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Department of Computer Science
University of Illinois at Urbana-Champaign, USA

201 N Goodwin Ave, Urbana, IL 61801
{mhills,grosu}@cs.uiuc.edu

http://fsl.cs.uiuc.edu

Abstract. Rewriting logic provides a powerful, flexible mechanism for
language definition and analysis. This flexibility in design can lead to
problems during analysis, as different designs for the same language fea-
ture can cause drastic differences in analysis performance. This paper
describes some of these design decisions in the context of KOOL, a con-
current, dynamic, object-oriented language. Also described is a general
mechanism used in KOOL to support model checking while still allowing
for ongoing, sometimes major, changes to the language definition.
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1 Introduction

With the increase in multi-core systems, concurrency is becoming a more impor-
tant topic in programming languages and formal methods research. Rewriting
logic [14, 13], an extension of equational logic with support for concurrency,
provides a computational logic for defining, reasoning about, and executing con-
current systems. While these can be fairly simple systems, entire programming
languages, such as object-oriented languages, can be defined as rewrite theories,
allowing tools designed to work with generic rewrite specifications to work with
the defined programming languages as well.

While there has been much work on analysis and verification techniques with
rewriting logic [16, 17, 5, 15], much of this work has not focused on programming
languages, or has used simpler, sometimes trivial, languages. Exceptions to this
include work on program verification for Java [6], Java bytecode in the JVM [7],
and CML [2], a concurrent extension to the ML programming language.

Even with these papers focused on real languages, very little information
is given on why certain design decisions were made. For the language designer
looking to define object-oriented languages using rewriting logic, this is a major
shortcoming. Since even small changes to a rewriting logic definition can have
major impacts on the ability to analyze programs, making appropriate decisions
when defining the language is vitally important. In addition, little information



2 OO Languages and Rewriting Logic: Designing for Performance

is available about specifically object-oriented definitions; while the work on Java
[6] obviously qualifies, the JVM operates at a much lower level, and the model
of computation used by CML, based around the strict functional language ML,
differs from that used by standard object-oriented languages.

In this paper, we have set out to start filling this gap by providing information
on increasing the analysis performance of rewrite logic definitions for object-
oriented languages, specifically in the context of Maude [3, 4], a high-performance
rewriting logic engine. We start in Section 2 by providing a brief introduction
to rewriting logic, showing the relationship between rewriting logic and term
rewriting and explaining the crucial distinction between equations and rules.
Section 3 then provides a brief introduction to KOOL, a concurrent, object-
oriented language that will be the focus of the experiments in this paper.

In Section 4, we highlight the search capabilities of Maude by showing some
examples of its use. Search provides a breadth-first search over a program’s state
space, providing an ability to search for program states matching certain con-
ditions (output of a certain value, safety condition violation) that, due to the
potentially infinite state space of the program, may not be possible with model
checking. Section 5 then discusses model checking of OO programs in rewriting
logic, using the classic dining philosophers problem. To improve the performance
of search and model checking, Section 6 discusses two potential performance im-
provements important in the context of object-oriented languages: auto-boxing
of scalar values for use in a pure object-oriented language, and optimizing mem-
ory access for analysis performance. Section 7 concludes the paper.

2 Rewriting Logic

This section provides a brief introduction to term rewriting and rewriting logic.
Term rewriting is a standard computational model supported by many systems;
rewriting logic [14, 13] organizes term rewriting modulo equations as a complete
logic and serves as a foundation for programming language semantics [17, 18].

2.1 Term Rewriting

Term rewriting is a method of computation that works by progressively changing
(rewriting) a term. This rewriting process is defined by a number of rules –
potentially containing variables – which are each of the form: l → r. A rule can
apply to the entire term being rewritten or to a subterm of the term. First, a
match within the current term is found. This is done by finding a substitution, θ,
from variables to terms such that the left-hand side of the rule, l, matches part
or all of the current term when the variables in l are replaced according to the
substitution. The matched subterm is then replaced by the result of applying
the substitution to the right-hand side of the rule, r. Thus, the part of the
current term matching θ(l) is replaced by θ(r). The rewriting process continues
as long as it is possible to find a subterm, rule, and substitution such that θ(l)
matches the subterm. When no matching subterms are found, the rewriting
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process terminates, with the final term being the result of the computation.
Rewriting, like other methods of computation, can continue forever.

