Model Checking of Extended OCL Constraints
on UML Models in SOCLe*

John Mulling** and Raveca Oarda

L INRIA Rhdne-Alpes, Domaine Scientifique de la Doua, Ba&tohard de Vinci,
21, av. Jean Capelle - 69621 Villeurbanne Cedex. FRANCE.
2 Ecole Polytechnique de Montréal, Campus de I'U. de Maifriéavillon Mackay-Lassonde,
2500, Chemin de Polytechnique - Montréal (Qc) CANADA, H3KB 1

Abstract. We present the first tool that offers dynamic verification xteeded
OCLconstraints otUMLmodels. It translates@dMLmodel into an Abstract State
Machine (ASM) which is transformed by an ASM simulator into abstract
structure calledJM_-valued OO TransitionSyste(@@OT Sy ar1.). The Extended
Object Constraints Languag&OCL) is interpreted on computation trees of this
OOT Svwumr allowing for the statement of bot@CLexpressions modelling the
system and OO primitives binding it tdMLon the one hand, and safety or live-
ness constraints on the computation trees ofUMi/OCL model on the other
hand. Anon-the-flymodel checking algorithm, which provides the capability to
work, at any time, on as small a possible subset of statescasseary, has been
integrated into the tool.

1 Introduction

1.1 Motivation

Why use UML/OCLIn recent years, the Unified Modeling LanguatgMl) has been
accepted as de factostandard for object-oriented software design. UiMLnotation
supports designers by allowing them to express both straicind behavioral aspects
of their design, through class diagrams and statechartatiegrespectively. Based on
mathematical logic, the Object Constraint Langua@€l) is a notation embedded in
UMLallowing constraint specifications such as well-formedresmnditions (e.g. in the
definition of UMLitself), and contracts between parts of the modeled systagn ¢lass
invariants or the pre- and post-condition methods).

Why use formal methods in UML/OCEurthermore, used alongside formal method-
based toolslML/OCLalso offers a unique opportunity for developing complexritr ¢
ical software systems with high quality standards in an tidal context. Such systems
require a high level guarantee that they can cope with tipeicifications from end to
end of the development cycle.

* The ScLe project is sponsored by Defence Research and Developnarad& (DRDC)
(Government of Canada).

** Corresponding author. On leave froficole Polytechnique de Montréal. Supported by an
NSERC individual research grant (Government of Canada).

1.2 Related work

In this section we describe various proposed tools and iamiverification frame-
works that integrat€/MLLOCLin some way. These are divided into the following cat-
egories related to the depth of integration. First, tool$ggening UMLmodel checking
of logic whereOCLis not embedded. Second, proposals to embed or ex3dn a
clean and systematic way, to take liveness properties toumnt, which have model
checking in mind but where verification issues are not extehsdiscussed. Finally,
UMLtools for OCLconstraints that support something other than model chgds a
validation technique. (Due to space limitations, thesed&geussed in Appendix A-1).

Model checking of UML without OCIAIl these tools are based on translationUa¥iL
models into the modeling language of some model checking\tdlbile some of them
opt explicitly for the specification language of the modetcker itself to specify prop-
erties e.g.([1, 2, 3], others define methods based on theadiagatic capabilities of
UMLto specify properties before verification [4, 5, 6].

The tool proposed in [2] maps the static part dJ&ILmodel, includingOCL ex-
pressions on the object diagrams, ontof@8Mand offers static verification including
syntactic correctness according to the well-formednesstcaints of theUMLmeta-
model, and coherence of the object diagram with respecetoléiss diagram. However,
OCLexpressions are not integrated in thklLsemantics, and are not evaluated as the
model evolves. The statecharts modeling the behavior, apped ont&MV Similarly,
in [1] a subset olUMLstatechart diagrams is translated ifimmela , the modeling
language of th&PIN model checker. Specifications are then expressedin(Linear
Temporal Logic), the specification languageS#IN, for checking UMGQUMLon-the-
fly Model Checking, [3]) is an environment that integratesYA€Kmodel checker into
UML UMCalso translatet§)MLstatecharts restricted tignals (no method calls or
returns), into labeled transition systems, the modelingleage ofJACK, while prop-
erties are specified IACTL, the specification language fdACK

In [4], the authors propose an architecturediLmodel checking based on a trans-
lation of UMLmModels intdF , a language for the modeling and verification of hierarch-
ical extended communicating automata.llfh, properties are specified by means of
automata calledbserver automatahat are expressive enough to specify safety prop-
erties. Furthermore, an extension WML, (observers classgshas been proposed to
verify safety properties, which would then be translatezhglwith theUMLmodel
into IF . The resultingF automata are then translated into the specification lareguag
of equivalence-checkers lilVALUATORIN [5], the authors proposdaJML This tool
translates a restricted form OMLstatechart diagrams inRromela . To express prop-
erties, statechart diagram annotations cadiedeotypesire used. The annotated state-
chart diagram is then translated ihfdL before the model checking is done w&RIN.

