
On Resource-Sensitive Timed Component Connectors?

Sun Meng and Farhad Arbab

CWI, Kruislaan 413, Amsterdam, The Netherlands
{Meng.Sun,Farhad.Arbab }@cwi.nl

Abstract. In this paper we introduce a formal model for reasoning about re-
source sensitive timed component connectors. We extended the constraint au-
tomata model, which is used as the semantic model for the exogenous channel-
based coordination language Reo, through integrating both resource and time in-
formation. This model allows to specify both the interactions that take time to
be performed and timeouts. Moreover, the model reflects resource issues, such
as bandwidth or allocated memory, that may affect the time needed for interac-
tions when specifying the timed behavior of connectors. The time duration that
an interaction takes is represented by a function on the available resources. In ad-
dition to the formalism, we also discuss compositional reasoning and present two
notions of simulation to relate different connectors from functional and resource-
sensitive temporal perspectives respectively.
Keywords: Coordination, Constraint Automata, Resource-Sensitive Timed Con-
straint Automata, Simulation

1 Introduction

One important challenge of the software engineering field is the so called Service Ori-
ented Computing (SOC) [11]. In SOC, applications are developed by coordinating the
behaviour of autonomous services distributed over an overlay network. Coordination
models and languages provide a formalization of the “glue code” that interconnects the
services and organizes the mutual interactions between them in a distributed processing
environment, and are extremely important to the success of SOC. Several coordination
models have been proposed in the literature. For example, Reo [3, 5] offers a powerful
glue language for implementation of coordinating component connectors based on a
calculus of mobile channels. However, most of them were concerned only with func-
tional aspects of the connectors. This means that nothing was said about Quality of
Services [12], e.g., the duration of the interaction. As a consequence, only functional
properties of coordination could be investigated.

Coordination of services requires service consumers to discover service providers
that satisfy both given functional and non-functional requirements, including costs and
QoS requirements such as time that a service takes to perform a certain action. Timing
constraints are always required to be satisfied in different service oriented applications
and the time consumed during the execution of a service falls into one of the following
two categories:
? The work reported in this paper is supported by a grant from the GLANCE funding program

of the Dutch National Organization for Scientific Research (NWO), through project CooPer
(600.643.000.05N12).

2 Sun Meng and Farhad Arbab

– The service consumes time while it performs actions. The time may depend on the
availability of resources. For example, the time for downloading a file from a server
depends on the bandwidth of the network.

– The time passes while the system waits for a reaction from the environment. In
particular, the service can change the system’s state if an interaction is not received
before a certain amount of time. For example, the connection to some server (like
internet banking) might be disconnected if it does not receive any requirement for
a long time due to the security reason.

In this paper we consider the temporal issues of Reo which allow the specifier to
define how the behavior of channels and component interfaces can be affected by both
categories of temporal aspects. Although there are a plethora of timed extensions of
classical models [1, 16, 17], most of them only specify one temporal aspects: Time is
either associated with actions or associated with delays/timeouts. We present a formal-
ism based on constraint automata, allowing us to take into account both temporal issues
considered before, and specify in a natural way both aspects of temporal properties for
connectors. Furthermore, a new contribution in this paper is that resources may influ-
ence the timing property of the behavior. Therefore the execution of an interaction may
take different time values if the available resources are different.

The choice of Reo as the coordination language (and therefore constraint automata
as its operational semantic model) is motivated by the fact that (1) it allows exogenous
coordination and arbitrary user defined primitives, and (2) it is unique among other
models in allowing arbitrary combination of synchrony and asynchrony in coordination
protocols. This, for instance, facilitates multi-party transactions through Reo’s inherent
propagation of synchrony and exclusion constraints.

We also propose a formal simulation relation allowing to systematically compare
connectors given by resource sensitive timed constraint automata. The notion of sim-
ulation of ordinary constraint automata has already been studied in the literature [2, 4,
5]. However, to the best of our knowledge, none of them take resource issues into ac-
count. Here, we propose new techniques specifically devoted to resource sensitive timed
connectors. Regarding functional simulation we have to consider not only language in-
clusion as discussed in [5], but also the possible timeouts.

Taking resources and time into account, the simulation relation in our model can be
used to check the standard refinement pattern: Having a certain requirement in mind,
it is often quite easy to depict a resource sensitive timed constraint automatonA that
describes the allowed behavior. In this sense,A can serve as specification for a Reo
circuit that is to be designed. A Reo circuitG is viewed to be correct (w.r.t. specifica-
tion A) iff the resource sensitive timed constraint automatonAG for G does not show
any behavior that is forbidden by the specification, where both functional behavior and
temporal behavior are considered.

The rest of the paper is organized as follows: In Section 2 we recall the basic con-
cepts of ordinary constraint automata. Resource sensitive timed constraint automata are
introduced in Section 3. In Section 4 we present the simulation relation in our model
and provide the congruence result with respect to the composition operators. In Section
5 we consider related research work. We conclude in Section 6 with a brief discussion
of some further work.

