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Abstract. We present a novel approach, based on probabilistic formal
methods, to developing cross-layer resource optimization policies for re-
source limited distributed systems. One objective of this approach is to
enable system designers to analyze designs in order to study design trade-
offs and predict the possible property violations as the system evolves
dynamically over time. Specifically, an executable formal specification is
developed for each layer under consideration (for example, application,
middleware, operating system). The formal specification is then ana-
lyzed using statistical model checking and statistical quantitative analy-
sis, to determine the impact of various resource management policies for
achieving desired end-to-end QoS properties. We describe how existing
statistical approaches have been adapted and improved to provide anal-
yses of given cross-layered optimization policies with quantifiable con-
fidence. The ideas are tested in a multi-mode multi-media case study.
Experiments from both theoretical analysis and Monte-Carlo simulation
followed by statistical analyses demonstrate the applicability of this ap-
proach to the design of resource-limited distributed systems.

Key words: Probabilistic Formal Methods, Statistical Analysis, Cross-
layer Optimization, Resource Management

1 Introduction

The next generation of distributed applications will be built around massive scale
distributed environments with heterogeneous systems (servers, desktops, mobile
devices, sensors, wireless access points, routers, etc.) and networks (WLAN,
LAN, WAN, etc.). Such networked applications span multiple domains rang-
ing from mission critical applications for military command/control and disaster
response to general purpose end-user applications including education, enter-
tainment, and commerce. An overarching characteristic of these applications are
that they are often data intensive and rich in multimedia content with images,
GIS (Geographical Information Systems)-based satellite imagery, video and au-
dio data that is fused together from disparate distributed information sources.
? This work was partially supported by NSF award CNS-0615438 and CNS-0615436.
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The content-rich data are expected to be obtained from, delivered to and pro-
cessed on resource-constrained devices (sensors, PDAs, cellular handsets) carried
by users in the distributed network. The dual goals of ensuring adequate applica-
tion QoS (expressed as timeliness, reliability and accuracy) and ensuring optimal
resource utilization at all levels of the system presents significant challenges in
system design.

A holistic approach to understanding timing in such systems is essential for
several reasons. Firstly, applications are often confronted with end-to-end hard
or soft real-time needs. Secondly, existing techniques for timing analysis do not
account for the spectrum of granularities of timing which can vary by orders of
magnitude across layers. Thirdly, several system level optimizations for effective
utilization of distributed resources can interfere with the timing properties of
executing applications. For instance, dynamic voltage scaling mechanisms slow
down processors to achieve power-savings but at the cost of increased execution
times for tasks. Also, knowledge of timing parameters at the different levels
can dramatically improve the performance of applications that often execute in
constrained environments where CPU, memory, network and device energy is
limited.

Our prior experience developing algorithms for managing QoS/power trade-
offs in distributed mobile multimedia applications [1,2] has given us valuable
insights into the issues to be addressed. A preliminary study [3] demonstrated
the need for integration of formal methods with experimentally based cross-layer
optimization methods [1,2]. Systematic analysis based on well-defined models en-
sures that corner-cases are covered and allows bounds for critical performance
parameters to be determined. Our long term goal is to develop a formal method-
ology to specify and analyze timing constraints at each level, and to correlate
timing properties across levels. Furthermore, the formal analyses will be inte-
grated with simulation and experimental methods for developing and adapting
system designs. Multimedia applications operated on battery-powered mobile
devices are viewed as one of the key application drivers for these next genera-
tion distributed systems. Such mobile multimedia applications provide a rich set
of QoS/power issues at multiple abstraction levels. Thus, although we intend our
approach to be widely applicable, we begin by developing and evaluating formal
specification models in the context of distributed multimedia applications.

Our approach is to start with an executable formal model specifying a space
of possible behaviors and analyze these possible behaviors using probabilis-
tic/statistical techniques, paying attention to the mathematical meaning of the
results. We use the Maude [4] rewriting logic formalism to develop executable
specifications that are the basis for subsequent analysis. We have developed two
probabilistic formal analysis techniques: statistical model checking and statisti-
cal quantitative analysis. These analysis results enable policy-based operation
and adaptation as well as parameter setting of selected policies.