In HUGQ6], a restricted form ofJMLstatechart diagrams is translated iRtmmela .
Collaboration diagramsre used to specify properties. These are more expressaine th
vUMLstereotypes. They allow some sequence patterns betwesrtohpd statecharts
events to be described, but are not expressive enough tdyspeare complex prop-
erties. Collaboration diagrams are then translated int@iehBautomaton an&PIN
solveson-the-flythe emptiness problem for the automata resulting from tinetsypn-
ization of thePromela automata with the Biichi automaton.

Toward model checking OCL and beyofithere are also many logical extensions of
OCLwith modalities[7, 8, 9] or translations o®CLinto modal logic [10].

In [10], an object-based version @fTL calledBOTLis used.BOTL, in contrast
to EOCLdoes not exten@CLby temporal operators. Instead, it translates a fragment
of OCLinto BOTL This means that temporal extensionsQ€L could be translated
into BOTL as well, but such extensions are not provided. Hence, \aiiic issues
for these extensions cannot be addressed. The purp&@®@Tfis model checking of
existingOCL A strength of this work is that it provides a clear and precibject-based
operational model which we reuse @OT' Sy 5,1, with minor modifications together
with extensions to cope with inheritance.

In [8] O, (OCL is presented. Thus exten@CL with temporal constructs using
observational:,-calculus, a two-level temporal logic in which temporaltfeas at the
higher level interact with the domain specific lo@€Lat the lower level. Even though
0, (OCL was clearly designed with verification in mind, verificatissues have not
been extensively discussed in the paper. The strength ©fathik is that it provides
a unified framework to design new logics combining the clgahynamic power of
the u-calculus with the static expressivenessEL (which we reuse irEOCLwith
minor modifications to cope withOT Sy andCTL). In [7], the authors present an
OCLextension, also based @TL. This extension concerns system behavior modeled
with statecharts, but evolution of attributes is not coeséd. In [9], an extension of
OCLwith elements of a bounded linear temporal logic is propo$ee semantics of
this extension is given with respect to sequences of stapesenting theMLmodel
history. However, the authors do not discuss how to comgteet sequences from the
model’s behavioral diagrams.

SOCLe: model checking OCL on UMStarting from a clean framework drawn from
the above second category proposals and taking advantégssohs learned from the
above first category proposals, we present thelfidtmodel checker oEOCL

1.3 Content of the paper

The work presented in this paper only addresses tool-telaseies: The specification
of an extended Object Constraint LanguaB®©CL (Sec. 2) i.e. its syntax (Sec. 2.2),
and operational semantics (Sec. 2.3) in terms of a transifistem extended with state
labels denotindJML-typed valuesQOT Sy 1) (Sec. 2.1), together with some illus-
trations of how this language might be used in practice t@sttpa wider range of
constraints on OO systems (Sec. 2.4); the sketch of the pasiciples of the static
(Sec. 3.1) and dynamic (Sec. 3.2) semantics of the modelimgulagédJMLon an Ab-
stract State MachinéASN); and a short overview of thed® Le tool by itself (Sec. 4).
A quick demonstration of the tool is given in Appendix A-2 \eh8ec. 5 provides the
conclusion.

Out of the scope of the papddue to space limitations, then-the-flymodel checking
algorithm of EOCLon OOT Sy that is implemented in the tool is not presented
here. The reader is referred to [11] for a systematic prasentof this algorithm, but
in summary, it is a version of Vergauven and Lewdis-the-flylinear timeCTL model
checking algorithm [12] extended to cope WithOT' S75r, andEOCL The ASMse-
mantics ofUMLitself are presented only to the extent necessary for utatating the

way aOOT Syris uniformly generated from ablMILOCL model. For further de-
tails on Abstract State Machines, the reader is referred3pdnd [14] for a formal
presentation of thASMsemantics oUMLas implemented in the tool.

2 Extended OCL

We are now going to design logic that concentrates on thentigkéeatures of an
object-oriented system (Sec. 2.2). Accordingly, we wilfide the semantics of this
logic (Sec. 3) using a model callddVvL-valued Object-Oriented Transition System
(OOT Syar), which will be as simple as possible (Sec. 2.1) i.e. comaitnly the
features ofUMLsemantics addressable by the logic and nothing more. Theeed
parallelism or the manner of method invocation, for exampked not be parts of
OOTSU]\/[L.

2.1 The abstract operational model

Let us start with some notations that we will use in the paper:

— Y., afinite set ottlass namesanged over by;
Y'm, afinite set omethod namesanged over byn;
V, afinite set of variables;
— =, a partial order oveE. calledinheritance relation
— =, a partial order ovek’. x X, calledoverriding relationcompatible with=:
(=Xr-compatibility) , if (¢, m) <, (¢/,m) thenm = m/ andc <}, ¢
(i.e. an instance of method may only override a homonym irpealass);
— N, a countable indexing set ranged overiby; . . ;
— C = X. x N, the set ofnstances of classes
- M =C x X, x N, the set oinstances of methods
— & = C + M the set ofUM_ entities

As a first approximation, a®OT Sy 1, can be seen as a transition system whose
states are labeled withML-typed values. A sefype of basicUMLtypes is also defined:

T € Type = Void |Int |Bool | Obj“ | Met®™ | L(r) 1)

where typed/oid , Int andBool are defined in the usual way and, for everg 3.
andm € X,,,