On Resource-Sensitive Timed Component Connectors 3

2 Constraint Automata

Constraint automata (CA) were introduced in [5] as a formalism to capture the oper-
ational semantics of channel-based component connectors in Reo. This section sum-
marizes the basis concepts of constraint automata. Constraint automata are variants of
labelled transition systems where transitions are augmented with pairsN, g rather than
action labels. The states of a constraint automata stand for the network configurations,
e.g., the contents of the buffers for FIFO channels. The transition labelsN, g can be
viewed as sets of I/O-operations that will be performed in parallel. More precisely,N
is a set of nodes in the network where data-flow is observed simultaneously, andg is
a boolean condition on the observed data items. Transitions going out of a states rep-
resent the possible data-flow in the corresponding configuration and its effect on the
configuration.

CA use a finite setN of nodes. The nodes can play the role of input and output ports
of components and connectors, but they can appear outside the interfaces of components
as intermediate stations of the network where several channels are glued together and
the transmission of data items can be observed. In the sequel, we assume a finite and
non-empty setData consisting of data items that can be transferred through channels.
A data assignment denotes a functionδ : N → Data where∅ 6= N ⊆ N . We write
δA for the data item assigned to nodeA ∈ N underδ andDA(N) for the set of all data
assignments for node-setN . CA use a symbolic representation of data assignments by
data constraints which mean propositional formulas built from the atomsdA = dB ,
dA ∈ P or dA = d whereA, B are nodes,dA anddB are symbols for the observed data
item at nodeA andd ∈ Data, P ⊆ Data (and the standard boolean connectors∧, ∨,
¬, etc.). For a node setN , DC(N) denotes the set of data constraints that only refer to
the termsdA for A ∈ N .

Definition 1. A constraint automaton over the data domainData is a tupleA =
(S, S0, N ,−→) whereS is a set of states, also called configurations,S0 ⊆ S is the set
of its initial state,N is a finite set of nodes,−→⊆ ⋃

N⊆N S × {N} ×DC(N) × S,
called the transition relation.

A transition fires if it observes data items in its respective ports/nodes of the compo-
nent and according to the observed data, the automaton may change its state. We write

s
N,g−→ s′ instead of(s,N, g, s′) ∈−→ and refer toN as the node-set andg the guard

for the transition. By an instance ofs
N,g−→ s′ we mean a transition of the forms

N,δ−→ s′

whereδ is a data assignment for the nodes inN with δ |= g. Here the symbol|= stands
for the satisfaction relation which results from interpreting data constraints over data
assignments.

The intuitive operational behavior of a constraint automaton can be specified by its
runs. A run in a constraint automaton is defined as a (finite or infinite) sequence of
consecutive transition instances

r = s0
N0,δ0−→ s1

N1,δ1−→ s2
N2,δ2−→ . . .

We require that runs are either infinite or finite runs where the last statesn does not
have any outgoing transition where the node setN only consists of mixed nodes. This
requirement can be understood as amaximal progress assumptionfor the mixed nodes.

4 Sun Meng and Farhad Arbab

{B}

B
empty

A

d =d
{A}

s(d)

d =dB

A

Fig. 1. Constraint Automata for FIFO Channel

Figure 1 shows a CA for a FIFO1 channelAB in Reo, which is given in the left
of the picture. NodeA serves as input port where data items can be written into the
channel whileB can be regarded as output port where the stored data item is taken out
and delivered to the environment. Stateempty represents the configuration in which
the buffer is empty, while states(d) stands for the configuration where data elementd
is stored in the buffer. The CA given here is a parametric version with meta symbols for
data items (Formal definition can be found at [5]).

Sender Receiver
B

M6 M5

Med
M2M1 M3 M4

A

Fig. 2. The Components of Parrow’s Protocol

Example 1.As another example, we consider the Parrow’s Protocol (PP) [18], which
is a simplified version of the well-known Alternating Bit Protocol (ABP). PP provides
an error free communication over a medium that might lose messages. Figure 2 shows
the components that are involved in this protocol. Data elements from a setMsg are
communicated between a Sender and a Receiver. Once the Sender reads a message from
its portA, it sends this datum through the communication mediumMed to the Receiver,
which sends the message out through its portB. The communication mediumMed is
faulty, thus a message sent throughMed can turn up as an error message. Every time
the Receiver receives a message viaMed, it sends an acknowledgement to the Sender.
For simplicity it is assumed that acknowledgements are never lost. We model three
components and the three synchronous channels by CA. The pictures are given as in
Figure 3.

Constructing complex connectors out of simpler ones is done by the join operation
in Reo. Joining two nodes destroys both nodes and produces a new node on which all of
their coincident channel ends coincide. Each channel in Reo is mapped to a constraint
automaton. We now show how Reo’s join operation can be realized by the product
construction of constraint automata.

On Resource-Sensitive Timed Component Connectors 5

{A}
Receiver{M1}

{M6}

{M6}
{M4} {B}

{M5}

{M4}{M5}Medium

Sender

{M2}

{M3}
d =d or d =!

Synchronous channels

{M1,M2} {M3,M4} {M5,M6}

d =dA

M1d =d

d =dd =dM4 B

d =succM5

d =!M5 d =!M4

d =dM2

d =!M6

d =succM6

M3 M3

d =dM1 M2
d =dM3 M4 d =dM5 M6

Fig. 3. The Constraint Automata for the Components and Channels in Parrow’s Protocol

The product for two given constraint automataA1 = (S1, s0,1, N1,−→1) and
A2 = (S2, s0,2,N2,−→2) is defined as a constraint automatonA1 ./ A2 with the
components

(S1 × S2, 〈s0,1, s0,2〉,N1 ∪N2,−→)

where−→ is given by the following rules:

– If s1
N1,g1−→ 1 s′1, s2

N2,g2−→ 2 s′2, N1 ∩N2 = N2 ∩N1 6= ∅ andg1 ∧ g2 is satisfiable,

then〈s1, s2〉
N1∪N2,g1∧g2−−−−−−−→ 〈s′1, s′2〉.