This paper contains the following contributions:
– a first attempt to integrate probabilistic formal methods with cross-layer

optimization;
– adaptation and improvement of existing statistical approaches for statistical

model-checking and statistical quantitative analysis;
– modeling, simulation and analysis of a fairly complex system.
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Fig. 1. Case Study: MMMT (Multi-Mode Multimedia Terminal)

The rest of this paper is organized as follows: we start by presenting a multi-
mode multimedia communication system as a case study. Next, we describe the
modeling effort and specification details of our case study. We then introduce our
formal analysis beginning with a brief review of theory, followed by our imple-
mentation and experimental results. The last section summarizes our approach
and discusses future research directions.

2 Case Study: Multi-Mode Multimedia Terminal

Figure 1 shows an example of a multi-mode multimedia terminal (MMMT) sys-
tem [5] that we are using as a research vehicle. The figure depicts a hierarchical
composition of tasks within the MMMT system. At the top level, three types of
hierarchical tasks are defined to specify each mode of operation: soft real-time
(a videophone, a VoD player, an MP3 player), event-driven (email client), and
time-critical emergency messaging (SMS-Short Message Services). Three other
tasks are also specified at the top level for user interface, connection handling,
and task execution control. In addition, each mode of operation consists of mul-
tiple tasks as shown in the figure. This type of application requires frequent task
set changes based on user input and/or node/network conditions (e.g., residual
power level, packet drop rate, noise level, etc.). As an example, a high-end video-
phone mode would be able to better meet its timing constraints at maximum
CPU performance while receiving packets via a reliable channel. However, if
residual power level dropped or packet loss rate increased significantly, then we
might need to save energy by reducing QoS or suspending some tasks. A user also
can explicitly change modes and assign different priorities for each task/mode.

We distinguish between two types of optimizations:
– vertical composition, which depicts QoS/energy relationships in a single task,

but across several vertical layers of abstraction, and
– horizontal composition, which depicts the QoS/energy relationships across

multiple tasks in a dynamic environment
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In the context of our driver application (MMMT), vertical composition needs
to address the application’s QoS requirement across layers in the context of
resource management constraints. On the other hand, horizontal composition
addresses QoS properties between multiple tasks that may be assigned priorities
dynamically based on QoS and resource constraints. In this paper, we restrict our
discussion to the videophone mode. Horizontal extension for a complete MMMT
system remains a topic of future research.

The resource management policies that are used in the different layers in-
clude: a specific video encoding/decoding algorithm at the application layer;
network monitoring at the middleware layer; DPM (Dynamic Power Manage-
ment) and/or DVS (Dynamic Voltage Scaling)3 at the OS layer [6]. Network
traffic shaping and/or trans-coding at the middleware layer can be also utilized.
Each policy has parameters that can be used to fine-tune the behavior. In addi-
tion, there are hardware parameters that can be set.

For instance, we consider proactive PBPAIR (Probability Based Power Aware
Intra Refresh) [7] as an application layer policy. The PBPAIR scheme inserts
intra-coding (i.e., coding without reference to any other frame) to enhance the
robustness of the encoded bitstream at the cost of compression efficiency. Intra-
coding improves error resilience, but it also contributes to reducing encoding
energy consumption since it does not require motion estimation4 (which is the
most power consuming operation in a predictive video compression algorithm).
The additional proactive feature means that we have a priori information on
the user’s mobility (e.g., current zone, speed and trajectory, etc.) and network
situation (e.g., packet loss rate, delay, etc.) that later will be used for selection
among policies and related parameter tuning before the user enters a new zone.
If PBPAIR is selected as an application layer policy, then algorithm-specific pa-
rameters such as Intra threshold value must be chosen for appropriate execution.
Note that the parameter selection at one layer affects other layers. For exam-
ple, PBPAIR increases intra-coding by lowering the Intra threshold parameter
when there is high network packet loss (monitored at middleware layer), which
impacts DVS decision at OS layer since the execution profile of the application
is changed.

