicola and D. Sangiorgi, editors, TGC’05,
volume 3705 of LNCS, pages 299–318. Springer-Verlag, 2005.

8. S. Drossopoulou. Advanced Issues in Object Oriented Languages Course Notes.
http://www.doc.ic.ac.uk/˜scd/Teaching/AdvOO.html.

9. M. Fähndrich, M. Aiken, C. Hawblitzel, O. Hodson, G. C. Hunt, J. R. Larus, , and S. Levi.
Language Support for Fast and Reliable Message-based Communication in Singularity OS.
In W. Zwaenepoel, editor, EuroSys2006, ACM SIGOPS, pages 177–190. ACM Press, 2006.

10. P. Garralda, A. Compagnoni, and M. Dezani-Ciancaglini. BASS: Boxed Ambients with Safe
Sessions. In M. Maher, editor, PPDP’06, pages 61–72. ACM Press, 2006.

11. S. Gay and M. Hole. Subtyping for Session Types in the Pi-Calculus. Acta Informatica,
42(2/3):191–225, 2005.

12. S. Gay and V. T. Vasconcelos. A New Approach to Functional Session Types, 2006.
http://www.di.fc.ul.pt/ vv/papers/gay.vasconcelos:new-functional-sessions.pdf.

13. S. Gay, V. T. Vasconcelos, and A. Ravara. Session Types for Inter-Process Communication.
TR 2003–133, Department of Computing, University of Glasgow, 2003.

14. K. Honda. Types for Dyadic Interaction. In E. Best, editor, CONCUR’93, volume 715 of
LNCS, pages 509–523. Springer-Verlag, 1993.

15. K. Honda. Composing Processes. In G. L. Steele, editor, POPL’96, pages 344–357. ACM
Press, 1996.

16. K. Honda, V. T. Vasconcelos, and M. Kubo. Language Primitives and Type Disciplines for
Structured Communication-based Programming. In C. Hankin, editor, ESOP’98, volume
1381 of LNCS, pages 22–138. Springer-Verlag, 1998.

17. K. Honda, N. Yoshida, and M. Carbone. Web Services, Mobile Processes and Types. EATCS
Bulletin, 2007. To appear.

18. A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight Java: a Minimal Core Calculus for
Java and GJ. ACM TOPLAS, 23(3):396–450, 2001.

19. S. Microsystems Inc. The Java Tutorial: All About Sockets.
http://java.sun.com/docs/books/tutorial/networking/sockets/.

20. S. Microsystems Inc. New IO APIs. http://java.sun.com/j2se/1.4.2/docs/guide/nio/index.html.
21. R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes, Parts I and II. Infor-

mation and Computation, 100(1), 1992.
22. M. Neubauer and P. Thiemann. Session Types for Asynchronous Communication. Univer-

sität Freiburg, 2004.
23. B. C. Pierce. Types and Programming Languages. MIT Press, 2002.
24. S. Sparkes. Conversation with Steve Ross-Talbot. ACM Queue, 4(2):14–23, 2006.
25. K. Takeuchi, K. Honda, and M. Kubo. An Interaction-based Language and its Typing Sys-

tem. In C. Halatsis, D. Maritsas, G. Philokyprou, and S. Theodoridis, editors, PARLE’94,
volume 817 of LNCS, pages 398–413. Springer-Verlag, 1994.

26. A. Vallecillo, V. T. Vasconcelos, and A. Ravara. Typing the Behavior of Objects and Com-
ponents using Session Types. In A. Brogi and J.-M. Jacquet, editors, FOCLASA’02, volume
68(3) of ENTCS, pages 439–456. Elsevier, 2002.

27. V. T. Vasconcelos, S. Gay, and A. Ravara. Typechecking a Multithreaded Functional Lan-
guage with Session Types. Theorical Computer Science, 368(1-2):64–87, 2006.

28. Web Services Choreography Working Group. Web Services Choreography Description Lan-
guage. http://www.w3.org/2002/ws/chor/.