– If s1
N,g−→1 s′1, whereN ∩N2 = ∅ then〈s1, s2〉 N,g−→ 〈s′1, s2〉.

– If s2
N,g−→2 s′2, whereN ∩N1 = ∅ then〈s1, s2〉 N,g−→ 〈s1, s

′
2〉.

The first rule is applied when there are two transitions in the automata which can
be fired together. This happens only if there is no shared name in the two automata that
is present on one of the transitions but not present on the other one. In this case the
transition in the resulting automaton has the union of the name sets on both transitions,
and the data constraint is the conjunction of the data constraints of the two transitions.
The second rule is applied when a transition in one automaton can be fired indepen-
dently of the other automaton, which happens when the names on the transition are not
included in the other automaton. The third rule is symmetric to the second one. A para-
metric picture for the product of the CA of the Sender, the Receiver, the Medium and
the synchronous channels in Example 1 is given in Figure 4.

Another operator that is helpful for abstraction purposes and can be used in Reo
to build connectors from networks by declaring the internal topology of the network
as hidden is the hiding operator. Hiding takes an input a constraint automatonA =
(S, s0, N ,−→) and a non-empty node-setM ⊆ N . The result is a constraint automa-
tonhide(A , M) that behaves asA except that data flow at the nodesA ∈ M is made

6 Sun Meng and Farhad Arbab

{A} {M1,M2} {M3,M4} {B}

{M5,M6}
d =d =succ

{M5,M6} {M3,M4}

d =dA d =d =dM1 M2 d =d =dM3 M4 d =dB

d =d =!M5 M6
d =d =!M3 M4

M5 M6

Fig. 4. The Product of Constraint Automata for the Components and Channels in Fig.3

invisible. Formally,hide(A ,M) = (S, s0,N \M,−→M , Q0,M) wheres
N̄,ḡ−→M s′

iff there exists a transitions
N,g−→ s′ such thatN̄ = N \ M and ḡ = ∃M [g]. Here

∃M [g] stands short for
∨

δ∈DA(M) g[dA/δ.A|A ∈ M], whereg[dA/δ.A|A ∈ M] de-
notes the syntactic replacement of all occurrences ofdA in g for A ∈ M with δ.A.
Therefore,∃M [g] formalizes the set of data assignments forN̄ that are obtained from
a data assignmentδ for N whereg holds by dropping the assignments for the nodes in
N ∩M .

3 Resource-Sensitive Timed Constraint Automata

In this section, we present an extension of the constraint automata model for Reo cir-
cuits that yields the basis for reasoning about resources in temporal behavior of channel-
based component connectors.Resource-Sensitive Timed Constraint Automata(RSTCA
for short) rely on the assumption that the execution time of interactions depends on the
available resources, while timeout is also permitted. As we have indicated previously,
we will add new dimensions to the CA model such that the temporal properties can be
properly specified. We consider both timeout behavior and the time being taken when
the interactions being executed in the system evolution. The time values will not only
depend on the corresponding operation to be performed and the state that the system
resides in. Therefore, we have two types of transitions:

– interactive transitions where the time needed for the interaction depends on the
available resource value, and

– timeouttransitions where the system can evolve after a given time while no inter-
action happens.

Before touching the technical details for RSTCA, we first consider a mathemati-
cal account of the notion of resource. According to [19], the following properties are
reasonable requirements for a model of resource:

On Resource-Sensitive Timed Component Connectors 7

– A setR of resource elements;
– A (partial) combination◦ : R×R ⇀ R of resource elements;
– A comparisonv of resource elements; and
– A zero resource elemente.

which correspond to a preordered partial commutative monoid(R, ◦, e,v), subject to
the condition that ifr v s andr′ v s′ thenr ◦ r′ v s ◦ s′. For simplicity, we use
(N, +, 0,≤) as the model of resource in the following. A resource assignment for re-
sourcer is given byr : n which means thatn units of resourcer is available. In general,
a resource assignment is a tuple of resource assignments〈r1 : n1, r2 : n2, · · · , rk : nk〉
for resourcesr1, r2, · · · , rk. A resource constraintrc for resourcer1, r2, · · · , rk is a
conjunction of atoms of the formri ./ m where./∈ {<,≤, >,≥,=}. RA denotes
the set of all resource assignments andRC the set of all resource constraints. We use
the symbol|= for the satisfaction relation for resource constraints which results from
interpreting resource constraints over resource assignments. The judgementr : n |= rc
is read as “resource assignmentr : n is sufficient to satisfyrc”. We say that a resource
constraintrc is satisfiable if there exists a resource assignmentx such thatx |= rc.
The monoidal structure allows us to define a multiplicative conjunction⊗ on resource
constraints, which is given by

r : n |= rc1 ⊗ rc2 iff there are two assignmentsr : n1 andr : n2 such that

n1 ◦ n2 v n, andr : n1 |= rc1 andr : n2 |= rc2

The semantics of such a multiplicative conjunction is: then units of resourcer is suf-
ficient to satisfyrc1 ⊗ rc2 just in case that it can be divided into two partsn1 andn2

such thatn1 units ofr satisfiesrc1 andn2 units ofr satisfiesrc2.
During the rest of the paper we will use the following notation:T = R≥0 ∪ {∞}

is the domain to define time values. We writeR |rc for the subset ofR in which all the
elements satisfy the resource constraintrc and{R → T} for the function space from
R to T, i.e., the set of possible functions with domainR and codomainT.