3 Formal Modeling and Analysis for Cross Layer
Optimization

3.1 What to Model

In this subsection, we explain which features of the MMMT case study will be
formally modeled at each layer.
3 DPM puts a device into a low power/performance state to save energy when the

device is not serving any request during a suitably long time-period determined by
the shutdown and wakeup overhead of the device. DVS aims at saving energy by
scaling down the supply voltage and frequency when the system is not fully loaded.

4 In predictive coding, motion estimation eliminates the temporal redundancy due to
high correlation between consecutive frames by examining the movement of objects
in an image sequence to try to obtain vectors representing the estimated motion.



A Probabilistic Formal Analysis Approach to Cross Layer Optimization 5

– Application Layer - Proactive PBPAIR: As an application policy, we
utilize proactive PBPAIR. It takes the user’s QoS expectation, the network
packet loss rate, and raw video sequences as inputs to generate a bitstream
robustly encoded against network transmission errors. Therefore, our formal
specification needs to generate the execution profile (e.g., when does en-
coding start/end? how much time is required?). Particularly, we specify an
encoding workload profile as a distribution function. For example, we model
actual execution time by a uniform distribution between best case execution
time (BCET) and worst case execution time (WCET). We also consider a
Gaussian distribution with the average and boundary value.

– Middleware Layer - Network Monitoring: As briefly mentioned, the
middleware layer deals with network status monitoring. We define mobility
as a triple (current zone, speed, trajectory) to identify the network situation
in the current zone and to anticipate the next zone based on user’s speed and
trajectory. Zone information includes network delay, packet drop rate within
the particular zone. Specifically, network transmission delay is modeled as
exponential inter-arrival time (Poisson) with mean.

– OS Layer - Power Management: Various DPM and DVS power manage-
ment schemes assuming a worst-case scenario are modeled at the OS layer.
The OS layer generates slack time information based on workload from the
application layer. This slack time will be used later to reduce energy con-
sumption while guaranteeing QoS requirements for the next frame. Since we
are targeting multitask environments, we need to specify various scheduling
algorithms (for horizontal composition) like EDF (Earliest Deadline First)
and RM (Rate Monotonic).

– Hardware Layer - Enabling Technology: To support a DPM and DVS
strategy at the OS layer, we assume that the enabling technology (e.g.,
voltage scalable processor, power-state controllable network card, etc.) is
available at hardware layer. In the case of a micro-processor, wakeup/sleep
delay and power overhead for a state transition, DVS characteristics (i.e.,
power consumption for different operating mode/voltage-frequency) should
be modeled. As a result of execution, the hardware layer reports residual
energy to upper layers.

3.2 Modeling Using Maude

Our formal modeling approach utilizes Maude [8] to formally specify the envi-
ronmental changes as well as the policies/parameter settings that can be made
at each of these levels in isolation and for the combined layers. Maude is a spec-
ification language based on rewriting logic with supporting analysis tools. The
Maude system has been used in the specification and analysis of a wide range of
logics, languages, architectures and distributed systems [9,4].

Rewriting logic [10] is a simple logic well-suited for distributed system spec-
ification. The state space of a distributed system is formally specified as an
algebraic data type by giving a set of sorts (types), operations, and equations.
The dynamics of such a distributed system is then specified by rewrite rules of
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the form
t → t′ if c

where t, t’ are terms (patterns) that describe the local, concurrent transitions
possible in the system, and c is a condition constraining the application of the
rule. Specifically, when a part of the distributed state matches the pattern t,
and satisfies c, then this part can change to a new local state t’. Rewriting
logic specifications are executable, as proofs in rewriting logic are carried out by
applying rewrite rules which can also be viewed as steps of a computation.

The Maude system is based on a very efficient rewriting engine, support-
ing use of executable models as prototypes. It also provides the capability to
search the state space reachable from some initial state by the application of
rewrite rules. This can be used to find reachable states satisfying a user-defined
property. The system also includes an efficient model-checker for checking prop-
erties expressed in linear temporal logic. The Maude system, its documenta-
tion, and related papers and applications are available from the Maude website
http://maude.cs.uiuc.edu.

