
Model Checking of Extended OCL Constraints
on UML Models in SOCLe⋆

John Mullins1,⋆⋆ and Raveca Oarga2

1 INRIA Rhône-Alpes, Domaine Scientifique de la Doua, Bât. Léonard de Vinci,
21, av. Jean Capelle - 69621 Villeurbanne Cedex. FRANCE.

2 École Polytechnique de Montréal, Campus de l’U. de Montréal, Pavillon Mackay-Lassonde,
2500, Chemin de Polytechnique - Montréal (Qc) CANADA, H3T 1J4.

Abstract. We present the first tool that offers dynamic verification of extended
OCLconstraints onUMLmodels. It translates aUMLmodel into an Abstract State
Machine (ASM) which is transformed by an ASM simulator into an abstract
structure calledUML-valued OO TransitionSystem(OOTSUML). TheExtended
Object Constraints Language(EOCL) is interpreted on computation trees of this
OOTSUML allowing for the statement of bothOCLexpressions modelling the
system and OO primitives binding it toUMLon the one hand, and safety or live-
ness constraints on the computation trees of theUML/OCLmodel on the other
hand. Anon-the-flymodel checking algorithm, which provides the capability to
work, at any time, on as small a possible subset of states as necessary, has been
integrated into the tool.

1 Introduction

1.1 Motivation

Why use UML/OCLIn recent years, the Unified Modeling Language (UML) has been
accepted as ade factostandard for object-oriented software design. TheUMLnotation
supports designers by allowing them to express both structural and behavioral aspects
of their design, through class diagrams and statechart diagrams respectively. Based on
mathematical logic, the Object Constraint Language (OCL) is a notation embedded in
UMLallowing constraint specifications such as well-formedness conditions (e.g. in the
definition ofUMLitself), and contracts between parts of the modeled system (e.g. class
invariants or the pre- and post-condition methods).
Why use formal methods in UML/OCLFurthermore, used alongside formal method-
based tools,UML/OCLalso offers a unique opportunity for developing complex or crit-
ical software systems with high quality standards in an industrial context. Such systems
require a high level guarantee that they can cope with their specifications from end to
end of the development cycle.

⋆ The SOCLe project is sponsored by Defence Research and Development Canada (DRDC)
(Government of Canada).

⋆⋆ Corresponding author. On leave froḿEcole Polytechnique de Montréal. Supported by an
NSERC individual research grant (Government of Canada).

1.2 Related work

In this section we describe various proposed tools and promising verification frame-
works that integrateUML/OCLin some way. These are divided into the following cat-
egories related to the depth of integration. First, tools performingUMLmodel checking
of logic whereOCLis not embedded. Second, proposals to embed or extendOCLin a
clean and systematic way, to take liveness properties into account, which have model
checking in mind but where verification issues are not extensively discussed. Finally,
UMLtools forOCLconstraints that support something other than model checking as a
validation technique. (Due to space limitations, these arediscussed in Appendix A-1).

Model checking of UML without OCLAll these tools are based on translation ofUML
models into the modeling language of some model checking tool. While some of them
opt explicitly for the specification language of the model checker itself to specify prop-
erties e.g.([1, 2, 3], others define methods based on the diagrammatic capabilities of
UMLto specify properties before verification [4, 5, 6].

The tool proposed in [2] maps the static part of aUMLmodel, includingOCLex-
pressions on the object diagrams, onto anASMand offers static verification including
syntactic correctness according to the well-formedness constraints of theUMLmeta-
model, and coherence of the object diagram with respect to the class diagram. However,
OCLexpressions are not integrated in theUMLsemantics, and are not evaluated as the
model evolves. The statecharts modeling the behavior, are mapped ontoSMV. Similarly,
in [1] a subset ofUMLstatechart diagrams is translated intoPromela , the modeling
language of theSPIN model checker. Specifications are then expressed inLTL (Linear
Temporal Logic), the specification language ofSPIN, for checking.UMC(UMLon-the-
fly Model Checking, [3]) is an environment that integrates theJACKmodel checker into
UML. UMCalso translatesUMLstatecharts restricted tosignals (no method calls or
returns), into labeled transition systems, the modeling language ofJACK, while prop-
erties are specified inACTL, the specification language forJACK.