Val®" ={¢ ¢ =p el x N
ValMet ™ = val®® x {m' :m/ <, m} x N

are respectively the set of all objects of the clagsd the set of all instances of the
methodm of objects of the class. Finally, L(7) is the type of lists of type-, with
element] (the empty list) and: :: w (for the list having the elemeiitas head and the
list w as tail). We will denote by al, the universe of values i.&.al = Urctype Val™,
and byVal, its extension with the undefined valug); Finally, letting the symbot~

denote a partial function, we define ttlass signaturéunctionC x M in the following
way:

CxM:X,—[V—Type]| x [Z, — [V — Type] — Type]|

which associates to a clagsthe declaratio(c) of its attributes, and the declaration
M (c) of its methods that is, for each method of the class, the deada of its formal
parameters and the type of its return paramgeter

Definition 1. AUMlIl:-valued Object-Oriented Transition Systé@OT S;r5,1) is a struc-
tureOT = (S, R, s¢) such that:

— S is a set of states. To each state S, are associated functions, o, vs andh
such that:

e ps: V — Val, avaluation of attributes and method parameters;in

e 0, :C — [V — Vdl], avaluation of objects active inconsistent wittC' x M
andp, (Cs will denote the domain af,);

o v : M — [[V — Val] — Val,], avaluation of instances of methods active
in s consistent withC' x M and ps (M will denote the domain of; and
~s(m). f, the value ins of the parametey in the instance of method);

e hs: M — S x {o, e}, ahistorywhich associates to each instance of method
active ins, a pebble and the state where this instance is or has beead:all
If sis the last state for the instance before being returnedptteble ise and
otherwise, it iso. The history will provide more particularly a concise and
elegant way to define tHeCL operator@pre. It has to be consistent witk;,
and=, i.e.:

(Xn-consistency)If (c,i,m,j) € M, thenm € C(c) or (m € C(¢') and
c =5,) (i.e. an instance of a method can be inherited);
(Zo-consistency)If (c,i,m,j) € Mg and(c,m) =<, (¢/,m') then

vi,jE/\/(Ca ia m/7j) g Ms

(i.e. the instance of an overriding method inhibits anyanse of overrid-
den ones);

— R C S x Sis atransition relation
— s € Sis the initial state.

A computatiororrun r in anOOT Sy, OT is an infinite sequence of states-
808182 - - - suchthats;, hi, siy1, hit1) € R, for eachi. We denote by|i], the ¢+1)-th
elementsg;, of the path, and bRun(OT) the set of all computation paths @7 . We
denote byRuns(OT) the subset oRun(OT) that comprises the computation paths
starting froms € S.

3 et functionsf; : X — Y; andf, : X — Ya. The functionfi x f2 : X — Y1 x Yz is the
function defined byfi x f2(x) = (fi(x), f2(x)).

2.2 Extended OCL syntax

We propose an extension @CL(EOCL working onOOT Sy a1, EOCLIis an exten-
sion of OCLwith CTL temporal operators and some first-order features. It isléwel
logic: intuitively, the upper level i€TL extended with quantifiers (the settefnporal
formulae F.,), and the lower level is a significant fragment@CL expressions as
defined in [15] (the set oftate formulae’.,,). In order to get a clean separation of
OCLexpressions from purely temporal properties, we resBiCt expressions to ap-
pearances within temporal operators or as atomic formula@Tda. EOCLis largely
inspired byBOTL[10] but is based on an instantiation of the temporal examgame-
work proposed in [8], and takes into account inheritanceasedriding in its semantics.
The EOCLsyntax is given in Fig. 1. The set of types©fLexpressions is the same

€(€ Pegp) i=z |v|ea|w(er,...,en) | e1 — iterate {x1; z2o=ez|es }|€) |
e @pre | e.owner | act(e)
Q€ Fep) =€ | ¢ | ¢ AU [VzE7: ¢ | EX¢|E[pUY] | AlpUY]

Fig. 1. EOCL syntax

one as thdJMLtype set defined in Eq. 1. We write- 7 to denote that expression
e € P.,p has the typer. We refer the reader to [11] for a complete definition of the
typing functiont. The rest of this section is devoted to an informal desaiptf the
meaning of state and temporal formulae. We postpone to Sth@formal description

of operational semantics based@WT Sy /1. -
State formula€®.,,,

— x is a variable inV. These includeelf, a special variable i®CLreferring to the
current context, fields of objects, parameters of methoddaual variables;

—visavalueinVal ;

— e.f is afield/parameter navigatianif e is an object (resp. a list of objects), thén
is a field (resp. a list of fields). H is a method (resp. a list of methods), theis a
parameter (resp. a list of parameters);

— w(ey,...ey,) stands for the application of amyary operator on booleans, integers
or lists.

— theiterate construct is th@©CLmain collection operator; It lets variahbie iterate
through values of the collection denoted &y stores successive values@fin
variablezo (which first evaluates tes), and returns the final value aof,. The
iterate construct is quite expressive and is used to encode adalitemiiection
operators (size, forall, exists, filter), that are also sufge by $cLe.