29. N. Yoshida and V. T. Vasconcelos. Language Primitives and Type Disciplines for Structured
Communication-based Programming Revisited. In SecRet’06, ENTCS. Elsevier, 2007. To
appear.

A Proof of Subject Reduction

Lemma A.1. 1. Σ1 � Σ′1, and Σ′1 ◦Σ2 defined, imply Σ1 ◦Σ2 defined, and Σ1 ◦Σ2 �
Σ′1 ◦Σ2 .

2. Σ∪Σ′ ` ok and /0 � Σ′ imply Σ � Σ∪Σ′.

Proof. Easy from Definition 3.2.

Lemma A.2 (Generation for Standard Expressions).
1. Γ;Σ ` x : t implies /0 � Σ and x : t ′∈ Γ for some t ′<: t .
2. Γ;Σ ` c : t implies /0 � Σ and t is a shared session type.
3. Γ;Σ ` null : t implies /0 � Σ.
4. Γ;Σ ` v : t with v ∈ {true, false} implies /0 � Σ and t = bool .
5. Γ;Σ ` o : t implies /0 � Σ and o :C∈ Γ for some C<: t .
6. Γ;Σ ` NullExc : t implies /0 � Σ.
7. Γ;Σ ` this : t implies /0 � Σ and this :C ∈ Γ for some C <: t .
8. Γ;Σ ` e 1;e 2 : t implies Σ = Σ1 ◦Σ2, and t = t 2 and Γ;Σi ` e i : t i for some Σi, t i

(i ∈ {1,2}).
9. Γ;Σ ` e .f := e ′ : t implies Σ = Σ1 ◦ Σ2, and Γ;Σ1 ` e : C and Γ;Σ2 ` e ′ : t with

f t ∈ fields(C) for some Σ1,Σ2,C.
10. Γ;Σ ` e .f : t implies Γ;Σ ` e :C and f t ∈ fields(C) for some C.
11. Γ;Σ ` e .m(e 1, . . . ,e n,u1, . . . ,um) : t (n,m ≥ 0), implies Γ;Σ0 ` e :C, and

Γ;Σi ` e i : t i for 1 ≤ i ≤ n, and Σ0 ◦Σ1 . . .◦Σn ◦{u1 :ρ1, . . . ,um :ρm} � Σ and
mtype(m ,C) = t 1, . . . , t n,ρ1, . . . ,ρm → t , for some Σ0,Σi, t i,u j,ρ j,C (1 ≤ i ≤ n,
1 ≤ j ≤ m).

12. Γ;Σ ` new C : t implies /0 � Σ and C<: t .
13. Γ;Σ ` new (s ,s) : t implies /0 � Σ and (s ,s)<: t .
14. Γ;Σ ` spawn{ e } : t implies ended(Σ′), Σ′ � Σ, t = Object and Γ;Σ′ ` e : t for

some Σ′, t ′.

Proof. By induction on typing derivations. The inductive step is by case analysis over
the shape of the expression being typed, and then over the last rule applied. For all points
the proof is non trivial only in the cases in which the last applied rule is a non-structural
one. We just show one paradigmatic case of the inductive step.

(14) If the expression being typed has the shape spawn{ e }, let’s consider the case
in which the last applied rule is WeakES, the other cases are similar. Then

Γ;Σ ` spawn{ e } : t
Γ;Σ,u :ε ` spawn{ e } : t

By induction hypothesis there exist Σ′, t ′, such that Σ′ � Σ, and ended(Σ′) and t =
Object and Γ;Σ′ ` e : t ′. Since Σ � Σ,u : ε the property follows immediately by transi-
tivity of � .

Lemma A.3 (Generation for Communication Expressions).
1. Γ;Σ ` connect a s {e} :t implies s = begin.η, and Γ; /0 ` a :begin.η and Γ\a ;Σ,a :

η ` e : t , for some η.
2. Γ;Σ ` u .receive : t implies {u : ?t } � Σ.
3. Γ;Σ ` u .send(e) : t implies t = Object and Γ;Σ′ ` e : t ′ and Σ′ ◦{u : !t ′} � Σ for

some Σ′, t ′.
4. Γ ; Σ ` u .receiveS(x){e} : t implies t = Object and Γ \ x ; Σ′,x :η ` e : t ′ and

ended(Σ′,x :η) and {u : ?(η)}◦Σ′ � Σ for some Σ′, t ′, η 6= ε.end.
5. Γ ; Σ ` u .sendS(u ′) : t implies t = Object and {u ′ : η,u :!(η)} � Σ for some η 6=

ε.end.