In [4], the authors propose an architecture forUMLmodel checking based on a trans-
lation ofUMLmodels intoIF , a language for the modeling and verification of hierarch-
ical extended communicating automata. InIF , properties are specified by means of
automata calledobserver automata, that are expressive enough to specify safety prop-
erties. Furthermore, an extension ofUML, (observers classes), has been proposed to
verify safety properties, which would then be translated along with theUMLmodel
into IF . The resultingIF automata are then translated into the specification language
of equivalence-checkers likeEVALUATOR. In [5], the authors proposevUML. This tool
translates a restricted form ofUMLstatechart diagrams intoPromela . To express prop-
erties, statechart diagram annotations calledstereotypesare used. The annotated state-
chart diagram is then translated intoLTL before the model checking is done withSPIN.
In HUGO[6], a restricted form ofUMLstatechart diagrams is translated intoPromela .
Collaboration diagramsare used to specify properties. These are more expressive than
vUMLstereotypes. They allow some sequence patterns between objects and statecharts
events to be described, but are not expressive enough to specify more complex prop-
erties. Collaboration diagrams are then translated into a Büchi automaton andSPIN
solveson-the-flythe emptiness problem for the automata resulting from the synchron-
ization of thePromela automata with the Büchi automaton.

Toward model checking OCL and beyondThere are also many logical extensions of
OCLwith modalities[7, 8, 9] or translations ofOCLinto modal logic [10].

In [10], an object-based version ofCTL called BOTL is used.BOTL, in contrast
to EOCLdoes not extendOCLby temporal operators. Instead, it translates a fragment
of OCL into BOTL. This means that temporal extensions ofOCLcould be translated
into BOTL as well, but such extensions are not provided. Hence, verification issues
for these extensions cannot be addressed. The purpose ofBOTL is model checking of
existingOCL. A strength of this work is that it provides a clear and precise object-based
operational model which we reuse inOOTSUML with minor modifications together
with extensions to cope with inheritance.

In [8] Oµ(OCL) is presented. Thus extendsOCLwith temporal constructs using
observationalµ-calculus, a two-level temporal logic in which temporal features at the
higher level interact with the domain specific logicOCLat the lower level. Even though
Oµ(OCL) was clearly designed with verification in mind, verificationissues have not
been extensively discussed in the paper. The strength of this work is that it provides
a unified framework to design new logics combining the cleanly dynamic power of
the µ-calculus with the static expressiveness ofOCL(which we reuse inEOCLwith
minor modifications to cope withOOTSUML andCTL). In [7], the authors present an
OCLextension, also based onCTL. This extension concerns system behavior modeled
with statecharts, but evolution of attributes is not considered. In [9], an extension of
OCLwith elements of a bounded linear temporal logic is proposed. The semantics of
this extension is given with respect to sequences of states representing theUMLmodel
history. However, the authors do not discuss how to compute these sequences from the
model’s behavioral diagrams.
SOCLe: model checking OCL on UMLStarting from a clean framework drawn from
the above second category proposals and taking advantage oflessons learned from the
above first category proposals, we present the firstUMLmodel checker ofEOCL.

1.3 Content of the paper

The work presented in this paper only addresses tool-related issues: The specification
of an extended Object Constraint Language (EOCL) (Sec. 2) i.e. its syntax (Sec. 2.2),
and operational semantics (Sec. 2.3) in terms of a transition system extended with state
labels denotingUML-typed values (OOTSUML) (Sec. 2.1), together with some illus-
trations of how this language might be used in practice to support a wider range of
constraints on OO systems (Sec. 2.4); the sketch of the basicprinciples of the static
(Sec. 3.1) and dynamic (Sec. 3.2) semantics of the modeling languageUMLon an Ab-
stract State Machine (ASM); and a short overview of the SOCLe tool by itself (Sec. 4).
A quick demonstration of the tool is given in Appendix A-2 while Sec. 5 provides the
conclusion.
Out of the scope of the paperDue to space limitations, theon-the-flymodel checking
algorithm ofEOCLon OOTSUML that is implemented in the tool is not presented
here. The reader is referred to [11] for a systematic presentation of this algorithm, but
in summary, it is a version of Vergauven and Lewi’son-the-flylinear timeCTL model
checking algorithm [12] extended to cope withOOTSUML andEOCL. TheASMse-
mantics ofUMLitself are presented only to the extent necessary for understanding the