There exist a plethora of term rewriting engines, including ASF [21], Elan [1],
Maude [3, 4], OBJ [8], Stratego [22], and others. Rewriting is also a fundamental
part of existing languages and theorem provers. Term rewriting is inherently
parallel, since non-overlapping parts of a term can be rewritten at the same
time, and thus fits well with current trends in architecture and systems.

2.2 Rewriting Logic

Rewriting logic is a computational logic built upon equational logic which pro-
vides support for concurrency. In equational logic, a number of sorts (types) and
equations are defined. The equations specify which terms are considered to be
equal. All equal terms can then be seen as members of the same equivalence
class of terms, a concept similar to that from the λ calculus with equivalence
classes based on α and β equivalence. Rewriting logic provides rules in addition
to equations, used to transition between equivalence classes of terms. This allows
for concurrency, where different orders of evaluation could lead to non-equivalent
results, such as in the case of data races. The distinction between rules and equa-
tions is crucial for analysis, since terms which are equal according to equational
deduction can all be collapsed into the same analysis state. Rewriting logic is
connected to term rewriting in that all the equations and rules of rewriting logic,
of the form l = r and l ⇒ r, respectively, can be transformed into term rewriting
rules by orienting them properly (necessary because equations can be used for
deduction in either direction), transforming both into l → r. This provides a
means of taking a definition in rewriting logic and a term and ”executing” it.

In this paper we focus on the use of Maude [3, 4], a rewriting logic language
and engine. Beyond the ability to execute a program based on a rewriting logic
definition, Maude provides several capabilities which make it useful for defining
languages and performing formal analysis of programs. Maude allows commuta-
tive and associative operations with identity elements, allowing straight-forward
definitions of language features which make heavy use of sets and lists, such as
sets of classes and methods and lists of computational tasks. Maude’s support
for rewriting logic provides a natural way to model concurrency, with potentially
competing tasks (memory accesses, lock acquisition, etc) defined as rules. Also,
Maude provides built-in support for model checking and breadth-first state space
exploration, which will be explored further starting in Section 4.

3 KOOL

KOOL is a concurrent, dynamic, object-oriented language, loosely inspired by,
but not identical to, the Smalltalk language [9]. KOOL includes support for stan-
dard imperative features, such as assignment, conditionals, and loops with break
and continue. KOOL also includes support for many familiar object-oriented fea-
tures: all values are objects; all operations are carried out via message sends;
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Program P ::= C
∗

E

Class C ::= class X is D
∗

M
∗

end | class X extends X
′

is D
∗

M
∗

end

Decl D ::= var {X,}
+

;

Method M ::= method X is D
∗

S end | method X ({X
′

,}
+

) is D
∗

S end

Expression E ::= X | I | F | B | Ch | Str | (E) | new X | new X ({E,}
+

) |

self | E Xop E
′

| E.X(())
?
| E.X({E,}

+
) | super() |

super.X(())
?
| super.X({E,}

+
) | super({E,}

+
)

Statement S ::= E <- E
′

; | begin D
∗

S end | if E then S else S
′

fi |

if E then S fi | try S catch X S end | throw E ; |

for X <- E to E
′

do S od | while E do S od | break; |

continue; | return; | return E; | S S
′

| E; | assert E; | X: | spawn E ; |

acquire E ; | release E ; | typecase E of Cs
+

(else S)
?

end

Case Cs ::= case X of S

X ∈ Name, I ∈ Integer, F ∈ Float, B ∈ Boolean, Ch ∈ Char, Str ∈ String, Xop ∈ Operator Names

Fig. 1. KOOL Syntax

message sends use dynamic dispatch; single inheritance is used, with a desig-
nated root class named Object; methods are all public, while fields are all pri-
vate outside of the owning object; and scoping is static, yet declaration order for
classes and methods is unimportant. KOOL allows for the run-time inspection of
object types via a typecase construct, and includes support for exceptions with
a standard try/catch mechanism.