— @pre is a typicalOCLoperator. It refers to the value of a property at the method
call, and may be applied in a postcondition at the methodmetu

— act(e) signifies that the object or method instarde currently active. An object
becomes active when it is created and becomes inactive withesi whereas a
method becomes active when it is invoked (pushed onto angatliack) and be-
comes inactive after it has returned a value (is popped frentalling stack).

— e.owner denotes the object executing the metlaod

Temporal formulae.,, A formula is built inductively from boolean state formulae
(e € P.zp ande + Bool), classical propositional logic operators, (\, etc.), CTL
temporal operators (AX, EU, etc.), and type domain quansifiehe temporal operators
have the following intuitive meaning:

— EX¢ holds ins if there is a state next tosuch that the formula holds;

— E[¢U] holds ins if there is a path starting fromsuch that holds untily> holds;
— A[pUv] holds ins if for every path starting from, ¢ holds untily) holds;

- VzF 7 :¢holdsins if ¢ holds for all occurrencesof typer € Type;

The other usual auxilliary operators are obtained by coingithese basic operators. It
has to be noted that type domains being generally infinitantiiier scopes are also so.
2.3 Extended OCL semantics

Let OT = (S, R, s0), anOOT Sy 1. The semantics of state formulae is defined by
the function]_] : P.yp, — [S — Val,] defined as follows:

[v]s =v

[z]s = ps(z)

[wlel,...en)]s =w([ei]s---[en]s)

[e-f1s = 0s((c, 1)) (f) it [els = (¢,9)
=vs((c,i,m, 5)).f if le]s = (e,i,m, 5)

[e.owner]; = (¢,1), v_vhere lels = (e, i,m, j)

[act(e)]s = True iff [e]s €Cs+ M;

[er—iterate{x1;2x2 = ea | e3}]s
= [for z; € [e1]s do x2 := €3], (25]es].]
where
[for z1 € [| do x2 := €5 = [x2]s

[for 1 € h:: wdo xg :=¢]s = [for 1 € w do x5 := e]]ps[m,_,[[eﬂps[zwh]]
andp[x — e] stands for the state obtained fronby evaluatinge to e in p,. Finally
for any instance of metho@, i, m, j):

_ S lels if (¢;i,m, j) € dom(vs)andhs(c,i,m,j) = (s, ®)
[e@pre]. = {J_ otherwise

The semantics of temporal formulae (Fig. 2) is given by thatienF C S x Feyyp

2.4 Applying EOCL

Constraints are conditions which have to be fulfilled by th&tem. AnOCLconstraint
is defined as being in a context. We denote(hy,, the set of constraints defined by
the following:

ske <> [e]s = True
sFE o1 <= sF 9
sF @1 A @2 < (sF ¢1)and(s E ¢2)
SEVzbET:¢1 < sFE ¢1[z —] forall v e Val™
skE EXd)l < ElreRuns(OT)r[l] E (251
sF Ep1U¢2] <= Jrerun.(0T)

Jj>or[i] F ¢2 A Vo<k<;r[k] F ¢1
sF Alp1Udz] <= Vierun,(0T)

Jj>or[j] F ¢2 A Vo<k<;r[k] F ¢1

Fig. 2. Semantics of temporal formulae

k(€ Cegp) ::= context C'inv e | context C :: M pre e; post e

whereC' € Y. is the context of an invariant/ € /., is the context of a pre/postcondition
ande, e, e; are booleat®CLexpressions. Below, we illustrate how @CLconstraint
has its counterpart iEOCL

Invariant An invariant is a condition which has to be fulfilled by the &ya whenever
an instance of the context, or of a class inherited from theepd is active, and no
method ofselfis executing. Since th©@OT Sy, semantics oEOCLtakes into ac-
count inheritance, this can be expressed by the followimgtaint:

context C'inve =
AG[Vz - Obj® : act(z) : (Vmy € 2. My : ... Vmy, € 2.My)
(mact(mq) A ...—act(m,)) = €]

where

— Vm € z.M : e stands for the formulgm F Met“M : (z.owner = m) = e
— zis an active object of the clags

— {M, ... My} is the set of the methods of the claSs

— {mq,...m,} is the set of instances of the methods of the class

Pre/postconditionA pre/postcondition is verified if for each instanceMdfof the class
C, the post-condition holds wheW is returned whenever the pre-condition held when
M was called. This can be expressed by the following congtrain
context C :: M pree; postes =
vz Obj” s act(z) : Vm € 2.M :
AG[call(m) = AX[AG[return(m)] = es3]]

where

call(m) stands for the formulaact(m) A EX[act(m) A e1];
return(m) stands for the formulact(m) A AX[-act(m)];
z is an object of the class;

m is an occurrence of the methdd of the objectz.