way aOOTSUMLis uniformly generated from anUML/OCLmodel. For further de-
tails on Abstract State Machines, the reader is referred to [13] and [14] for a formal
presentation of theASMsemantics ofUMLas implemented in the tool.

2 Extended OCL

We are now going to design logic that concentrates on the essential features of an
object-oriented system (Sec. 2.2). Accordingly, we will define the semantics of this
logic (Sec. 3) using a model calledUML-valued Object-Oriented Transition System
(OOTSUML), which will be as simple as possible (Sec. 2.1) i.e. containing only the
features ofUMLsemantics addressable by the logic and nothing more. The degree of
parallelism or the manner of method invocation, for example, need not be parts of
OOTSUML.

2.1 The abstract operational model

Let us start with some notations that we will use in the paper:

– Σc, a finite set ofclass namesranged over byc;
– Σm, a finite set ofmethod namesranged over bym;
– V , a finite set of variables;
– �h, a partial order overΣc calledinheritance relation;
– �o, a partial order overΣc ×Σm calledoverriding relationcompatible with�h:

(�h-compatibility) , if (c,m) �o (c′,m′) thenm = m′ andc �h c
′

(i.e. an instance of method may only override a homonym in a superclass);
– N , a countable indexing set ranged over byi, j, . . .;
– C = Σc ×N , the set ofinstances of classes;
– M = C ×Σm ×N , the set ofinstances of methods;
– E = C + M the set ofUML entities;

As a first approximation, anOOTSUML can be seen as a transition system whose
states are labeled withUML-typed values. A setType of basicUMLtypes is also defined:

τ ∈ Type = Void | Int | Bool | Obj c | Met c,m | L(τ) (1)

where typesVoid , Int andBool are defined in the usual way and, for everyc ∈ Σc

andm ∈ Σm,

V alObj c

= {c′ : c′ �h c} × N

V alMetc,m

= V alObj c

× {m′ : m′ �o m} × N

are respectively the set of all objects of the classc and the set of all instances of the
methodm of objects of the classc. Finally, L(τ) is the type of lists of typeτ , with
element[] (the empty list) andh :: w (for the list having the elementh as head and the
list w as tail). We will denote byV al, the universe of values i.e.V al = ∪τ∈TypeV al

τ ,
and byV al⊥ its extension with the undefined value (⊥). Finally, letting the symbol⇀

denote a partial function, we define theclass signaturefunctionC×M in the following
way:

C ×M : Σc ⇀ [V ⇀ Type] × [Σm ⇀ [[V ⇀ Type] ⇀ Type]]

which associates to a classc, the declarationC(c) of its attributes, and the declaration
M(c) of its methods that is, for each method of the class, the declaration of its formal
parameters and the type of its return parameter3.

Definition 1. A UML-valued Object-Oriented Transition System(OOTSUML) is a struc-
tureOT = 〈S,R, s0〉 such that:

– S is a set of states. To each states ∈ S, are associated functionsρs, σs, γs andhs

such that:

• ρs : V ⇀ V al, a valuation of attributes and method parameters ins;
• σs : C ⇀ [V ⇀ V al], a valuation of objects active ins consistent withC ×M

andρs (Cs will denote the domain ofσs);
• γs : M ⇀ [[V ⇀ V al] ⇀ V al⊥], a valuation of instances of methods active

in s consistent withC × M and ρs (Ms will denote the domain ofγs and
γs(m).f , the value ins of the parameterf in the instance of methodm);