3.1 KOOL Syntax

class Factorial is
method Fact(n) is

if n = 0 then return 1;
else return n * self.Fact(n-1);
fi

end
end

console << (new Factorial).Fact(200)

Fig. 2. Recursive Factorial, KOOL

The syntax of KOOL is shown in Figure
1. The lexical definitions of literals are
not included in the figure to limit clutter,
but are standard (for instance, booleans
include both true and false, strings are
surrounded with double quotes and char-
acters with single quotes, etc). Message
sends are specified in a Java-like syntax
except for methods named after opera-
tors, which are always binary and can
be used infix (such as a + b instead of
a.+(b)). Because of this, very few operators are predefined, and operators all
have the same precedence and associativity. Finally, semicolons are used as state-
ment terminators, not separators, and are only needed where the end of a state-
ment may be ambiguous – at the end of an assignment, for instance, or at the
end of each statement inside a branch of a conditional, but not at the end of the
conditional itself, which ends with fi.
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To get a feel for the language, a sample program is shown in Figure 2. A
new class Factorial is defined with a method Fact that calculates the factorial
of the parameter n. After the class definition is the main program expression,
which creates a new object of class Factorial, invokes method Fact with the
parameter 200, and then writes the output to the predefined console object
using the output operation, << (borrowed from C++). This operation invokes
the toString method on its parameter and returns itself as the method result,
allowing chaining of output operations (such as console << "Value = " << 3).������� ������	� 
������
�� ����������������	� ����� 
��		���

��� �������� 
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Fig. 3. KOOL State Infrastructure

3.2 KOOL Semantics

The semantics of KOOL is defined using Maude equations and rules, with the
current program state represented as a ”soup” of sometimes nested terms rep-
resenting the current computation, memory, the environment, locks held, etc. A
visual representation of this term, the state infrastructure, is shown in Figure 3;
state components needed specifically for concurrency are shaded.

eq stmt(if E then S else S’ fi) = exp(E) -> if(S,S’) .
eq val(primBool(true)) -> if(S,S’) = stmt(S) .
eq val(primBool(false)) -> if(S,S’) = stmt(S’) .

crl t(control(k(llookup(L) -> K) CS) TS) mem(Mem) =>
t(control(k(val(V) -> K) CS) TS) mem(Mem)

if V := Mem[L] /\ V =/= undefined .

Fig. 4. Sample KOOL Rules

Figure 4 shows examples
of the equations and rules
which make up the KOOL

semantics. Lists of compu-
tations, called continuations,
are formed using the -> op-
erator, with the head of the
list to the left. The first three
equations (represented with
eq) process a conditional.
The first indicates the value of the guard expression E must be computed before
a branch is selected. The guard is put at the left end of the list, where it will be
computed by rules specific to the type of expression, while the branches S and
S’ are saved for later use by putting them into an if continuation item. The
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second and third equations execute the appropriate branch based on whether the
guard evaluated to true or false. The fourth, a conditional rule (represented
with crl), represents the lookup of a memory location. The rule states that, if
the next computation step in this thread is to look up the value at location L,
and if that value is V (:= binds V to the result of reducing Mem[L], the memory
lookup operation), and if V is not undefined (i.e. L is a properly defined location),
the result of the computation is the value V. CS and TS match the unreferenced
parts of the control and thread state, respectively, while K represents the rest
of the computation in this thread. Note that, since the fourth rule represents a
side-effect, it can only be applied when it is the next computation step in the
thread (it is at the head of the continuation), while the first three, which don’t
involve side-effects, can be applied at any time.

3.3 KOOL Implementation

There is an implementation of KOOL available at our website [11], as well as
a web-based interface to run and analyze KOOL programs such as those pre-
sented here. There is also a companion technical report [10] that explains the
syntax and semantics in detail. When run, a KOOL program is first parsed us-
ing SDF [21], which we have found better supports the complexities of real
programming-language syntax than the parser included with Maude. SDF gen-
erates an abstract syntax tree that is then turned into Maude “prefix” form
using a custom C program. The runkool program coordinates this process and
handles the invocation of Maude, running in different modes (execution, search,
etc.) based on command-line parameters and returning the program output.