Extended OCL constraint& OCLallows the expression of liveness properties. For in-
stance a templatfter/eventually could stand for the following property: whenevgr
is verified during the life of any instance 6f then eventually, will also be verified
during its life. This could be expressed as the extendedi@ins

contextC after e; eventuallye, =

AGle; = A[True U es]]

3 ASM semantics of UML

Why use ASM to define UMMVhile designing semantics of logic requires as simple
a model as possible, modelingMLby contrast, requires formalism that, liKe&SM
has already proved to be a simple and uniform fashion of niegi¢he operational
semantics of models as complex as programming languadgdwill allow a rich,
succinct and understandable operational semantiddtito be written. In this section,
we presentJMLand itsASMsemantics. Th&MLsemantics are presented only to the
extent necessary for understanding the wag@aii’ Sy 1, is uniformly generated from
anUMLOCLmodel. The reader is referred to [13, 14] for a more formasenation of
the ASMsemantics otJMLand the integration dDCLinto this semantics.

An ASMstate is a collection of sorts, and a set of enumerated fumefior these
sorts.ASMevolution is specified by a transition rule built from preaties, control sub-
rules and update sub-rules. Predicates are evaluatediaugto the current interpreta-
tion of theASMstate enumerated functions. Control rules supportingdeterminism
choose a set of update rules to be applied. Update rules yrtbdifnterpretation of the
currentASMstate functions, yielding successor states.

Basic model elements, such as class or method names, aredapgorts. More
complex elements, such as method declarations and stet&anaitions, are translated
into enumerated functions. The object diagram is mappedsieaific subset of these
functions, and represents the initial configuration of thHdLmodel (Sec. 3.1). From
a configuration, successor configurations are computeddiyating anASMrule that
captures the dynamic semanticddi¥iLmodels (Sec. 3.2). Edges are labeled with stat-
echart transitions fired as thiMLmodel evolves.

3.1 Static semantics of UML

The UMLmodels supported by the tool must contain exactly one claggam, one
statechart diagram for each class, and one object diagrathis| section we illustrate
the main features of the static semantics of these threeadrethrough the modeling
of a simple object-oriented component acting as a small nmgoell.

Class diagram Fig. 3 presents the supported features of the class dia@kassCell
models a simple memory cell with assignment, retrieval arateéimentation. Class
BackupCell models an extended memory cell with a restore functionaliotice how
classClient is tagged with thehread stereotype. As a result, a calling stack will be
associated with all instances of this class.

The first step to create teSMspecification is to map class, method and field names
to the followingASMsorts (note that an association is mapped to a field of the owne

Field .\ — E——@lass

content : int
get() : void
Method.\ Inheritance
set(i: int)
inc(i: int) Association

Zr Multiplicity

BackupCell be

<<thread>>

backup : int 0..x

Overriding Method @ set(i: int)
restore()

Client

Fig. 3. Example of a class diagram

class), which implement states of the abstract model defm&ec.2.1. More particu-
larly, heap implementsr while stack implementsy.

sort ClassName = {Cell, BackupClell, Client}
sort FieldName = {content, backup, bc} (2)
sort MethName = {set, get, inc, restore}

Remaining information, like the inheritance relatigp and overriding relatiors,,
is then extracted, and additional functions are implenteritiere are some partially
enumerated examples:

fun <=, = BackupCell — Cell, Cell — Cell,...
fun =, = Cell/set — Cell/set, BackupCell/set — Cell/set,...
fun lookup = BackupCell,inc — Cell, BackupCell, set — BackupCell, ...
3)
These functions are then used to define the impo#taritup function indicating
whether or not refined or inherited behavior will be execditdidwing a method call.

Statechart diagrams Similarly, statechart diagrams are mapped8Msorts and func-
tions. Fig. 4 shows supported features for this diagramidddtow functionalities of
the memory cell are modeled by sub-states specifying thawetof a method. Method
inc, for example, is modeled in three steps: transitigyretrieves the current value of
field content by calling methodget; transitionct, increments that current value by
calling methodset; finally, transitionct; waits for methodet to return and terminates
methodinc.

The control flow of a statechart is specified by states andsitians. The basic
condition for a transition to be fired is that its source staeactive. The basic re-
sponse to firing a transition is the activation of its targates In the case of a composite
state, the initial states it encompasses are also activEtésicontrol flow of statecharts
is inspired by Harel's statecharts [16] and is staticallgbelrated and stored iIASM
functions. The compiler determines, for example, whickestare activated and which
deactivated when firing a transition:

Trigger Guard Actions

b { ? ?
N/

y A
4 ‘ ' CellSet ' \ / CellGet N
ctl: set(i) [true] / content = i ; %set()
. /@ . ct2: get() / %get(content) @
ci2

Cell N

cl ol

o J
4 Cellinc N\
ci3 cf3
ct3: inc(i) / get() ct4: %get(x) / set(x+i) ct5: %set() / %inc()
@ oy = O
- ~ 4
Composite State Initial State Simple State Final State

Fig. 4. Example of a statechart diagram

fun act = ct1 — {}, cts— {cs1},... @)
fun deact = ct; — {CellSet}, ctg — {ciz},. ..