Definition 2 (Resource-Sensitive Timed Constraint Automata).A RSTCA is defined
as a tuple

T = (S, S0,N , R,−→)

whereS is a countable set of control states (also called locations),S0 ⊆ S is the set of
initial states,N is a finite set of nodes,R is a finite set of resource names, and the edge

−→⊆ (S ×T× S) ∪ (
⋃

N⊆N

S × {N} ×DC(N)×RC × {R → T} × S)

denotes the transitions and we have two types of transitions:

– timeout transitions:s
t−→ s′ wheret ∈ T;

– interactive transitions:s
N,g,rc,C−−−−−−−→ s′ whereN, g are as in ordinary constraint

automata,rc is the resource constraint that should be satisfied to trigger the execu-
tion of the transition, andC : R |rc→ T returns the time value that the transition
need to be completed, which depends on the available resource values.

8 Sun Meng and Farhad Arbab

A configuration inT is a pair〈s, x〉wheres ∈ S is a state andx is the tuple of resource
assignments.

For each states, the timeout transitions
t−→ s′ indicates the time that the system

can remain at the states waiting for an interaction to happen and the state to which the
system evolves if no interaction happens on time. An interactive transition represents a
set of possible interactions given by the transition instances that result by replacing the
data constraintg with a data assignmentδ whereg holds, and replace resource constraint
rc with a resource assignmentx at states which satisfiesrc respectively. The time dura-
tion for executing the such a transition instance will beC(x). Furthermore, available re-
source values might be changed throughout the computation and communication. Thus,
we posit the existence of a modification functionµ, in which µ(N, δ, x) = x′ has the
interpretation that the effect of the interactionδ at portN on resourcex is to modify it
to x′.

We also assume that the interactive transitions always have a higher priority than
timeout transitions, and if a RSTCAT have both an interactive transition and a timeout
transitions

t−→ s′ at a states, it means that the system will stay at states for t time
units and evolve to states′ if the interactive transition is not enabled in this duration. But
at any time point in[0, t), if it can interact with another system by taking the interactive
transition, the interaction will happen immediately and the system will move to another
state. This idea is represented in Figure 5, wheret1 ∈ [0, t) and the behavior of the
RSTCA on the left side is in fact like on the right side, i.e., the system remembers what
it can do at states in the duration[0, t) and do it whenever it is possible, and forget it at
time t, when it arrives at a new states′.

N,g,rc,C

t t
ss

s’’

s’s’
1

s’’

N,g,rc,C N,g,rc,C

1t−t
s

Fig. 5. Timeout and Interactive Transitions

A state is calledterminaliff it has no outgoing interactive transitions and allows the
possibility for unbounded passage of time, i.e., timeout transitions are not allowed in it.

Given a states and resource assignmentx, a transition instance〈s, x〉
N,δ,C(x)
−−−−−−−→

〈s′, x′〉 denotes that if theN -interaction is available,g holds for data assignmentδ and
the resource assignmentx satisfiesrc, then the transition happens afterC(x) units of
time, the new state will bes′ and the available resource after the transition is given by
x′.

Definition 3. For a given RSTCAT , supposes0 be a state andc0 = 〈s0, x〉 a possible
configuration ofT . A tuple(c0, N, δ, t̄, t, c) is a step ofT for the states0 if there exists

On Resource-Sensitive Timed Component Connectors 9

a configurationc = 〈s, x′〉 andk ≥ 1 statess1, s2, · · · , sk such that for all1 ≤ j ≤ k

we havesj−1
tj−→ sj , and there exists a transition〈sk−1, x〉

N,δ,C(x)
−−−−−−−→ 〈s, x′〉 such

that t̄ = [
∑k−1

j=1 tj ,
∑k

j=1 tj) andt = C(x). We denote bySteps(T , s) the set of steps
of T for the states.

We say that a timeds-run of T is a (finite or infinite) sequence of successive steps
of T starting in states. Formally, a timeds-run is a sequence of steps as

(c0, N0, δ0, t̄0, t0, c1), (c1, N1, δ1, t̄1, t1, c2), · · · (1)

where c0 = 〈s, x〉 for some possible resource assignmentx at states. We denote
by TR(T , s) the set of timeds-runs of T . In addition, we say that the sequence
(N0, δ0, t̄0), (N1, δ1, t̄1), · · · is a functionals-run of T if there is a timeds-run of
T as given in (1).

Intuitively, a step is an interactive transition proceeded by zero or more timeout
transitions. The duration̄t in a step(c0, N, δ, t̄, t, c) wherec0 = 〈s0, x0〉 andc = 〈s, x〉
indicates the possible time values when an interaction could start. Additionally, timed
runs include both time values which inform us about possible timeouts (denoted by the
intervalst̄i) and the time consumed to execute the interactive transitions in each step of
the run.

For the same timed run in a RSTCA, there may exist different instances which are
obtained by instantiating every time intervalt̄i by a concrete time valuêti ∈ t̄i.