4 Breadth-First Search in KOOL

class ThreadGame is
var x;

method ThreadGame is
x <- 1;

end

method Add is
while true do x <- x + x; od

end

method Run is
spawn(self.Add); spawn(self.Add);
console << x;

end
end
(new ThreadGame).Run

Fig. 5. Thread Game, KOOL

The thread game is a concurrency problem
defined as follows: take a single variable, say
x, initialized to 1. In two threads, repeat the
assignment x <- x + x forever. In another
thread, output the value of x. What values
is it possible to output? As has been proved
[19], it is possible to output any natural num-
ber ≥ 1. In KOOL, spawn is used to execute an
arbitrary expression, often a message send,
in a new thread. Threads are the main unit
of concurrency in KOOL, with each thread
containing its own execution context (current
class, environment, etc), and all threads ac-
cessing a shared store. A KOOL version of the
thread game is shown in Figure 5.

To check to see if a specific value can be output, one could run the program.
Given enough runs, the value of interest may be generated, but this is highly
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inefficient. Model checking will not help here either, since this is an infinite state
system, and the value may not be along the first (depth-first) search path chosen.
Maude’s search capability can be used, though, either to enumerate possible
values (obviously not all possible values here) or to search for a specific value.
For instance, searching for 10 yields a result, indicating that 10 is one of the
possible values; a sample run showing this is presented in Figure 6.

./runkool examples/ThreadGame.kool -t 10

... term omitted ...
Solution 1 (state 2294)
states: 3381 rewrites: 310427 in 14388ms cpu
SL:[StringList] --> "10"

Fig. 6. Thread Game Sample Run

Another example of the useful-
ness of search is illustrated by the
program in Figure 7. This program
is finite state, so all possible results
can be enumerated. When search is
used here, requesting all possible fi-
nal results, three are returned: both
100 and 200 can be output, and an
assertion can be thrown if the thread

running Changer sets the value to 200 between the time the value is set to 100
and the time the next line, with the assert statement, is executed.

class WrappedInt is
var wval;

method WrappedInt(n) is
wval <- n;

end

method setWVal(n) is
wval <- n;

end

method toString is
return wval.toString();

end

method =(n) is
return wval = n;

end
end

class Changer is
method Run(n) is

n.setWVal(200);
end

end

class Main is
method Run is

var x;
x <- new WrappedInt(5);
spawn ((new Changer).Run(x));
x.setWVal(100);
assert(x = 100);
console << x;

end
end

./runkool examples/Spawn7.kool -s

... term and some stats omitted ...
Solution 1 (state 1964)
SL:[StringList] --> "100"

Solution 2 (state 2430)
SL:[StringList] --> "200"

Solution 3 (state 2490)
SL:[StringList] --> "AssertException thrown: Assertion triggered"

Fig. 7. Assertions and Search in KOOL
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class Fork is
end

class Philosopher is
method Run(id,left,right) is

while (true) do
hungry:
acquire left;
acquire right;

eating:
release left;
release right;

od
end

end

class Main is
var l1, l2;
var p1, p2;

method Run is
l1 <- new Fork;
l2 <- new Fork;

p1 <- new Philosopher;
p2 <- new Philosopher;

spawn(p1.Run(1,l1,l2));
spawn(p2.Run(2,l2,l1));

end
end

(new Main).Run

Fig. 8. Dining Philosophers in KOOL

5 Model Checking KOOL

A canonical example for concurrency is the Dining Philosophers problem. A
simple version of this problem, with just two philosophers, is shown written in
KOOL in Figure 8. In KOOL, locks can be acquired on any object using acquire.
Here we create a Fork class with no methods or properties; we can create objects
of this class and then acquire locks on the objects, representing taking a fork. The
Philosopher class just contains a single method, Run, which enters an infinite
loop that cycles through two states: hungry (wants to acquire forks) and eating
(has acquired forks). Once a philosopher eats, it releases the locks using release,
putting down the forks. The Main class also contains a Run method; this method
creates the necessary forks and philosophers, and then uses the spawn statement
to run each philosopher in its own thread.