In addition, transitions are labeled with a trigger, a gumrd a list of actions. Trig-
gers refer to signals (atomic events), method calls or ntetbturns. For example, the
actions of a transition labeled with triggétc, will model that method’s instructions.
Guards are booleaDCLexpressions. The syntax @fCLexpressions used on thivL
models is given by Fig. 5, and their semantics are expressgdad. 2.2.

e(€ Eexp) i=v |z | w(er,...,en) |e. f|el — iterate {z1; z2 =€z |e3 }
Fig. 5. OCLexpressions syntax

The tool supports the following actions: method call/ratdield assignment, object
creation/deletion, and signal emission. Actions are digeldn part byOCLexpressions,
which enable the designer to model high-level behavior igguson-determinism. In
a method call action, for instance, @CLexpression specifies a collection of possible
receiver objects, from which the actual receiver is chosemdeterministically.

Finally, statechart compiling includes a fair amount otist&erification::) stat-
echarts are inspected to ensure they are well-formigd)CL expressions are type-
checked to ensure that guards are boolean expressionpatiateters of method calls
are well-typed, etciii) triggers and actions are analyzed to ensure consistenloyivet
class diagram methods and field declarations.

Object diagram An object diagram is mapped A&SMsorts and functions that hold the
UMLmodel configuration. Fig. 6 shows such a diagram with allufiesss covered by the
tool. It models a simple configuration in which a client aseesstwo memory cells.

Reference Name Type

~. (]

c : Client b‘cl : Backt:pCeII
content = 0
backup = 0
i bc
Object bc2 : BackupCell
content =0
Field Value
._* backup =0

Fig. 6. Example of an object diagram

ASMfunctions as, class, heap and stack hold active states, object types, field
environments, and calling stacks, (one for each threadhisndase only object is a
thread), respectively.

fun as = bey — {ciy, cia, ...}, c— {clir},...
fun class = bcy — BackupCell, c — Client, ...
fun heap = bcq, content — 0, bey, backup — 0, . ..
fun stack = ¢ — ((run, 0, L, c))

(5)

Note how the calling stack of objeetcontains methodwun in the initial configur-
ation to ensure that the thread is active.

3.2 Dynamic semantics of UML

The ASMtransition rule that capturesl@MLmodel’'s dynamic semantics is structured
roughly as follows:) choose the current thread) select the current object and cur-
rent statechartyii) choose one of the enabled transitions anyfire the transition. It
sketches some of the&SMrules that are used to implement the transition relatiomef t
abstract operational model defined in Sec. 2.1.

Sub-ruleg) andiii) use a non-deterministic choice to model thread-level satdshart-
level concurrency. Sub-rule$ models a simple thread scheduler. The current olgject
is selected from an active thread’s calling stack, é.&would be executing a method.
Sub-rulegiii) computes the transition interleaving of a statechart'saa®nt regions.

In sub-ruleii), the current statechart is either the statechart of theeotiobject’s
class or the statechart of one of its superclasses if idtebéhavior is to be executed
(this is decided according to tHeokup function of Eq. 3). This mechanism captures
behavioral inheritance, an important feature of objed+uation.

Sub-ruleiii) dynamically determines whether a transition is enablea: Basic
condition that the source state is active, is checked agdiesurrent value of function
as (Eq. 5). Moreover, a transition is enableduif its trigger corresponds to an active
eventp) its guard is satisfied, and all of its actions can be fired. An assignment action,
for example, will not be fired if it violates the multipliciyequirement (see Fig. 3).

In sub-ruleiv), the selected transitiohis fired. The basic effect of deactivating
and activating states is captured by updating functiensing the statically elaborated
functionsact anddeact (EQ. 4):as(6) := (as(6) \ deact(t)) U act(t).

Then, the transition’s action list is iterated and everyaacts fired. Objects are
created by using the sort extensions mechanism oAgidformalism, and by updating
functionheap (Eq. 5) accordingly. If an object creation acti@of the form “new f” is
fired by the current objet, for example, the followindASMsub-rule updates tHéML
model configuration:

extend Objects with x do

heap(o,) := x :: heap(o, f) (6)

The assignment action uses t@€L expression evaluation function and updates
function heap (Eqg. 5) accordingly. For example, if an assignment actiari the form
“content := self.content + " is fired by the current objedi, the followingASM
sub-rule updates theMLmodel configurationheap(o, content) := [a.€],. This
sub-rule uses functiof] , to evaluate:.e, theOCLexpression of the assignment action
(in this case Self content + "), and updates functioheap (Eq. 5). Function] |,
evaluates a®CLexpression by recursively evaluating its sub-expressilative to the
currentUMLconfiguration and a variable assignmenfhe environment always maps
the variableselfto the current objedi. In this case it also maps variahl¢o the value
of the formal parameter of methadc as indicated on the calling stack. As the function
is external, it useASMfunctions to access the currddLmodel configuration, but is
not enumerated in th&SMstate.

4 The tool SOCLe

The ScLe tool is divided into three main moduleg:an XmiToAsm compiler,ii) a
specializedASMinterpreter andii) an on-the-flyEOCLmodel checker. This architec-
ture is depicted in Fig. AUMLmModels are expressed in the XML Metadata Interchange
format, which is supported by mogiML CASEools.

The verification process has two phasgsthe UMLmodel is translated into an
ASMspecification according to itdMLmodel static semantics, and) an execution
graph implementin@OT' Sy 1, is generated from thASMspecification whileOCL
constraints are verifiedn-the-flyby this execution graph. The model checker imple-
ments a version of the Vergauven and Lewi'sthe-flinear timeCTL model checking
algorithm [12], that is extended to cope withOT' Sy a1, andEOCIL, thus improving
an earlier version of &cLe presented in [17], which is based on a naive approach to
verification ofOCL extended with fixed points to express temporal contracts.