• hs : M ⇀ S × {◦, •}, a historywhich associates to each instance of method
active ins, a pebble and the state where this instance is or has been called.
If s is the last state for the instance before being returned, thepebble is• and
otherwise, it is◦. The history will provide more particularly a concise and
elegant way to define theOCL operator@pre. It has to be consistent with�h

and�o i.e.:

(�h-consistency) If (c, i,m, j) ∈ Ms thenm ∈ C(c) or (m ∈ C(c′) and
c �h c

′) (i.e. an instance of a method can be inherited);
(�o-consistency) If (c, i,m, j) ∈ Ms and(c,m) �o (c′,m′) then

∀i,j∈N (c, i,m′, j) 6∈ Ms

(i.e. the instance of an overriding method inhibits any instance of overrid-
den ones);

– R ⊆ S × S is a transition relation
– s0 ∈ S is the initial state.

A computationor run r in anOOTSUML OT is an infinite sequence of statesr =
s0s1s2 · · · such that(si, hi, si+1, hi+1) ∈ R, for eachi. We denote byr[i], the (i+1)-th
element,si, of the path, and byRun(OT) the set of all computation paths inOT . We
denote byRuns(OT) the subset ofRun(OT) that comprises the computation paths
starting froms ∈ S.

3 Let functionsf1 : X → Y1 andf2 : X → Y2. The functionf1 × f2 : X → Y1 × Y2 is the
function defined byf1 × f2(x) = (f1(x), f2(x)).

2.2 Extended OCL syntax

We propose an extension ofOCL(EOCL) working onOOTSUML. EOCLis an exten-
sion ofOCLwith CTL temporal operators and some first-order features. It is two-level
logic: intuitively, the upper level isCTL extended with quantifiers (the set oftemporal
formulaeFexp), and the lower level is a significant fragment ofOCLexpressions as
defined in [15] (the set ofstate formulaePexp). In order to get a clean separation of
OCLexpressions from purely temporal properties, we restrictOCLexpressions to ap-
pearances within temporal operators or as atomic formulae of CTL. EOCLis largely
inspired byBOTL[10] but is based on an instantiation of the temporal extension frame-
work proposed in [8], and takes into account inheritance andoverriding in its semantics.
TheEOCLsyntax is given in Fig. 1. The set of types ofOCLexpressions is the same

e(∈ Pexp) ::= x | v | e.a | ω(e1, . . . , en) | e1 → iterate {x1 ; x2 = e2 | e3 } | e) |

e @pre | e.owner | act(e)

ϕ(∈ Fexp) ::= e | ¬φ | φ ∧ ψ | ∀z ⊢ τ : φ | EXφ | E[φUψ] | A[φUψ]

Fig. 1. EOCL syntax

one as theUMLtype set defined in Eq. 1. We writee ⊢ τ to denote that expression
e ∈ Pexp has the typeτ . We refer the reader to [11] for a complete definition of the
typing function⊢. The rest of this section is devoted to an informal description of the
meaning of state and temporal formulae. We postpone to Sec. 2.3 the formal description
of operational semantics based onOOTSUML.
State formulaePexp

– x is a variable inV . These includeself , a special variable inOCLreferring to the
current context, fields of objects, parameters of methods and local variables;

– v is a value inV al⊥;
– e.f is afield/parameter navigation. If e is an object (resp. a list of objects), thenf

is a field (resp. a list of fields). Ife is a method (resp. a list of methods), thenf is a
parameter (resp. a list of parameters);

– ω(e1, . . . en) stands for the application of anyn-ary operator on booleans, integers
or lists.

– theiterate construct is theOCLmain collection operator; It lets variablex1 iterate
through values of the collection denoted bye1, stores successive values ofe3 in
variablex2 (which first evaluates toe2), and returns the final value ofx2. The
iterate construct is quite expressive and is used to encode additional collection
operators (size, forall, exists, filter), that are also supported by SOCLe.