We would like to determine if this program can deadlock. Using Maude’s
model checking capabilities, we can write properties over the program state
which can then be used in LTL formulae. For instance, we could create a prop-
erty named deadlocked, and then write a formula like ”[]∽deadlocked” (it’s
always the case that we are not deadlocked). A problem with this is that the
program state is very complex; it contains all current class definitions, run-
time information for each thread, global information for the program (such as
memory), and other bookkeeping information. It isn’t always obvious how to
properly write a property using this information. Here, for instance, we would
need to detect when we are trying to acquire a fork by looking into the compu-
tation directly, meaning we would need to base the property on the definition
of lock acquisition, and formulate this in terms of acquiring a pair of locks. An-
other problem is that, if we change the state definition as we are modifying the
language design, we risk having to change defined properties to match the new
state, breaking the modularity of language definitions. A possible solution in this
case is to use Maude’s search capabilities, described in Section 4, but this is not
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a general solution, since other properties of interest (starvation, for instance)
cannot be checked in this way.

A solution that resolves these problems is to use label statements, shown in
Figure 8 as identifiers followed by a colon (such as hungry: or eating:), to assist
in model checking. This idea is used by other model checkers as well – SPIN [12],
for instance, also uses labels. The language semantics then include a rule (not an
equation, since this takes us into a non-equivalent state which should be detected
during verification) which sets a component of the thread state to the value of the
label when the label is encountered. This allows properties to be stated directly
in terms of the labels – here, for instance, freedom from deadlock means that
upon reaching the hungry label it is always the case that the thread eventually
reaches the eating label. This requires much less detailed knowledge about the
state, since only label names, included in the program source, need to be known.
It also insulates model checking from state changes, as long as the part of the
state dealing with labels is not modified. The tradeoff is a potential degradation
of performance, since the label semantics are defined in terms of rules, and rule
application adds additional states to the state space. In cases where additional
performance is needed, it is still possible to write predicates directly against the
state, avoiding the use of labels. Again, though, these predicates may be quite
complicated, and may require ongoing maintenance as the language evolves.

Using this notion of progress for deadlock freedom, the appropriate LTL
formula for the two philosopher problem is then:

progress(2,hungry,eating)∨progress(3,hungry,eating)

where 2 and 3 are the thread IDs and progress(n,l1,l2) means that thread n

eventually reaches l2 whenever it reaches l1. Thread IDs are needed since LTL
lacks quantification – i.e. there is no way to say that, ∀n.progress(n,l1,l2).
The thread running first has ID 1, and each spawn adds 1 to this.

while true do
hungry:
if (id % 2 = 0) then

acquire left;
acquire right;

else
acquire right;
acquire left;

fi

eating:
release left;
release right;

od

Fig. 9. Dining Philoso-
phers, Deadlock-Free

Running the model checker with this program and
formula, we will get a counterexample, since it is in
fact possible to deadlock (when the first philosopher
grabs the first fork and the second grabs the second).
Times for the model checker to find counterexam-
ples, by philosopher count, are given in Figure 12. A
fix to the code in the Philosopher class Run method
is shown in Figure 9, with ”odd” philosophers taking
the forks in one order and ”even” philosophers in the
other. Unfortunately, due to the initial language de-
sign, which focused more on executability and less on
verification, it is not possible to verify this fix with the
model checker – it will run for a time and then crash
due to resource exhaustion. This will be addressed in
Section 6, where modifications to the design to im-
prove verification performance will be explored. With

these modifications in place, the model checker will return true given the LTL
formula for deadlock freedom shown above.
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6 Tuning the Model