Definition 4. Suppose(c0, N0, δ0, t̄0, t0, c1), (c1, N1, δ1, t̄1, t1, c2), · · · is a timed run
for a given RSTCAT , the sequence(c0, N0, δ0, t̂0, t0, c1), (c1, N1, δ1, t̂1, t1, c2), · · ·
is an instanced timed run if for alli, t̂i ∈ t̄i. Additionally, we say that the sequence
(N0, δ0, t̂0), (N1, δ1, t̂1), · · · is a instanced functional run ofT .

Example 2.Figure 6 shows a resource-sensitive timed variant for the CA of the compo-
nents and channels of Parrow’s Protocol. Here we assume that the internal computation
of Sender takestS time units, while the exact time of the Medium and Receiver are
tM andtR respectively. For all the other interactive transitions of the components, we
assume that there is no constraints on the resources and the transitions are performed
immediately. For the three synchronous channels, we assume that the communication
time depends on the bandwidth, i.e., the amount of data that can be transferred over a
certain period of time. In this example, the resource constraint for these channels is that
the bandwidthw should be more than10k/s, and the duration for the interaction over
every synchronous channel is1/w time units.

We now explain how to construct a RSTCA via product and hiding. In the following
we assume that the common nodes are those where data flow has to be synchronized.

Definition 5. Let T1 = (S1, S
1
0 , N1, R,−→1) and T2 = (S2, S

2
0 ,N2, R,−→2) be

two RSTCA, their productT1 ./ T2 is the RSTCAT = (S, S0, N , R,−→) where
S = S1×S2, S0 = S1

0×S2
0 , N = N1∪N2 and the interactive transitions are defined

by the following synchronization and interleaving rule:

10 Sun Meng and Farhad Arbab

{M6}

d =!

Sender

d =d
{A}

t

{M6}
d =succ

Medium
{M2}

d =d or d =!
{M3}

t
{M5} {M4}

d =!

{M4}

t
{B}

d =d

{M5}

Receiver

Synchronous channels

{M1,M2}
d =d
w>10k/s
1/w

{M3,M4}

w>10k/s
1/w

{M5,M6}

w>10k/s
1/w

A S

d =d
{M1}

M1

M6

M6

M

d =dM2

M3 M3

M1 M2 d =dM3 M4 d =dM6M5

d =succ

d =d

M5

M4

M4d =!M5

R

B

Fig. 6. The RSTCA for the Components and Channels in Fig.3

– If s1

N1,g1,rc1,C1−−−−−−−→1 s′1, s2

N2,g2,rc2,C2−−−−−−−→2 s′2, N1 ∩N2 = N2 ∩N1 6= ∅, g1 ∧ g2 and

rc1 ⊗ rc2 are satisfiable, then〈s1, s2〉
N1∪N2,g1∧g2,rc1⊗rc2,C1¯C2−−−−−−−−−−−−−−−−−−−−→ 〈s′1, s′2〉.

– If s1

N,g,rc,C−−−−−−−→1 s′1, whereN ∩N2 = ∅ then〈s1, s2〉
N,g,rc,C−−−−−−−→ 〈s′1, s2〉.

– If s2

N,g,rc,C−−−−−−−→2 s′2, whereN ∩N1 = ∅ then〈s1, s2〉
N,g,rc,C−−−−−−−→ 〈s1, s

′
2〉.

and the following rules for timeout transitions:

s1
t1−→ s′1, s2

t2−→ s′2, t1 = t2 = t

〈s1, s2〉 t−→ 〈s′1, s′2〉

s1
t1−→ s′1, s2

t2−→ s′2, t1 < t2

〈s1, s2〉 t1−→ 〈s′1, s2〉, s2
t2−t1−→ s′2

s1
t1−→ s′1, s2

t2−→ s′2, t1 > t2

〈s1, s2〉 t2−→ 〈s1, s′2〉, s1
t1−t2−→ s′1

The interleaving rules are in the style of labelled transition systems. They formalize
the case where no synchronization is required since no common nodes are involved.
The synchronization rule expresses the synchronization case which means that both
automata have to “agree” on the I/O-operations at their common nodes, while the I/O-
operations at their individual nodes is arbitrary. In the synchronization,C1¯C2 depends
on the allocation of resources: if resource assignmentr : n satisfiesrc1 ⊗ rc2, then
C1 ¯C2(r : n) = max{C1(r : n1), C2(r : n2)} wheren1 ◦ n2 v n andr : n1 |= rc1,
r : n2 |= rc2. In general, there may be different allocation strategies that satisfy the
condition. Thus, for every such allocation, there is a corresponding value forC1¯C2(r :
n). To decide the exact time value, the concept of scheduler is needed. The details are
not of importance here and we will leave the problem of how scheduling can be included
in the RSTCA framework as future work.

On Resource-Sensitive Timed Component Connectors 11

Note that the definition for this composition operator is an extension of the original
product of constraint automata, which has the feature of being neither parallel nor se-
quential. But it is more powerful than classical sequential and parallel operators and is
the source of the expressive power of Reo: not only it does the sequential composition
of asynchronous steps, it simultaneously also composes synchronous steps in parallel.
More discussions on the reason for this form of composition can be found at [5].