In the object-oriented specification style supported by Maude, the system
state (configuration) is typically represented as a multiset of objects and mes-
sages. Passage of time is modeled by functions that update the configuration
appropriately, for example decrementing timers or decreasing remaining power.
Rules can either be instantaneous or tick rules of the form

C → delta(C, T ) in time T if T ≤ mte(C)

where C is a term representing the system configuration. This tick rule advances
time non-deterministically, according to a chosen time sampling strategy, by a
time T less than or equal to mte(C), the maximal time allowed to elapse in
one step, in configuration C, and alters the system state, C, using the function
delta5. Both delta and mte are user-defined to capture how time passes in a
particular model.

Figure 2 shows a PBPAIR object in the Maude specification for the applica-
tion layer. In Maude syntax, objects have the general form

< ObjectName : ClassName | Attribute1 : V alue1, ..., Attributen : V aluen >

where ObjectName is an object identifier, ClassName is a class identifier, and
each ’Attribute : Value’ pair specifies attribute identifier and its value. The object
PBPAIR in Figure 2 has attributes like WCET, BCET for generating workload
profile.

At the end of each execution, we examine the final configuration of a Maude
specification that has several objects and messages. From those objects and
messages, we need to extract meaningful data – observables. Observables can be
properties or values. For example, to check whether the battery expires or not at
the end of the execution, we need to check the residualEnergy attribute in CPU
object at hardware layer. If the value for the residualEnergy attribute is positive,
5 The idea of a tick rule is taken from Real-Time Maude [11].

 http://maude.cs.uiuc.edu
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*** Variables

vars initWCETProfile initBCETProfile : Map .

vars T T’ : Nat .

vars I I’ Q TH miss cm cmc cmm lost lm clc clm : Int .

*** Object

< PBPAIR : Application |
WCET : initWCETProfile, *** worst case execution time

BCET : initBCETProfile, *** best case execution time

accEncTime : T, *** accumulated encoding time

seqN : I, *** sequence number

Timer : T’, *** next frame arrival time

IntraTh : TH, *** intra threshold (parameter)

Qsize : Q, *** encoding queue size

bufferedReq : I’, *** buffered frame (initialized as 1
2
×Qsize)

deadlineMiss : miss, *** total number of deadline misses

consecutiveMiss : cm, *** current consecutive deadline misses

consecutiveMissCount : cmc, *** incidence of consecutive deadline miss

consecutiveMissMax : cmm, *** maximum consecutive deadline miss

lostReq : lost, *** total number of lost requests

consecutiveLost : cl, *** current consecutive lost requests

consecutiveLostCount : clc, *** incidence of consecutive lost request

consecutiveLostMax : clm, *** maximum consecutive lost request

>

Fig. 2. Maude Specification: Application Layer

*** Property checker
op batteryExpires : Configuration → Bool .
eq batteryExpires(< CPU : HW | residualEnergy : F, atts > C:Configuration)

= (if (F ≤ 0.0) then true else false fi) .

*** Observer
msg Obs : Bool → Msg .
msg EnergyConsumption : Float → Msg .
msg BatteryExpires : Bool → Msg .

rl [cpuObs] :
< CPU : HW | consumedEnergy : F, policy : P, atts >
⇒
EnergyConsumption(F)
BatteryExpires(batteryExpires(< CPU : HW | consumedEnergy : F, atts >)) .

Fig. 3. Maude Specification: Property Checker and Observer

then the battery does not expire. Otherwise, the batteryExpires property returns
true meaning the system used up the battery. We encode the check of properties
into the model so that the result contains true or false depending on whether
a property holds or not. On the other hand, if we want to have the energy
consumption rather than the answer for property hold, we can utilize the observer
such as the one shown in Figure 3. The observer replaces each object with suitable
messages that have data values for the observables. For example, deadlineMiss
and lostReq in Figure 2 are observables for this kind.