The ability to model check and search programs using language definitions in
rewriting logic is very closely tied to the performance of the definition. There
are two general classes of performance improvement: improvements that im-
pact execution speed, and improvements that impact analysis speed, which may
even slightly reduce typical execution speed. Two examples of improvements are
presented here, both of which have appeared in various forms in programming
languages but not, to our knowledge, in rewriting logic language specifications.
First, auto-boxing is introduced to the language. This allows operations on scalar
types, which are represented in KOOL as objects, to be performed directly on
the underlying values for many operations (standard arithmetic operations, for
instance), while still allowing method calls to be used on an object representa-
tion of the scalar where needed. Although mainly useful in dynamic languages
like KOOL, this technique can also be used to perform automatic coercions be-
tween scalar and object types in statically-typed languages. Second, memory is
segregated into two pools, a shared and an unshared pool. Rules are used when
accessing or modifying memory in the shared pool, since these changes could
lead to data races, while equations are used for equivalent operations on the
unshared pool. This follows the intuition that changes to unshared memory lo-
cations in a thread cannot cause races. This change may or may not improve
execution performance, but has a dramatic impact on analysis performance.

6.1 Auto-boxing

In KOOL, all values, including those typically represented as scalars in languages
like Java, are objects. This means that a number like 5 is represented as an ob-
ject, and an expression like 5 + 7 is represented as a method call. Primitive
operations are defined which extract the primitive values ”hidden” in the ob-
jects (i.e. the actual number 5, versus the object that represents it), perform
the operation on these primitive values, and create a new object representing
the result. This provides a ”pure” object-oriented model, but requires additional
overhead, including additional accesses to memory to retrieve the primitive val-
ues and create the new object for the result. Since memory accesses are modeled
as rules in the definition, this also increases model checking and search time by
increasing the number of states that need to be checked.

To improve performance, auto-boxing can be added to KOOL. This allows
values such as 5 to be represented as scalars – i.e. directly as the primitive values.
A number of operations can then be performed directly on the primitive repre-
sentation, without having to go through the additional steps described above.
For numbers, this includes arithmetic and logical operations, which are some of
the most common operations applied to these values. Operations which cannot
be performed directly can still be treated as message sends; the scalar value
is automatically converted to an object representing the same value, which can
then act as a message target to handle the method. Since boxing can occur auto-
matically, by default values, including those generated as the result of primitive
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operations, are left un-boxed, in scalar form. This all happens behind the scenes,
allowing KOOL programs to remain unchanged.

eq k(exp(f(F)) -> K) = k(newPrimFloat(primFloat(F)) -> K) .
----------------------------------------------------------------------------------

eq k(exp(f(F)) -> K) = k(val(fv(F)) -> K) .
eq k(val(fv(F),fv(F’)) -> toInvoke(n(’+)) -> K) = k(val(fv(F + F’)) -> K) .
eq k(val(fv(F),Vl) -> toInvoke(Xm) -> K) =

k(newPrimFloat(primFloat(F)) -> boxWList(Vl) -> toInvoke(Xm) -> K) [owise] .

Fig. 10. Example Definition Changes, Auto-boxing

An example of the rule changes to enable auto-boxing is found in Figure 10.
The first equation is without auto-boxing. Here, when a floating point number F
is encountered, a new floating point object of class Float is created to represent
F using newPrimFloat. Any operations on this object, such as adding two floats,
will involve a message send. The next three rules are with auto-boxing enabled.
In the second equation, instead of creating a new object for F, we return a scalar
value. The third equation shows an example of an intercepted method call. When
a method is called, the target and all arguments are evaluated, with the method
name held in the toInvoke continuation item. Here, + has been invoked with
a target and argument that both evaluate to scalar float values, so we will use
the built-in float + operation instead of requiring a method call. In the fourth
equation, the boxing step is shown – here, a method outside of those handled
directly on scalars has been called with the floating-point scalar value as the
target, in which case a new object will be created just like in the first equation
([owise] will ensure that we will try this as a last resort). Once created, the
new object, and the values being sent as arguments (held in boxWList), will be
used to perform a standard method call.

Auto-boxing has a significant impact on performance. Figure 12 shows the
updated figures for verification times with this change in place. Not only is this
faster than the solution without auto-boxing in all cases, but it is now also
possible to verify deadlock freedom for up to 5 philosophers, which was not
possible with the prior definition.