The tool also includes a graphical user interface embeddeddrgoUML, a cus-
tomizable open-sourdgML CASEool developed by Tigrfs It allows the designer to
visualize verification results and inspect the model’s exea graph. A short demon-
stration of the tool is given in Appendix A-2. It compares fherformance of then-
the-flyapproach in Fig. 8 with the naive approach in Fig. 9, in thefication of the

4 http://argouml.tigris.org/

==
=
=

—
ASM Rule (.asm)

> . J '\? —

UML M =
‘ = -

Executable UML Mod
/ e = > [,
Vi UML Editing Tool V

R ocL Conslraln(s Xmi) UML Compner
<
Designer N

-

 — ‘
\—4 =
V I .

| (.asm)

Model- Checkmg Diagnosis Execution Graph

Model Checker ASM Imerpreler

Fig. 7. Tool architecture

following invariant stating informally that the backup ual of the attributéackup is
always smaller than or equal tontent:

context: BackupCell
inv: selfCell /content <= selfBackupCell /backup

Finally, it should be noted that an extensive case-study eimplified caveat-
separation system has been carried out for Defence Resmaatddevelopment Canada
(DRDC) - Valcatrtier, as an illustrative example of possibpplication of cLe in the
design of secure software. The full case-study has beemteghio [18].

5 Conclusion and future work

In this paper we have presented the main issues relatedtaes anEOCLmodel-
checker olUMLmodels. Firstly, an extension GfCLinterpreted into an OO Transition
System withUMlL:type values, in which inheritance and overriding are cdesd as
possibly leading to richer interpretations of exten@ei_constraints, where these OO
features will have to be taken into account in practice feahghings as invariance veri-
fication. Secondly, illustrations of how tH&SMbased semantics fMLmodels capture
complex features dML such as concurrency, inheritance, overriding, and objeet ¢
ation; and integrate a@CLexpression evaluation function that is defined relativééo t
UMLconfiguration, thus generating an implementatioWéiT' Sy y,;, which includes
EOCLmodels. Finally, the architecture of the tool itself is Eneted.

We have not extensively discussed the scheme for transfamézom ASMto
OOT Sy in this paper. Considerable further work is needed to prbeecbrrect-
ness of this transformation. Alongside this, we may diseexitract arOOT S, that
represents & MLmodel saved aXML Also, abstraction and symbolic techniques to
check whether or not theOT Sy, 1, satisfies atcOCLformula have to be developed.
Becausé&OClLincorporate©CLas its lower-level logic, abstraction and symbolic tech-
niques used to chedBTL or real-timeCTL formulae could be extended EOCLfor-
mulae in a quite simple way.

References

(1]

(2]

(3]

[4]

(5]

[6]

[7]

(8]

9]

(10]

(11]

(12]

(13]
(14]
(15]
(16]

(17]

(18]

Latella, D., Majzik, I., Massink, M.: Automatic verifiten of a behavioural subset of
UML statechart diagrams using the SPIN model-checker. Ternational Journal of
Formal Methodd1(1999) 637—-664

Shen, W., Compton, K., Huggins, J.K.: A tool for suppngiUML static and dynamic
model checking. In: 26th IEEE International Computer Saftevand Applications Confer-
ence (COMPSAC), Oxford, England, IEEE Computer SocietP22d47-152

Gnesi, S., Mazzanti, F.: On the fly model checking of comination UML state machine.
In: Second ACIS International Conference on Software Eeglimg Research, Manage-
ment and Applications (SERA2004). (2004)

Bozga, M., Graf, S., Ober, I., Ober, |., Sifakis, J.: T®aihd applications II: The if tool. In
Corradini, F., Bernardo, M., eds.: Proceedings of SFM'Gluie

3185 of LNCS., Bertinoro, Italy, Springer (2004)

Lilius, J., Paltor, I.P.: vUML: a tool for verifying UML rodels. In: IEEE/ACM Inter-
national Conference on Automated Software Engineerind5)AEEEE Computer Society
(1999) 255-258

Schéafer, T., Knapp, A., Merz, S.: Model Checking UML &ta&achines and Collabora-
tions. In: CAV 2001 Workshop on Software Model Checking. ok 55 (3) of ENTCS.
(2001)

Flake, S., Mueller, W.: An OCL extension for real-timenstraints. In Clark, T., Warmer,
J., eds.: Object Modeling with the OCL: The Rationale behirelObject Constraint Lan-
guage. Springer (2002) 150-171

Bradfield, J., Filipe, J.K., Stevens, P.: Enriching OCling observational mu-calculus. In
Kutsche, R.D., Weber, H., eds.: Fundamental Approachestfiw8re Engineering, Fifth
International Conference, FASE 2002. Volume 2306 of LNG®ringer (2002) 203—-217
Ziemann, P., Gogolla, M.: An OCL extension for formutagitemporal constraints. Tech-
nical Report 1/03, Universitat Bremen (2003)

Distefano, D., Katoen, J.P., Rensink, R.: On a templagic for object-based systems.
In Smith, S.F., Talcott, C.L., eds.: Formal Methods for Op@inject-Based Distributed
Systems IV - Proc. FMOODS’2000, Kluwer Academic Publish@G00)

Oarga, R.: On-the-fly verification of extende€CLconstraints oveUMLmodels. Master’s
thesis Ecole Polytechnique de Montréal, Université de Mortt805) (n French.