Furthermore, we use the Maude API, a foreign language interface to embed
the Maude rewriting engine into larger applications, to extract observables from
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Algorithm 1 Java Foreign Interface for Observables Extraction

public static void main (String args[ ])
{

Maude.initialize(“filename.maude”);
mod = Maude.findModule(ModuleName);
clockedSystem = init(mod, seed);
conf = extractConfiguration(mod, clockedSystem);
printObservables(mod, conf);

}

the Maude execution and generate statistics of results. Specifically, we use a
Java/Maude interface that calls Maude as a dynamic library. The Algorithm
1 gives a simplified overview of this procedure. At the beginning, the initialize
function of the API initializes the Maude engine and loads the formal specifi-
cation. Then findModule is used to locate the appropriate module identified by
ModuleName. Now, the init function uses other functions of the Maude API to
perform rewriting from a suitable initial configuration until a terminal configu-
ration is reached. A random seed will be embedded in the initial configuration
to initialize the random number generator that determines which execution path
is selected in the model. The init function returns the result of executing the
model as a clockedSystem. The associated configuration will be used for data
extraction by extractConfiguration. In summary, the Java interface provides a
convenient way to deal with data extraction and subsequent processing.

3.3 Analysis

In this section, we explain two statistical evaluation methods that we imple-
mented: statistical model checking and statistical quantitative analysis. For sta-
tistical model checking, probabilistic properties such as “Probability that a sys-
tem can survive with given residual energy in t time units is more than θ %”
will be examined. In case of statistical quantitative analysis, we estimate the
expected value of certain observables such as “Average energy consumption in t
time units within confidence interval (δ) and error bound (α)”.

Statistical Theory Background and Our Implementation To evaluate a
stochastic system properly, we need to remove non-quantifiable non-determinism
[12]. We replace all non-determinism with probabilistic choices and stochastic
timed operations in the tick rule6.

– Statistical Model Checking: We use statistical model checking to verify
probabilistic properties, more precisely hypothesis testing based on Monte-
Carlo simulation results. In hypothesis testing, we test whether the probabil-
ity p of a property under examination is above or below the threshold θ. We
can formulate this as the problem of testing the hypothesis H : p ≥ θ against
the alternative hypothesis K : p < θ. Specifically, we implemented two statis-
tical model checking techniques in our framework: sequential testing [13] and

6 Non-determinism that is not probabilistic in nature would require the exploration
of all possibilities and is currently not supported in our approach. Hence, we use
sufficient conditions similar to those of [12] to guarantee the absence of this form of
non-determinism.
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black-box testing [14]. Sequential testing generates sample execution paths
until its answer can be guaranteed to be correct within the required error
bounds. Black-box testing instead computes a quantitative measure of con-
fidence for given samples. Here, black-box means that the system cannot be
controlled to generate execution traces, or trajectories, on demand starting
from arbitrary states. The implementation of sequential testing and black-
box testing can be found as part of the Ymer [15,16] and VeStA [14] tools,
respectively.

– Statistical Quantitative Analysis: Statistical evaluation can be per-
formed with a large quantity of data that follows a normal distribution, and
hence allows the estimation of the expected value and our confidence. To
determine the mathematical soundness of the approximation, we perform a
Jarque-Bera (JB) normality test [17]. The normality is determined by testing
the null hypothesis (that the sample in vector X comes from a normal dis-
tribution with unknown mean and variance) against the alternative (that it
does not come from a normal distribution). The JB test computes the p-value
(the smallest level of significance at which a null hypothesis may be rejected)
from the JB test statistic and χ2 (chi-square) distribution. One rejects the
null hypothesis if the p-value is smaller than or equal to the significance level
α. For example, a p-value=0.05 indicates that the probability of getting a
value of test statistics as extreme as or more extreme than that observed is
at most 5% if the null hypothesis is actually true. Once normality of the data
is ensured with high confidence, for a large enough number of sample traces
n, the approximate average falls inside a (1 - α)100% confidence interval

(x̄− Zα
2 ,n−1

s√
n

, x̄ + Zα
2 ,n−1

s√
n

)

where x̄ is the average of the sample variables, s is samples’ standard devia-
tion, and Zα

2 ,n−1 is a standard score (also called Z-score or normal score) of
normal distribution [18]. To obtain the desired confidence, we want the size
of this (1 - α)100% confidence interval to be less than or equal to δ, that is:

2Zα
2 ,n−1

s√
n
≤ δ.