6.2 Memory Pools

Memory in the KOOL definition is represented using a single global store for
an entire program. This is fairly efficient for normal execution, but for model
checking and search this can be more expensive than needed. This is because all
interactions with the store must use rules, since multiple threads could compete
to access the same memory location at the same time. However, many memory
accesses don’t compete – for instance, when a new thread is started by spawning
a method call, the method’s instance variables are only seen by this new thread,
not by the thread that spawned it. What is needed, then, is a modification to the
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definition that will allow rules to be used where they are needed – for memory
accesses that could compete – while allowing equations to be used for the rest.

To do this, memory in KOOL can be split into two pools: a shared memory
pool, containing all memory accessible by more than one thread at some point
during execution, and a non-shared memory pool, containing memory that is
known to be accessed by at most one thread. To add this to the definition, an
additional global state component is added to represent the shared memory pool,
and the appropriate rules are modified to perform memory operations against
the proper memory pool. Correctly moving memory locations between the pools
does require care, however, since accidentally leaving memory in the non-shared
pool could cause errors during verification.

The strategy we take to move locations to the shared pool is a conservative
one: any memory location that could be accessed by more than one thread,
regardless of whether this actually happens during execution, will be moved
into the shared pool. There are two scenarios to consider. In the first, the spawn
statement executes a message send. In this scenario, locations accessible through
the message target (an object), as well as locations accessible through the actual
parameters of the call, are all moved into the shared pool. Note that accessible
here is transitive – an object passed as a parameter may contain references to
other objects, all of which could be reached through the containing object. In
many cases this will be more conservative than necessary; however, there are
many situations, such as multiple spawns of message sends on the same object,
and spawns of message sends on self, where this will be needed. The second
scenario is where the spawn statement is used to spawn a new thread containing
an arbitrary expression. Here, all locations accessible in the current environment
need to be moved to the shared pool, including those for instance variables and
those accessible through self. This covers all cases, including those with message
sends embedded in larger expressions (since the target is in scope, either directly
or through another object reference, it will be moved to the shared pool).

This strategy leads to a specific style of programming that should improve
verification performance: message sends, not arbitrary expressions, should be
spawned, and needed information should be passed in the spawn statement to
the target, instead of set through setters or in the constructor. This is because
the object-level member variables will be shared, while instance variables and
formal parameters will not. This brings up a subtle but important distinction –
the objects referenced by the formal parameters will be shared, but not the pa-
rameters themselves, which are local to the method, meaning that no verification
performance penalty is paid until the code needs to ”look inside” the referenced
objects. Looking inside does not include retrieving a referenced object for use in
a lock acquisition statement (however, acquisition itself is a rule).

Figure 11 shows one of the two rules changed to support the memory pools
(the other, for assignment, is similar), as well as part of the location reassignment
logic. The first rule, which is the original lookup rule, retrieves a value V from
a location L in memory Mem. The location must exist, which accounts for the
condition – if L does not exist, looking up the current value with Mem[L] will
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crl t(control(k(llookup(L) -> K) CS) TS) mem(Mem) =>
t(control(k(val(V) -> K) CS) TS) mem(Mem) if V := Mem[L] /\ V =/= undefined .

--------------------------------------------------------------------------------------------
ceq t(control(k(llookup(L) -> K) CS) TS) mem(Mem) =

t(control(k(val(V) -> K) CS) TS) mem(Mem) if V := Mem[L] /\ V =/= undefined .

crl t(control(k(llookup(L) -> K) CS) TS) smem(Mem) =>
t(control(k(val(V) -> K) CS) TS) smem(Mem) if V := Mem[L] /\ V =/= undefined .

ceq t(control(k(reassign(L,Ll) -> K) CS) TS) mem(Mem) smem(SMem) =
t(control(k(reassign(Ll,Ll’) -> K) CS) TS) mem(unset(Mem,L)) smem(SMem[L <- V])

if V := Mem[L] /\ V =/= undefined /\ Ll’ := valLocs(V) .

ceq t(control(k(reassign(L,Ll) -> K) CS) TS) mem(Mem) smem(SMem) =
t(control(k(reassign(Ll) -> K) CS) TS) mem(Mem) smem(SMem)

if V := SMem[L] /\ V =/= undefined .

eq k(reassign(empty) -> K) = k(K) .