– @pre is a typicalOCLoperator. It refers to the value of a property at the method
call, and may be applied in a postcondition at the method return;

– act(e) signifies that the object or method instancee is currently active. An object
becomes active when it is created and becomes inactive when it dies, whereas a
method becomes active when it is invoked (pushed onto a calling stack) and be-
comes inactive after it has returned a value (is popped from the calling stack).

– e.owner denotes the object executing the methode.

Temporal formulaeFexp A formula is built inductively from boolean state formulae
(e ∈ Pexp and e ⊢ Bool), classical propositional logic operators (¬,∧, etc.),CTL
temporal operators (AX, EU, etc.), and type domain quantifiers. The temporal operators
have the following intuitive meaning:

– EXφ holds ins if there is a state next tos such that the formulaφ holds;
– E[φUψ] holds ins if there is a path starting froms such thatφ holds untilψ holds;
– A[φUψ] holds ins if for every path starting froms, φ holds untilψ holds;
– ∀z ⊢ τ : φ holds ins if φ holds for all occurrencesz of typeτ ∈ Type ;

The other usual auxilliary operators are obtained by combining these basic operators. It
has to be noted that type domains being generally infinite, quantifier scopes are also so.

2.3 Extended OCL semantics

Let OT = 〈S,R, s0〉, anOOTSUML. The semantics of state formulae is defined by
the function[[]] : Pexp → [S → V al⊥] defined as follows:

[[v]]s = v
[[x]]s = ρs(x)
[[ω(e1, . . . en)]]s = ω([[e1]]s . . . [[en]]s)
[[e.f]]s = σs((c, i))(f) if [[e]]s = (c, i)

= γs((c, i,m, j)).f if [[e]]s = (c, i,m, j)
[[e.owner]]s = (c, i), where[[e]]s = (c, i,m, j)
[[act(e)]]s = True iff [[e]]s ∈ Cs + Ms

[[e1→iterate{x1;x2 = e2 | e3}]]s

= [[for x1 ∈ [[e1]]s do x2 := e3]]ρs[x2 7→[[e2]]s]

where

[[for x1 ∈ [] do x2 := e]]s = [[x2]]s

[[for x1 ∈ h :: w do x2 := e]]s = [[for x1 ∈ w do x2 := e]]ρs[x2 7→[[e]]ρs[x1 7→h]]

andρs[x 7→ e] stands for the state obtained froms by evaluatingx to e in ρs. Finally
for any instance of method(c, i,m, j):

[[e@pre]]s =

{

[[e]]s′ if (c, i,m, j) ∈ dom(γs)andhs(c, i,m, j) = (s′, •)
⊥ otherwise

The semantics of temporal formulae (Fig. 2) is given by the relation� ⊆ S × Fexp

2.4 Applying EOCL

Constraints are conditions which have to be fulfilled by the system. AnOCLconstraint
is defined as being in a context. We denote byCexp, the set of constraints defined by
the following:

s � e ⇐⇒ [[e]]s = True
s � ¬φ1 ⇐⇒ s 2 φ1

s � φ1 ∧ φ2 ⇐⇒ (s � φ1) and(s � φ2)
s � ∀z ⊢ τ : φ1 ⇐⇒ s � φ1[z 7→ v] for all v ∈ V alτ

s � EXφ1 ⇐⇒ ∃r∈Runs(OT)r[1] � φ1

s � E[φ1Uφ2] ⇐⇒ ∃r∈Runs(OT)

∃j≥0r[j] � φ2 ∧ ∀0≤k<jr[k] � φ1

s � A[φ1Uφ2] ⇐⇒ ∀r∈Runs(OT)

∃j≥0r[j] � φ2 ∧ ∀0≤k<jr[k] � φ1

Fig. 2. Semantics of temporal formulae

κ(∈ Cexp) ::= context C inv e | context C :: M pre e1 post e2

whereC ∈ Σc is the context of an invariant,M ∈ Σm is the context of a pre/postcondition
ande, e1, e2 are booleanOCLexpressions. Below, we illustrate how anOCLconstraint
has its counterpart inEOCL.
Invariant An invariant is a condition which has to be fulfilled by the system whenever
an instance of the context, or of a class inherited from the context is active, and no
method ofself is executing. Since theOOTSUML semantics ofEOCLtakes into ac-
count inheritance, this can be expressed by the following constraint:
context C inv e ≡