{A}
t t

{M5,M6} {M3,M4}

w>10k/s
1/w

w>10k/s
1/w

1/w
w>10k/s

{M1,M2}

{M3,M4}

w>10k/s
1/w

td =d
{B}

{M5,M6}

w>10k/s
1/w

B R

d =d =dM3 M4

d =d =dM1 M2

S

d =d =succM5 M6

d =dA M

d =d =!M5 M6 d =d =!M3 M4

Fig. 7. The Product of the RSTCA for the Components and Channels in Fig.3

Example 3.Consider the RSTCA for the components and channels of Parrow’s Proto-
col as given in Figure 6. Composing them together via the product operator yields the
RSTCA as given in Figure 7.

The effect of hiding a node that is internal is that data flow at that node is no longer
observable from outside. However, the resource is still consumed and the time being
taken should remain the same whether or not the node is hidden.

Definition 6. The hiding operator takes as input a RSTCAT = (S, S0, N , R,−→)
and a non-empty node-setM ⊆ N . The result is a RSTCAhide(T ,M) that be-
haves asT except that data flow at the nodesA ∈ M is made invisible. Formally,
hide(T ,M) = (S, S0, N \M,R,−→M) where

– s
N̄,ḡ,rc,C−−−−−−−→M s′ iff there exists a transitions

N,g,rc,C−−−−−−−→ s′ such thatN \M =
N̄ and ḡ = ∃M [g]. Here∃M [g] stands short for

∨
δ∈DA(M) g[dA/δ.A|A ∈ M],

whereg[dA/δ.A|A ∈ M] denotes the syntactic replacement of all occurrences of
dA in g for A ∈ M with δ.A.

and the timeout transitions
t−→M s′ iff there exists a timeout transitions

t−→ s′.

4 Simulation

Simulation relations were first introduced by Milner in [14] for the purpose of compar-
ing programs, and widely used later to show abstraction and refinement between models

12 Sun Meng and Farhad Arbab

and specifications. They provide a sufficient condition for language inclusion that can
be established with low complexity, and their precongruence properties are suited for
compositional reasoning. In [5] simulation relations for ordinary constraint automata
were defined to verify if two automata are language equivalent or the language of one is
contained in the language of the other. In this section we propose a notion ofresource-
sensitive timed simulationas a way to guarantee not only the inclusion of languages
induced by Reo circuits, but also a higher (or at least equal) performance. For example,
we may ask a connector implementation to be always faster than what is required by
the specification when the same resource is consumed, where both the specification and
the implementation are given as RSTCA.

We first consider the non-timed version of simulation for ordinary constraint au-
tomata. As discussed in [5], one constraint automatonT is simulated by another con-
straint automatonA if all the languages that are accepted byT are also accepted byA .
In addition to the non-timed simulation, we require some time conditions to hold. For
example, we may hope a constraint automata (the implementation) to be always faster
than the time constraints imposed by another (the specification) while no more resource
is needed. Additionally, we may require that the implementation always complies with
the timeouts established by the specification.

We first introduce the functional simulation relation.f where only functional as-
pects of a system are considered while the performance aspects such as the time needed
for an interaction are ignored. However, we should note that the time that a system
spends waiting for the environment to react has the possibility to affect the behavior
of the system. This is because the time may cause a timeout transition and change the
system from one state to another. Therefore, a simulation relation focusing on the func-
tional behavior must also take into account the maximal time the system can stay in
each state.

Definition 7. For a given RSTCAT = (S, S0, N , R,−→), the functional simulation
is defined as the coarsest binary relation.f⊆ S × S, such that for alls1, s2 ∈ S with
s1 .f s2 and allN ⊆ N , δ ∈ DA(N), resource assignmentx andt ∈ T,

– if 〈s1, x〉 N,δ,t−→ 〈s′1, µ(N, δ, x)〉, then there existss′2 ∈ S and t′ ∈ T, such that

〈s2, x〉 N,δ,t′−→ 〈s′2, µ(N, δ, x)〉 ands′1 .f s′2,

– if s1
t−→ s′1, then there existss′2, such thats2

t−→ s′2 ands′1 .f s′2.

One RSTCAT2 functionally simulates another RSTCAT1 (denoted asT1 .f T2) iff
every initial state ofT1 is functionally simulated by an initial state ofT2

1.

Note that the idea underlying Definition 7 is that if one RSTCAT2 functionally
simulatesT1, thenT1 does not allow any behavior that is forbidden inT2. In the fol-
lowing, we introduce another notion of simulation for RSTCA, which focuses on not
only functional behavior, but also resource-related timing properties. The simulation
establishes requests over the function from resource values to time values correspond-
ing to the performance of the interactive transitions if they are in the same context of
resources.

1 Here we assume thatT1 andT2 rely on the same set of names and resources.

On Resource-Sensitive Timed Component Connectors 13

Definition 8. For a given RSTCAT = (S, S0, N , R,−→), the (strong) simulation is
defined as the coarsest binary relation.⊆ S × S, such that for alls1, s2 ∈ S with
s1 . s2 and allN ⊆ N , δ ∈ DA(N), a resource assignmentx andt ∈ T,

– if 〈s1, x〉 N,δ,t−→ 〈s′1, µ(N, δ, x)〉, then there existss′2 ∈ S and t′ ∈ T, such that

t ≤ t′ and〈s2, x〉 N,δ,t′−→ 〈s′2, µ(N, δ, x)〉 ands′1 . s′2,

– if s1
t−→ s′1, then there existss′2, such thats2

t−→ s′2 ands′1 . s′2.