Fig. 11. Example Definition Changes, Memory Pools

return undefined. CS and TS match the rest of the control and thread states,
respectively. The second and third equation and rule replace this first to support
the shared and unshared memory pools. The second is now an equation, since the
memory under consideration is not shared. The third is a rule, since the memory
is shared. This shared pool is represented with a new part of the state, smem.
The last three equations represent the reassignment of memory locations from
the unshared to the shared pool, triggered on thread creation and assignment
to shared memory locations. In the first, the location L and its value are in
the unshared pool, and are moved to the shared pool. If the value is an object,
all locations it holds references to are also added to the list of locations that
must be processed. The second represents the case where the location is already
in the shared pool. In this case, nothing is done with the location. The third
equation applies only when all locations have been processed, indicating we
should continue with the computation (with K).

This strategy could be improved with additional bookkeeping. For instance,
no information on which threads share which locations is currently tracked.
Tracking this information could potentially allow a finer-grained sharing mech-
anism, and could also allow memory to be un-shared when threads terminate.
However, even with the current strategy, we still see some significant improve-
ments in verification performance. These can be seen in Figure 12. Note that,
in every case, adding the shared pool increases performance, in many cases dra-
matically. It also allows additional verification – checking for a counterexample
works for 8 philosophers, and verifying deadlock freedom in the fixed solution
can be done for up to 7 philosophers.

7 Conclusions and Future Work

In this paper we have shown how rewriting logic can be used for verification and
analysis of a non-trivial concurrent object-oriented language. We have also shown
ways in which run-time and verification performance can be improved, in this
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Ph No Optimizations Auto-boxing Auto-boxing + Memory Pools

States Counter DeadFree States Counter DeadFree States Counter DeadFree

2 61 0.645 NA 35 0.64 0.798 7 0.621 0.670

3 1747 0.723 NA 244 0.694 3.610 30 0.637 1.287

4 47737 1.132 NA 1857 1.074 40.279 137 0.782 5.659

5 NA 6.036 NA 14378 4.975 501.749 634 1.629 34.415

6 NA 68.332 NA 111679 49.076 NA 2943 7.395 218.837

7 NA 895.366 NA 867888 555.791 NA 13670 47.428 1478.747

8 NA NA NA NA NA NA 63505 325.151 NA
Single 3.40 GHz Pentium 4, 2 GB RAM, OpenSuSE 10.1, kernel 2.6.16.27-0.6-smp, Maude 2.2.

Times in seconds, Ph is philosopher count, Counter is time to generate counter-example, DeadFree

is time to verify the program is deadlock free, state count based on Maude search results, NA

means the process either crashed or was abandoned after consuming most system memory.

Fig. 12. Dining Philosophers Verification Times

case by adding auto-boxing of scalar values in a pure object-oriented language
and by segregating accesses of shared and non-shared memory locations. We
believe the ideas presented here can be used during the design of other rewriting
logic definitions of object-oriented languages as a means to improve performance.

There is much future work in this area, some of which was touched on in
the paper. Better methods of sharing and un-sharing memory would help in the
analysis of longer running programs, and could potentially be used for other
purposes as well, such as in the analysis of garbage collection schemes. Also,
while we achieve a reduction in the state space by the use of equations to col-
lapse equivalent states, work on techniques like partial order reduction in the
context of rewriting logic specifications would help to improve performance fur-
ther. There has also been some work, in the context of real-time systems, on
using different state representations at different points in evaluation to improve
analysis performance [20]; it would be interesting to see if similar techniques
could be used in language definitions, where the lack of time steps would make
it more challenging to determine when the state could be reconfigured. Finally,
a method to determine that specification transformations are semantics preserv-

ing would be valuable, especially if it could be done automatically using the
language specifications.
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