Our Focus: Simplified Formulae and On-demand Sample Generation

– Statistical Model Checking: We note that both, the Ymer and VeStA
tools, target complex properties of stochastic systems. For instance, those
tools take properties specified in a temporal logic, namely Continuous
Stochastic Logic (CSL), for Continuous Time Markov Chains (CTMC) [19]
system specifications. The reason is that they want to support complex prop-
erty checking, (e.g., nested temporal/probabilistic operators, and also a form
of hybrid model checking in-between numerical and statistical methods),
even though the idea of hypothesis testing based on Monte-Carlo simulation
does not need to be tied to any specific specification model or temporal logic.
This can be an overkill when it comes to analyzing practical optimization
problems, if we only test simple properties such as “Probability that a system
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Algorithm 2 Statistical Quantitative Analysis
Input: error bound α, confidence interval δ, observable under consideration
Output: Expected value E[observable]
initialize d as a negative number;
while (d > δ)
{

trace generation until normality test succeeds;
d = 2Z α

2 ,n−1
s√
n

;

}
return the average of observable;

can survive with a given residual energy in t time units is more than θ %”.
Those formulae are essentially a restricted version of CSL without nesting.
Indeed we found no need for nested formulae or an exact numerical solution
for our application domain.

– Statistical Quantitative Analysis: The Pseudocode 2 shows the statisti-
cal quantitative analysis algorithm [12]. As we mentioned earlier, to approx-
imate the expected value by the mean of n samples such that the size of (1
- α)100% confidence interval is bounded by δ, the sample data should follow
normal distribution [18]. For the normality test, we need to have a sufficiently
large data set. Since the trace generation takes most of the evaluation time,
we generate sample traces only if more samples are required (i.e., JB test
cannot accept or reject the normality of data.)7. By generating traces on
demand, we can significantly reduce the evaluation time since it is linearly
proportional to the trace generation time (i.e., Monte-Carlo simulation time
with a different seed).

4 Experiments

To demonstrate the applicability of our framework to the QoS/energy tradeoff
management, we are exploring several aspects of the system optimization. Our
formal executable specification (Maude) and evaluation method can serve as a
simulation study as well as a statistical guarantee for the design. The outcome
of the formal analysis helps us determine the right blend of policies/parameter
settings that will enable better QoS and better energy efficiency. The following
items are examples of the various facets that we want to address.

– Effect of cross-layer optimization: To evaluate the effect of the cross layer
optimization, first we need to quantify the impact of the optimization at
each layer and their composition.

– Effect of confidence requirements: Statistical model checking involves errors
by its nature (e.g., the probability of false negatives, the probability of false
positives, etc.). Likewise, statistical quantitative analysis provides the answer
with confidence interval and error bound. Confidence requirements for the
answer have an effect on the number of samples needed, which in turn affects
the solution quality and the evaluation time.

7 Besides, we use the average value from the randomly chosen traces. This random
selection may affect the normality test. However, we believe the effect is negligible.
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– Effect of worst case vs. average case analysis: Currently, we model energy
optimization policies (e.g., DVS, DPM, etc.) to reduce energy consumption
while satisfying the QoS requirements even in the worst case scenario. How-
ever, typical multimedia applications finish execution much earlier than the
worst case execution time in most of the situations, which allows more ag-
gressive optimization based on an average case execution scenario.

– Effect of constraint relaxation: QoS degradation due to optimization is some-
times not noticeable from the viewpoint of an end user (e.g., a user may not
recognize video quality drop from a single deadline miss for the video decod-
ing.). In such a case, we can relax system’s QoS constraints to enable further
optimization.

In the following subsections, we will explain experimental results that illus-
trate the effect of cross-layer optimization. We model PBPAIR as an application
layer policy as well as various power management schemes – Greedy, Cluster,
DVS – as OS layer policies. In the Greedy scheme, the power manager shuts
down whenever the device is idle, while the Cluster scheme tries to aggregate idle
periods to maximize energy efficiency. The DVS scheme lowers supply voltage as
long as the deadline constraint is satisfied. The arrival of incoming processing re-
quests from the network is modeled as a Poisson process with an average arrival
rate. When the processor runs at full speed, the execution times of the tasks are
modeled as a normal (Gaussian) distribution with the average of (BCET+WCET )

2
and the boundary value of 3 × δ, where δ represents the standard deviation.
For other types of distributions, we can simply change the Maude operator for
the distribution function. A subset of the MMMT system – video encoder and
decoder for videophone mode – is modeled with the workload variation of a PB-
PAIR encoder [7] and an H.263 decoder [20]. The network zone information is
assumed to be given and the DVS capable hardware implementation is from [21].
The experiments were carried out on a 2.8 GHz Pentium 4 processor running
Linux.