One RSTCAT2 simulates another RSTCAT1 (denoted asT1 . T2) iff every initial
state ofT1 is simulated by an initial state ofT2.

From Definition 7 and 8, we can easily derive the following result:

Corollary 1. Any strong simulation is also a functional simulation.

{A}
d =d
w>10k/s

1/w

3

{B}
d =d
w>10k/s

1/w

3

{A}

w>10k/s
2/w

{B}

w>10k/s
1/w

A

B

d =dA

d =dB

1

1

1s

s’

s’’

s

s’

s’’

2

2

2

Fig. 8. Simulation

Example 4.We consider the two RSTCA given in Figure 8 for two different implemen-
tations of a FIFO channel offered by two providers. Here, states1 functionally simulates
states2 in the same figure, but does not (strongly) simulate it. But on the other direction,
we have boths1 .f s2 ands1 . s2.

We shall need the familiar property that simulation is a congruence with respect to
the product and hiding operators, that is, in our setting, represented by the following
theorem:

Theorem 1. If T1 . T ′
1 , andT2 . T ′

2 , then

(1) T1 ./ T2 . T ′
1 ./ T ′

2 ,
(2) hide(T1,M) . hide(T ′

1 , M).

Proof. The proof is carried out by constructing witnessing simulations. We consider the
following relation

R = {(〈s1, s2〉, 〈s′1, s′2〉) : s1 . s′1, s2 . s′2}

for (1) and show it to be a simulation.

14 Sun Meng and Farhad Arbab

We only consider the synchronization case. The proof for interleaving and time

out transitions are similar. If〈〈s1, s2〉, x〉 N,δ,t−→ 〈〈ŝ1, ŝ2〉, µ(N, δ, x)〉 is a transition in
T1 ./ T2, then according to Definition 5, there existsN1, N2 ⊆ N , resource con-

straintsrc1, rc2, and some functionC1 and C2, such thats1

N1,g1,rc1,C1−−−−−−−→1 ŝ1 and

s2

N2,g2,rc2,C2−−−−−−−→2 ŝ2 are transitions inT1 andT2, respectively, whereN = N1 ∪N2, δ
satisfiesg1 ∧ g2, x satisfiesrc1 ⊗ rc2, and there exists an allocation of resources such
thatC1¯C2(x) = t. Sinces1 . s′1, s2 . s′2, it follows that there existC ′1 andC ′2, such

thats′1
N1,g1,rc1,C′1−−−−−−−→1 ŝ′1 ands′2

N2,g2,rc2,C′2−−−−−−−→2 ŝ′2 for someŝ′1 andŝ′2 are transitions in
T1 andT2 respectively, and̂s1 . ŝ′1, ŝ2 . ŝ′2. Moreover, if we consider the same allo-
cation of resources, then we haveC1 ≤ C ′1 andC2 ≤ C ′2 due to Definition 8. Therefore,

C ′1 ¯ C ′2(x) ≥ t. Let t′ = C ′1 ¯ C ′2(x), then〈〈s′1, s′2〉, x〉
N,δ,t′−→ 〈〈ŝ′1, ŝ′2〉, µ(N, δ, x)〉

is a transition inT ′
1 ./ T ′

2 and(〈s1, s2〉, 〈s′1, s′2〉) ∈ R.
To prove (2) it suffices to show that given a RSTCAT = (S, S0, N , R,−→), any

simulation. for T is also a simulation forhide(T ,M). By considering Definition 6,
we can obtain the result easily.

5 Related Work

Some timed models have been proposed for coordinating services with real-time proper-
ties. For example, Arbabet al.[2] proposed an operational semantics for Reo in terms of
Timed Constraint Automata (TCA) and introduced a temporal logic for specifying and
verifying real-time properties or connectors. Orthogonally, a Continuous-Time Con-
straint Automata (CCA) model was proposed in [6], which integrates the features of
continuous-time Markov Chains, and introduces a stochastic variant of the constraint
automata model where transitions might have a certain delay according to some prob-
ability distribution over a continuous time domain. [8] presented an approach for auto-
matic translation from web service choreography description to timed automata. There
are also some work on time extensions of finite state machines [17], timed interface
automata [7], etc. These models have the implicit assumption that unbounded resources
are available. However, in practice, real-time systems are always restricted by resources.
To deal with this problem, several approaches have been proposed to integrate real-time
models with the scheduling and resource allocation, which aim to facilitate reason-
ing about systems sensitive to real-time and resource related properties. For example,
[10] proposed a compositional model for reasoning about schedulers which allocate re-
sources to tasks, but it is only suitable to analyse asynchronous systems because it is
based on an asynchronous language. [9] defined a hierarchy of resource models to han-
dle the resource allocation and reclamation. However, the models are relatively abstract
and not compositional. [13] introduced a timed extension of the extended finite state
machine model and a testing methodology, taking into account the temporal issues as
we discussed in this paper. However, there is no discussion about compositionality for
that model.

As in Continuous-Time Constraint Automata model [6], we also have two types
of transitions in the RSTCA model describing interactive transitions and timeout tran-

On Resource-Sensitive Timed Component Connectors 15

sitions. The difference consists of two aspects: On one hand, our model of timeout
transitions is not restricted to Markovian transitions, instead we use time variables to
describe the time information, which can be more general and satisfy other kinds of dis-
tributions. On the other hand, the time that an interactive transition will take is not just
a simple time value describing time passage, but depends on the available resources.