B. Vergauwen, J. Lewi: A Linear Local Model Checking Alithm for CTL. In E. Best,
ed.: 4th International Conference on Concurrency Theo@NCUR’93). Volume 715 of
LNCS., Hildesheim, Germany, Springer-Verlag (1993) 44614

Cavarra, A., Riccobene, E., Scandurra, P.: Mapping UNh abstract state machines: a
framework to simulate UML. Studia Informatica UniversaMelume 3(3) (2004) 367-398
Bergeron, M.: AnASMsemantics foUML/OCL Master’s thesisEcole Polytechnique de
Montréal, Université de Montréal (2004)

OMG: Response to the UML 2.0 OCL RfP (ad/2000-09-03)chrecal Report ad/2002-
05-09 (2002)

Harel, D., Naamad, A.: The STATEMATE Semantics of Sthsrts. ACM Transactions
on Software Engineering and Methodolo§y1996) 293—-333

Azambre, D., Bergeron, M., Mullins, J.: Validating UMdnd OCL models in SOCLe by
simulation and model checking. In J. Lilius et al., ed.: Pa@dMOMPES’05, 2nd Interna-
tional Workshop on Model Based Methodologies for Pervaaivé Embedded Software.
Number 39 in General Publications, TUCS (2005) 67—-76

Painchaud, F., Azambre, D., Bergeron, M., Mullins(arga, R.: Socle: Integrated design
of software applications and security. In: Proceedingshaf Tenth International Command
and Control Research and Technology Symposium (ICCRTS)2(@305)

A-1 UML and OCL tools for objectives other than model checkirg

Some tools suppo®CLexpressions and constraints, but with different objestive
mind (e.g. [1, 2, 3]).

The KeY tool [1] integrates deductive verification techniques witttMLLOCL It
translate®©DCLconstraints into dynamic logic fdlava CARD, a proper subset dava
for smart-card applications and embedded systems (tofgpeciof obligations), and
provides a state-of-the-art theorem prover to performfieation. TheUSEtool [2]
offers the evaluation oDCLexpressions and constraints on manually constructed ob-
ject models and sequence diagrams. Tt&_Etool [3] offers validation ofOCLwell
formedness, profile and methodological rules, defined attsim-model level oML
models, and i.e., static semantic validatiorOffLconstraints otJMLmodels.

References

[1] Ahrendt, W., Baar, T., Beckert, B., Bubel, R., Giese, Mahnle, R., Menzel, W.,
Mostowski, W., Roth, A., Schlager, S., Schmitt, P.H.: TheYKm®ol. Technical Re-
port 2003-05, Department of Computing Science, Chalmergddsity of Technology and
Goteborg University (2003)

[2] Gogolla, M., Richters, M., Bohling, J.: Tool Support fadalidating UML and OCL Mod-
els Through Automatic Snapshot Generation. In: SAICSIT P®ceedings of the 2003
annual research conference of the South African institéiteomputer scientists and in-
formation technologists on Enablement through technol@puth African Institute for
Computer Scientists and Information Technologists (2QAB-257

[3] Chiorean, D., Pasca, M., Carcu, A., Botiza, C., Moldav&x Ensuring UML Models
Consistency Using The OCL Environment. In: UML 2003 - OCL Wé&irop. (2003)

A-2 A quick tool demonstration

As an illustration of theon-the-flyapproach compared to the naive one, consider the
verification of the following invariant stating informallyhat the backup value of the
attributebackup is always smaller than or equal tontent:

context: BackupCell
inv: selfCell /content <= selfBackupCell /backup

Fig. 8 and 9 provide illustrations of the screen-shots olst@iusing both approaches
for verifying this invariant. With then-the-flyEOCLverification algorithm, a counter-
example is found after exploration of only eleven stateshefrhodel, while the naive
fixed pointOCLextension verification algorithm requires explorationtod full state
space of the model (4630 states).

= g Execution Diagram

[1] Opening backupcell.asm... done
(2] Creating backupcell directory... done

[3] Parsing input file...
Parsing OCL Expressions... done
ype-checking 0CL Expressions... done
dane in 0.05 s

(5] Model-Checking OCL Constraints...

Checking constraint c_1 for okject bc... done in 9.03 5
[Results: :

€1 false

- 7 specialized Cell done in 0.07 5

%4 Execution Diagram

Client

3
o Bl stucture

erification of constraint
EUL(cruel U (1 (({(ckiConsVals((@)) . 1) . 2301}
Ject 'hel!

deme in 0.04 s

result is: false

10 additional cenfigurations and
10 additienal steps were nesded

Fig. 9. The ScLe tool diagnosis EOCL-logic