4.1 Experimental Results

Monte-Carlo Simulation Monte-Carlo simulation in Maude is done with the
fair rewrite command that generates one possible behavior of the system, start-
ing from a given initial state using a user specified seed for sampling from dis-
tributions. Figure 4(a) presents the energy profiles according to the different
policies and buffer sizes. DVS with PBPAIR outperforms other policies from
the perspective of relative energy consumption with respect to Always-on (i.e.,
without any policy). QoS measures such as average deadline miss ratio are also
examined to evaluate the effect of cross layer optimization. Figure 4(b) shows
that PBPAIR combined with any OS layer policy delivers more timely decod-
ing than any OS layer policy without PBPAIR. Detailed experimental results
on QoS aspects are omitted due to space limitations [22]. Note that the num-
ber of possible traces depends on the random seed generator and runtime is
linearly proportional to the single trace generation time (i.e., Maude rewriting
time from initial state). If we consider the rate of 50 frames each (5 frames/sec)
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Fig. 4. Monte-Carlo Simulation: Effect of Cross Layer Optimization

for both encoding and decoding, single trace generation takes around 400-500
msecs. Therefore, it is infeasible to produce all possible traces to evaluate policy
and parameter changes in dynamic situations. This led us to propose statistical
approaches with quantifiable confidence for our evaluation/decision.

Statistical Model Checking Statistical model checking enables quick detec-
tion of problematic situations (e.g., battery expiration) that can arise due to the
selection of policy/parameter settings. As an example of sequential testing, we
performed statistical model checking of the property

Probability [ battery expires < 0.1 ]

with arguments α = 0.05 (false negative), β = 0.05 (false positive), θ = 0.1
(threshold), and δ = 0.01 (indifference region), respectively. Sequential testing
accepts the hypothesis H1: p � θ - δ with 133 traces, that is the batteryExpires
property checker in Figure 3 gives false for all traces. With the same 133 traces
that were generated for sequential testing, black-box testing also confirms the
formula with error of 8.20E-7. The run time for each statistical model checking
is 10-20 msecs in addition to the sample generation, which indicates that this is
a feasible proposition for the on-the-fly adaptation.

Statistical Quantitative Analysis In Section 3.3, we explained the pre-
requisite and theoretical background for the statistical quantitative analysis and
this section provides experimental results on that. Specifically, we test normality
of data before we apply the central limit theorem to approximate the expected
value by the average of sample mean. We first generate an initial number of
sample traces for JB normality test followed by additional trace generation until
the normality test succeeds. The p-value should be more than or equal to the
error bound (α) to accept normality of given data set (i.e., fail to reject the
null hypothesis Ho). If we can not statistically limit the confidence interval by δ
(while loop condition in Pseudocode 2), we produce more samples on-demand.

The Figure 5(a) and 5(b) show our statistical quantitative analysis results
with arguments of α (error bound) and δ (confidence interval) as 5% and 1%,
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(a) Energy Consumption:
[nSample = 100] Fail to reject Ho (p-value = 0.821)
E[Energy Consumption] = 3.7121E9 (α = 5.0%, d = 0.036%)

(b) Decoder Average Deadline Miss Ratio:
[nSample = 100] Reject Ho (p-value = 0.035)
[nSample = 110] Fail to reject Ho (p-value = 0.194)
E[Decoder Avg Deadline Miss Ratio] = 0.2032 (α = 5.0%, d = 0.466%)

(c) Decoder Maximum Consecutive Lost:
[nSample = 100] Fail to reject Ho (p-value = 0.884)
[nSample = 100] (d = 0.01053) > (δ = 0.01)
[nSample = 110] (d = 0.01002) > (δ = 0.01)
[nSample = 121] (d = 0.00958) ≤ (δ = 0.01)
E[Decoder Maximum Consecutive Lost] = 3.2314 (α = 5.0%, d = 0.958%)