6. Γ;Σ ` u .receiveIf {e 1 }{e 2 } : t implies Γ;Σ′,u : ρi ` e i : t (i ∈ {1,2}) and Σ′,u :
?〈ρ1 ,ρ2 〉 � Σ for some Σ′,ρ1 ,ρ2 .

7. Γ;Σ ` u .sendIf (e){e 1 }{e2 } : t implies Γ;Σ1 ` e : bool and Γ;Σ2,u : ρi ` e i : t
(i ∈ {1,2}) and Σ1 ◦Σ2,u :!〈ρ1 ,ρ2 〉 � Σ for some Σ1,Σ2,ρ1 ,ρ2 .

8. Γ;Σ ` u .receiveWhile{e} : t implies Γ;{u : π} ` e : t and {u :?〈π〉∗} � Σ for some
π.

9. Γ;Σ ` u .sendWhile(e){e ′} : t implies Γ; /0 ` e : bool and Γ;{u : π} ` e ′ : t and
{u :!〈π〉∗} � Σ for some π.

Proof. Similar to that of Lemma A.2.

Lemma A.4 (Generation for Threads).
1. Γ;Σ ` e : thread implies Γ;Σ ` e : t for some type t .
2. Γ;Σ ` P1 |P2 : thread implies Σ = Σ1 ∪Σ2, and Γ;Σi ` Pi : thread (i ∈ {1,2}) for

some Σ1, Σ2 .

Proof. All three cases are trivial.

Lemma 3.4 (Preservation of Typing under Structural Equivalence) If Γ;Σ ` P :
thread and P ≡ P′, then Γ;Σ ` P′ : thread .

Proof. By induction on the proof of P ≡ P′. If the proof is obtained by the commu-
tativity or associativity the property follows by easily by Lemmas A.4(2). The case
of composition with a fixed process is trivial. In the case of composition with null, if
Γ; Σ ` P : thread we have immediately Γ; Σ ` P |null : thread .
As for the opposite direction assume Γ; Σ ` P |null : thread . Then there are Σ1,Σ2 such
that Σ = Σ1∪Σ2 and Γ; Σ1 ` P : thread and Γ; Σ2 ` null : thread . By Lemma A.2(3) we
have that /0� Σ2 and then, by Lemma A.1(2), Σ1 � Σ1∪Σ2. By applying Lemma 3.3(2)
to Γ; Σ1 ` P : thread we conclude Γ;Σ1∪Σ2 ` P : thread .

Lemma A.5 (Preservation of Typing under Substitution).
1. If Γ,x : t ; Σ ` e : t ′ and Γ ; /0 ` v : t , then Γ ; Σ ` e [v/x] : t ′.
2. If Γ\u ; Σ ` e : t and kp 6∈ dom(Σ), then Γ ; Σ[kp

/u] ` e [kp
/u] : t .

3. If Γ, this :C ; Σ ` e : t and Γ ; /0 ` o :C, then Γ ; Σ ` e [o/this] : t .

Proof. (1), (2) and (3) are proven by induction on derivations.

Lemma 3.5 (Subderivations) If Γ;Σ ` E[e] : t , then there exist Σ1,Σ2 and t ′ such
that Σ = Σ1 ◦Σ2, and dom(Σ1) = cored(Σ1), and Γ;Σ1 ` e :t ′ and Γ,x : t ′;Σ2 ` E[x]:t ,
where x is a fresh variable in E[−],Γ.