6 Conclusion

In this paper we provided an operational model for reasoning about resource and time
information related to component connectors under the assumption that the time dura-
tion for interactions depends on the available resources. We defined the RSTCA model
for this purpose, together with notions of simulation that are preserved under the com-
position operators product and hiding. Since these are the only operators needed for
compositional construction of networks in the channel-based coordination language
Reo, our framework fits well in this context and provides the basis for resource-sensitive
performance analysis of component connectors.

In terms of future work, what we would like to do in the next step is the integration
of our model and the stochastic timed model as in [6]. Another issue we intend to study
is to investigate some resource allocation and consumption strategies, like scheduling
[15]. Development of special models and logics for reasoning about resource-sensitive
timed features in Reo will also be studied.

References

1. R. Alur and D. Dill. A theory of timed automata.Theoretical Computer Science, 126(2):183–
235, 1994.

2. F. Arbab, C. Baier, F. de Boer, and J. Rutten. Models and Temporal Logics for Timed
Component Connectors. In Jorge R. Cuellar and Zhiming Liu, editors,SEFM2004, 2nd
International Conference on Software Engineering and Formal Methods, pages 198–207.
IEEE Computer Society, 2004.

3. Farhad Arbab. Reo: A Channel-based Coordination Model for Component Composition.
Mathematical Structures in Computer Science, 14(3):329–366, 2004.

4. Farhad Arbab, Christel Baier, Jan Rutten, and Marjan Sirjani. Modeling component connec-
tors in reo by constraint automata (extended abstract). In Antonio Brogi, Jean-Marie Jacquet,
and Ernesto Pimentel, editors,Proceedings of FOCLASA 2003, the Foundations of Coordi-
nation Languages and Software Architectures, volume 97 ofENTCS, pages 25–46. Elsevier,
2003.

5. Christel Baier, Marjan Sirjani, Farhad Arbab, and Jan Rutten. Modeling component connec-
tors in Reo by constraint automata.Science of Computer Programming, 61:75–113, 2006.

6. Christel Baier and Verena Wolf. Stochastic Reasoning About Channel-Based Component
Connectors. In P. Ciancarini and H. Wiklicky, editor,COORDINATION 2006, volume 4038
of LNCS, pages 1–15. Springer-Verlag, 2006.

7. L. de Alfaro, T. A. Henzinger, and M. Stoelinga. Timed interfaces. InProceedings of EM-
SOFT, volume 2491 ofLNCS, pages 108–122. Springer, 2002.

8. Gregorio Diaz, Juan-José Pardo, Maŕıa-Emilia Cambronero, Valentı́n Valero, and Fernando
Cuartero. Automatic Translation of WS-CDL Choreographies to Timed Automata. In Mario
Bravetti and Lëıla Kloul and Gianluigi Zavattaro, editor,EPEW 2005 and WS-FM 2005,
volume 3670 ofLNCS, pages 230–242. Springer, 2005.

16 Sun Meng and Farhad Arbab

9. Naiyong Jin and Jifeng He. Resource Semantic Models for Programming Languages. Tech-
nical Report 277, UNU/IIST, April 2003.

10. G. Lowe. Scheduling-oriented models for real-time systems.The Computer Journal, 38:443–
456, 1995.

11. M. P. Papazoglou and D. Georgakopoulos. Service Oriented Computing.Comm. ACM,
46(10):25–28, 2003.

12. Daniel A. Menasće. Composing Web Services: A QoS View.IEEE Internet Computing,
8(6):88–90, 2004.

13. Mercedes G. Merayo, Manuel Núñez, and Ismael Rodrı́guez. Extending efsms to specify
and test timed systems with action durations and timeouts. In E. Najm et al., editor,FORTE
2006, volume 4229 ofLNCS, pages 372–387. Springer, 2006.

14. Robin Milner. An algebraic definition of simulation between programs. In David C. Cooper,
editor,Proceedings of the 2nd International Joint Conference on Artifiial Intelligence, Lon-
don, UK. William Kaufmann, British Computer Society, 1971.

15. M. R. Mousavi, M. A. Reniers, T. Basten, and M. R. V. Chaudron. PARS: A Process Algebra
with Resources and Schedulers. In1st Int. Workshop on Formal Modeling and Analysis of
Timed Systems, FORMATS’03, volume 2791 ofLNCS, pages 134–150. Springer, 2003.

16. Manuel Ńuñez and Ismael Rodrı́guez. Conformance testing relations for timed systems. In
5th Int. Workshop on Formal Approaches to Software Testing (FATES 2005), volume 3997 of
LNCS, pages 103–117. Springer, 2006.

17. J. C. Park and R. E. Miller. Synthesizing protocol specifications from service specifications in
timed extended finite state machines. In17th IEEE International Conference on Distributed
Computing Systems, ICDCS’97, pages 253–260. IEEE Computer Society, 1997.

18. J. Parrow.Fairness Properties in Process Algebra. PhD thesis, Uppsala University, Sweden,
1985.

19. David Pym and Chris Tofts. A calculus and logic of resources and processes.Formal Aspects
of Computing, 18:495–517, 2006.