AG[∀z ⊢ ObjC : act(z) : ((∀m1 ∈ z.M1 : . . . ∀mn ∈ z.Mk) :

(¬act(m1) ∧ . . .¬act(mn)) ⇒ e]

where

– ∀m ∈ z.M : e stands for the formula∀m ⊢MetC,M : (z.owner = m) ⇒ e
– z is an active object of the classC;
– {M1, . . .Mk} is the set of the methods of the classC;
– {m1, . . .mn} is the set of instances of the methods of the classC.

Pre/postconditionA pre/postcondition is verified if for each instance ofM of the class
C, the post-condition holds whenM is returned whenever the pre-condition held when
M was called. This can be expressed by the following constraint:

context C :: M pre e1 post e2 ≡

∀z ⊢ ObjC : act(z) : ∀m ∈ z.M :

AG[call(m) ⇒ AX [AG[return(m)] ⇒ e2]]

where

– call(m) stands for the formula¬act(m) ∧ EX[act(m) ∧ e1];
– return(m) stands for the formulaact(m) ∧ AX [¬act(m)];
– z is an object of the classC;
– m is an occurrence of the methodM of the objectz.

Extended OCL constraintsEOCLallows the expression of liveness properties. For in-
stance a templateafter/eventuallycould stand for the following property: whenevere1
is verified during the life of any instance ofC then eventuallye2 will also be verified
during its life. This could be expressed as the extended constraint:

contextC after e1 eventuallye2 ≡

AG[e1 ⇒ A[True U e2]]

3 ASM semantics of UML

Why use ASM to define UMLWhile designing semantics of logic requires as simple
a model as possible, modelingUMLby contrast, requires formalism that, likeASM,
has already proved to be a simple and uniform fashion of modeling the operational
semantics of models as complex as programming languages.ASMwill allow a rich,
succinct and understandable operational semantics ofUMLto be written. In this section,
we presentUMLand itsASMsemantics. TheUMLsemantics are presented only to the
extent necessary for understanding the way anOOTSUML is uniformly generated from
anUML/OCLmodel. The reader is referred to [13, 14] for a more formal presentation of
theASMsemantics ofUMLand the integration ofOCLinto this semantics.

An ASMstate is a collection of sorts, and a set of enumerated functions for these
sorts.ASMevolution is specified by a transition rule built from predicates, control sub-
rules and update sub-rules. Predicates are evaluated according to the current interpreta-
tion of theASMstate enumerated functions. Control rules supporting non-determinism
choose a set of update rules to be applied. Update rules modify the interpretation of the
currentASMstate functions, yielding successor states.

Basic model elements, such as class or method names, are mapped to sorts. More
complex elements, such as method declarations and statechart transitions, are translated
into enumerated functions. The object diagram is mapped to aspecific subset of these
functions, and represents the initial configuration of theUMLmodel (Sec. 3.1). From
a configuration, successor configurations are computed by evaluating anASMrule that
captures the dynamic semantics ofUMLmodels (Sec. 3.2). Edges are labeled with stat-
echart transitions fired as theUMLmodel evolves.

3.1 Static semantics of UML

The UMLmodels supported by the tool must contain exactly one class diagram, one
statechart diagram for each class, and one object diagram. In this section we illustrate
the main features of the static semantics of these three diagrams through the modeling
of a simple object-oriented component acting as a small memory cell.

Class diagram Fig. 3 presents the supported features of the class diagram.ClassCell
models a simple memory cell with assignment, retrieval and incrementation. Class
BackupCellmodels an extended memory cell with a restore functionality. Notice how
classC lient is tagged with thethread stereotype. As a result, a calling stack will be
associated with all instances of this class.