Fig. 5. Statistical Quantitative Analysis

respectively. In Figure 5(a), the observable EnergyConsumption passes the nor-
mality test with 100 initial samples since its p-value (0.821) is more than error
bound α (0.05). The resulting confidence interval d (0.036%) is less than the
desired value δ (1%). Therefore, we can estimate the expected value for Ener-
gyConsumption within error bound and confidence interval. On the other hand,
in case of the DecoderAvgDeadlineMissRatio observable (Figure 5(b)), we need
to generate more samples (10% in this experiment) since the first JB test fails.
Even if the sample data follows a normal distribution, we may need more samples
for limiting the confidence interval by δ. Figure 5(c) presents such a case. The
confidence interval from initial samples (d) is 1.053% and the desired interval
(δ) is 1%. Therefore, more samples are generated until d is less than δ.

5 Previous and Related Work

In our previous work (FORGE project [1]), we have identified interaction pa-
rameters between the different computational levels that can facilitate effective
cross-layer coordination. Specifically, we have studied how to annotate applica-
tion data with specific information that can be used to improve power efficiency
and how to optimize parameters in various layers (e.g., image quality in appli-
cation layer, the compressed size in network layer, and execution time/power
consumption in hardware layer) [2]. We also explored the trade-off between the
error resiliency level, compression efficiency, and power consumption for stream-
ing multimedia applications [7]. To leverage our prior effort, we are integrating
formal methods with cross-layer optimization in a unified framework.

Previous work on statistical model checking for stochastic systems includes
PMaude (Probabilistic Maude) [23,12], a rewriting-based specification language
for modeling probabilistic concurrent and distributed systems. The associated
tool, VeStA [14], was developed to statistically analyze various quantitative
aspects of models such as those specified in PMaude using a query language
QuaTEx (Quantitative Temporal Expression) [12] based on CSL (Continuous
Stochastic Logic). However, this approach does not provide any procedure by
which they can determine the sample size required to achieve normality. More-
over, the authors approximate the expected average by applying Student’s T -
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distribution. This is unnecessary since as the sample size n grows, the T -distrib-
ution approaches the normal distribution with mean 0 and variance 1. There-
fore, we extended their approach by an on-demand sample generation that can
compute the sample size sufficient to guarantee the normality of data, and utilize
the normal distribution to obtain the error bound and confidence interval.

Ymer [15,16] implements statistical techniques, based on discrete event sim-
ulation and sequential acceptance sampling for CSL model checking. The system
is modeled by continuous-time Markov chains (CTMCs) and generalized semi-
Markov processes (GSMPs). Properties are expressed using Continuous Stochas-
tic Logic (CSL). Ymer also integrates numerical techniques to solve nested CSL
queries, by including the hybrid engine of the PRISM [24] tool for CTMC model
checking. This, however, limits the modeling power compared with our approach.
On the other hand, the expressive power of the Maude language (extended with
probability and time) opens a wide spectrum of applications that are beyond
the scope of Markovian models.

6 Summary and Future Work

This paper presents the results of the first phase of a project to develop formal
analytical methods for understanding cross-layer and end-to-end timing issues
in highly distributed systems incorporated resource limited devices, and to inte-
grate these methods into the design and adaptation processes for such systems.
We have developed new analysis techniques that combine statistical and formal
methods and applied them in a case study treating the videophone mode of a
multi-mode multimedia terminal. The results are encouraging, as the underlying
formal executable models are moderately simple to develop, and the analyses
seem feasible.

Ongoing and future work in this project includes:

– modeling and analysis of the remaining modes of the MMMT (Section 2) as
well as scheduling policies and sharing of resources between tasks.

– carrying out a trade-off analysis on the effect of confidence requirements,
worst case vs. average case execution models, and constraint relaxation (as
discussed in Section 4)

– integration of formal analysis with the simulation framework that includes
real system prototypes. This will result in a feedback loop that includes the
formal models, simulation, and monitoring of running systems for analysis
of system behavior and optimizing choice of policies and parameters.
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