Proof. By induction on E, and using Generation Lemmas. For example, if E = [−];e ′,
then Γ;Σ` e ;e ′ :t implies Σ = Σ1◦Σ2 and Γ;Σ1 ` e :t ′ and Γ;Σ2 ` e ′ :t by Lemma A.2(8).
We conclude Γ,x : t ′;Σ2 ` x ;e ′ : t by rules Var and Seq.

Lemma 3.6 (Context Substitution) If Γ;Σ1 ` e : t ′, and Γ,x : t ′;Σ2 ` E[x] : t , and
Σ1 ◦Σ2 is defined, then Γ;Σ1 ◦Σ2 ` E[e] : t .

Lemma A.6. 1. Let kp 6∈ cored(Σ′) and Σ′ ◦{kp :ρ} � Σ. Then Σ(kp) = ρψ and Σ′ �
Σ[kp 7→ ψ�] for some light ψ.

2. Let {kp :ρ}◦Σ′ � Σ. Then Σ(kp) = ρψ and Σ′ � Σ[kp 7→ ψ�] for some ψ.

Proof. All cases are easy. In case (1) note that Σ′(kp) can be either undefined or ε.

Lemma A.7. Let e ,h−→ e ′,h′ via an elementary expression reduction. Then Γ;Σ ` e :
t and Γ; Σ ` h imply Γ′;Σ′ ` e ′ : t and Γ′; Σ′ ` h′, where Γ ⊆ Γ′ and 〈Σ′;h′〉 v 〈Σ;h〉.

Proof. The proof is by cases on the kind of expression reduction. We consider two
paradigmatic cases.
Rule SendS→.
Let e = kp.send(v) and h = h′′ :: [k p̄ 7→ ṽ ′]. We have:

kp.send(v),h′′ :: [k p̄ 7→ ṽ ′]−→ null,h′′ :: [k p̄ 7→ ṽ ′ : v]

By Lemmas A.3(3) and A.2(1)-(4) we have t = Object and for some Σ′′, t ′:
1) Γ;Σ′′ ` v : t ′,
2) /0 � Σ′′,
3) Σ′′ ◦{kp :!t ′} � Σ.
By 2), 3), and Lemma A.6(1) we get:

4) Σ(kp) =!t ′ψ with ψ light,
5) /0 � Σ[kp 7→ ψ�].
Let Γ′ = Γ, Σ′ = Σ[kp 7→ ψ�] and h′ = h′′ :: [k p̄ 7→ ṽ ′ : v].
By 5), rule Null and Lemma 3.3(1):

6) Γ; Σ′ ` null : t .
By Definition 3.1 A(Σ′;h′) trivially holds, since cored(Σ′) = /0 and dom(Σ′) =
dom(Σ). Moreover Σ(kp) =!t ′ψ and Σ(kp) = ψ� imply 〈Σ′;h′〉 v 〈Σ;h〉.

Rule SendSS→.
Let e = kp.send(kq

0) and h = h′′ :: [k p̄ 7→ ṽ]. We have:

kp.sendS(kq
0),h

′′ :: [k p̄ 7→ ṽ]−→ null,h′′ :: [k p̄ 7→ ṽ : k
q
0]

By Lemmas A.3(5) we have t = Object and for some η 6= ε.end:
1) {kp :!(η),kq

0 :η} � Σ.
By 1), and Lemma A.6(1) (note that η is ended) we get:

2) Σ(kp) =!(η)ψ with ψ light,
3) Σ(kq

0) = η,
4) /0 � Σ\k

q
0[k

p 7→ ψ�].
Let Γ′ = Γ, Σ′ = Σ\k

q
0[k

p 7→ ψ�] and h′ = h′′ :: [k p̄ 7→ ṽ : k
q
0].

By 4), rule Null and Lemma 3.3(1):
5) Γ; Σ′ ` null : t .
By Definition 3.1 A(Σ′;h′) trivially holds, since cored(Σ′) = /0 and k

q
0 /∈ dom(Σ′).

Lastly we get 〈Σ′;h′〉v 〈Σ;h〉 from Σ(kp)=!t ′ψ and Σ′(kp)= ψ� and k
q
0 ∈ cored(Σ)

(which implies k
q
0 6∈ ranc(h) by A(Σ;h)) and k

q
0 6∈ cored(Σ′) and k

q
0 ∈ ranc(h′) .

It is handy to extend to heaps the concatenation operator defined for running session types
and session environments at page 10.

Definition A.8 (Heap Concatenation). The concatenation of two heaps h and h′ (no-
tation h◦h′) is the minimal heap such that:

– h◦h′(o) = (C, f̃ : ṽ) if h(o) = (C, f̃ : ṽ) and o 6∈ h′;
– h◦h′(o) = (C, f̃ : ṽ) if h′(o) = (C, f̃ : ṽ) and o 6∈ h;
– c ∈ h◦h′ if c ∈ h and c 6∈ h′;
– c ∈ h◦h′ if c ∈ h′ and c 6∈ h;
– h◦h′(kp) = ṽ : ṽ ′ if h(kp) = ṽ and h′(kp) = ṽ ′;
– h◦h′(kp) = ṽ if h(kp) = ṽ and kp 6∈ h′;
– h◦h′(kp) = ṽ if h′(kp) = ṽ and kp 6∈ h.

From Definitions 3.1, 3.7 and A.8 we can easily show:
Lemma A.9. 1. A(Σ1◦Σ2;h) implies h = h1◦h2 and A(Σ1;h1) and A(Σ2;h2) for some

h1,h2.
2. A(Σ1 ◦Σ2;h1 ◦ h2) and A(Σ1;h1) and 〈Σ1;h1〉 v 〈Σ′1;h′1〉 imply A(Σ′1 ◦Σ2;h′1 ◦ h2)

and 〈Σ1 ◦Σ2;h1 ◦h2〉 v 〈Σ′1 ◦Σ2;h′1 ◦h2〉.

Theorem 3.8 (Subject Reduction).
1. Γ;Σ` e : t and Γ;Σ` h and e ,h−→ e ′,h′ via an expression reduction imply Γ′;Σ′ `

e ′ : t and Γ′;Σ′ ` h′, where Γ ⊆ Γ′ and 〈Σ′;h′〉 v 〈Σ;h〉.
2. Γ;Σ ` e : t and Γ;Σ ` h and e ,h −→ e 1 |e 2,h′ via a thread reduction imply Γ;Σ `

e 1 |e 2 : thread and Γ′;Σ′ ` h′ where 〈Σ′;h′〉 v 〈Σ;h〉.
3. Γ;Σ`P:thread and Γ;Σ` h and P,h−→P′,h′ imply Γ′;Σ′ `P′ :thread and Γ′;Σ′ `

h′ where Γ ⊆ Γ′ and 〈Σ′;h′〉 v[〈Σ;h〉.

Proof. (1) An arbitrary expression reduction is of the shape E[e],h −→ E[e ′],h′ where
e ,h −→ e ′,h′ is an elementary expression reduction. The proof follows from Lemmas
A.7, 3.5, and 3.6 using Lemma A.9.
(2) We consider the case of rule ReceiveSS→, in which we have h = h′′ :: [kp 7→ k

q
0 : ṽ]

and:

E[kp.receiveS(x){e 1}],h′′ :: [kp 7→ k
q
0 : ṽ]−→ e 1[k

q
0/x] | E[null],h′′ :: [kp 7→ ṽ].

By Lemma 3.5 there are Σ1, Σ2, t
′ such that:

1) Σ = Σ1 ◦Σ2,
2) Γ; Σ1 ` kp.receiveS(x){e 1} : t ′,
3) Γ,y : t ′; Σ2 ` E[y] : t .
By Lemma A.3(4) and 2) we get t ′ = Object and

4) Γ\ x ; Σ′1,x :η ` e 1 : t ′′,
5) ended(Σ′1,x :η),
6) {kp :?(η)}◦Σ′1 � Σ1,
for some Σ′1, t

′′,η 6= ε.end.
Notice that A(Σ;h) implies:

7) k
q
0 6∈ dom(Σ)

and then by 1) and 6) we get:
8) k

q
0 6∈ dom(Σ′1) and k

q
0 6∈ dom(Σ2).

1) and 6) imply by Lemma A.1(1)

9) {kp :?(η)}◦Σ′1 ◦Σ2 � Σ

and then by Lemma A.6(2) for some ψ:
10) Σ(kp) =?(η)ψ,
11) Σ′1 ◦Σ2 � Σ[kp 7→ ψ�].
5) implies by definition of ◦:

12) Σ′1 ◦Σ2 = Σ′1∪Σ2
and then using 7), 8) and 11):

13) Σ′1,k
q
0 :η∪Σ2 � Σ[kp 7→ ψ�],kq

0 :η.
Let Γ′ = Γ, Σ′ = Σ[kp 7→ ψ�],kq

0 :η and h′ = h′′ :: [k p̄ 7→ ṽ].
Applying Lemma A.5(2) to 4) and 8) we derive:

14) Γ; Σ′1,k
q
0 :η ` e 1[k

q
0/x] : t ′′.

By rule Null we have Γ; /0 ` null : t ′ and then by 3) and Lemma 3.6 we get:
15) Γ; Σ2 ` E[null] : t .
By applying rules Start and Par to 14) and 15) we derive:

16) Γ;Σ′1,k
q
0 :η∪Σ2 ` e 1[k

q
0/x] |E[null] : thread

which implies by 13) and Lemma 3.3(2):
17) Γ;Σ′ ` e 1[k

q
0/x] |E[null] : thread .

By Definition 3.1 A(Σ′;h′) = A(Σ;h). Lastly we get 〈Σ′;h′〉 v 〈Σ;h〉 from Σ(kp) =
?(η)ψ and Σ′(kp) = ψ� and k

q
0 ∈ ranc(h).

(3) The interesting case is when the reduction is obtained by an application of rule
Connect→:

E1[connect a s{e 1}] |E2[connect a s{e 2}], h
−→ E1[e 1[k

+
/a]] |E2[e 2[k

−
/a]], h :: [k+ 7→ ε] :: [k− 7→ ε] k+,k− 6∈ h

By Lemma A.4(2) and (1) we have for some Σi, t i:
1) Σ = Σ1∪Σ2,
2) Γ; Σi ` Ei[connect u s{e i}] : t i (i = 1,2).
By Lemma 3.5 there are Σ1

i ,Σ
2
i , t

′
i and fresh x i (i = 1,2) such that:

3) Σi = Σ1
i ◦Σ2

i ,
4) Γ; Σ1

i ` connect a s{e i} : t ′i,
5) Γ,x i : t ′i; Σ2

i ` E[x i] : t i.
By Lemma A.3(1) we have for some η:

6) s = begin.η,
7) Γ\a ; Σ1

i , a :ηi ` e i : t ′i,
where η1 = η and η2 = η.
Let Γ′ = Γ, Σ′ = Σ,kp :η,k p̄ :η and h′ = h :: [k+ 7→ ε] :: [k− 7→ ε].
Let now ki stand for k+ if i = 1 and for k− if i = 2. Since the ki are fresh by 7) and
Lemma A.5(2) we have:

8) Γ; Σ1
i , k

i :ηi ` e i[k
i
/a] : t ′i,

and from 5) and 8), by Lemma 3.6:
9) Γ; Σi, k

i :ηi ` Ei[e i[k
i
/a]] : t i.

In fact note that (Σ1
i , k

i : ηi) ◦Σ2
i must be defined since Σ1

i ◦Σ2
i is defined and ki is

fresh. For the same reason (Σ1
i , k

i :ηi)◦Σ2
i = Σi, k

i :ηi. From 9) by rules Start and
Par we get:

10) Γ; Σ′ ` E1[e 1[k
+
/a]] |E2[e 2[k

−
/a]] : thread .

By Definition 3.1 A(Σ;h) implies A(Σ′;h′) since the heaps h and h′ only differ for
[k+ 7→ ε] :: [k− 7→ ε]. Lastly 〈Σ′;h′〉 v[〈Σ;h〉 by the last clause of Definition 3.7(3).