The first step to create theASMspecification is to map class, method and field names
to the followingASMsorts (note that an association is mapped to a field of the owner

Fig. 3.Example of a class diagram

class), which implement states of the abstract model definedin Sec.2.1. More particu-
larly, heap implementsσ while stack implementsγ.

sort C lassName = {Cell,BackupCell,C lient}
sort F ieldName = {content, backup, bc}
sort M ethName = {set, get, inc, restore}

(2)

Remaining information, like the inheritance relation�h and overriding relation�o,
is then extracted, and additional functions are implemented. Here are some partially
enumerated examples:

fun �h = BackupCell 7→ Cell,Cell 7→ Cell, . . .
fun �o = Cell/set 7→ Cell/set,BackupCell/set 7→ Cell/set, . . .
fun lookup = BackupCell, inc 7→ Cell,BackupCell, set 7→ BackupCell, . . .

(3)
These functions are then used to define the importantlookup function indicating

whether or not refined or inherited behavior will be executedfollowing a method call.

Statechart diagrams Similarly, statechart diagrams are mapped toASMsorts and func-
tions. Fig. 4 shows supported features for this diagram. Notice how functionalities of
the memory cell are modeled by sub-states specifying the behavior of a method. Method
inc, for example, is modeled in three steps: transitionct3 retrieves the current value of
field content by calling methodget; transitionct4 increments that current value by
calling methodset; finally, transitionct5 waits for methodset to return and terminates
methodinc.

The control flow of a statechart is specified by states and transitions. The basic
condition for a transition to be fired is that its source statebe active. The basic re-
sponse to firing a transition is the activation of its target state. In the case of a composite
state, the initial states it encompasses are also activated. This control flow of statecharts
is inspired by Harel’s statecharts [16] and is statically elaborated and stored inASM
functions. The compiler determines, for example, which states are activated and which
deactivated when firing a transition:

Fig. 4. Example of a statechart diagram

fun act = ct1 7→ {}, ct3 7→ {cs1}, . . .
fun deact = ct1 7→ {CellSet}, ct3 7→ {ci3}, . . .

(4)

In addition, transitions are labeled with a trigger, a guardand a list of actions. Trig-
gers refer to signals (atomic events), method calls or method returns. For example, the
actions of a transition labeled with triggerinc, will model that method’s instructions.
Guards are booleanOCLexpressions. The syntax ofOCLexpressions used on theUML
models is given by Fig. 5, and their semantics are expressed in Sec. 2.2.

e(∈ Eexp) ::= v | x | ω(e1, . . . , en) | e . f | e1 → iterate {x1 ; x2 = e2 | e3 }

Fig. 5. OCLexpressions syntax

The tool supports the following actions: method call/return, field assignment, object
creation/deletion, and signal emission. Actions are specified in part byOCLexpressions,
which enable the designer to model high-level behavior by using non-determinism. In
a method call action, for instance, anOCLexpression specifies a collection of possible
receiver objects, from which the actual receiver is chosen non-deterministically.

Finally, statechart compiling includes a fair amount of static verification:i) stat-
echarts are inspected to ensure they are well-formed,ii) OCLexpressions are type-
checked to ensure that guards are boolean expressions, thatparameters of method calls
are well-typed, etc.iii) triggers and actions are analyzed to ensure consistency with the
class diagram methods and field declarations.

Object diagram An object diagram is mapped toASMsorts and functions that hold the
UMLmodel configuration. Fig. 6 shows such a diagram with all features covered by the
tool. It models a simple configuration in which a client accesses two memory cells.

Fig. 6. Example of an object diagram

ASMfunctionsas, class, heap and stack hold active states, object types, field
environments, and calling stacks, (one for each thread - in this case only objectc is a
thread), respectively.

fun as = bc1 7→ {ci1, ci2, . . .}, c 7→ {cli1}, . . .
fun class = bc1 7→ BackupCell, c 7→ C lient, . . .
fun heap = bc1, content 7→ 0, bc1, backup 7→ 0, . . .
fun stack = c 7→ 〈(run, ∅,⊥, c)〉

(5)

Note how the calling stack of objectc contains methodrun in the initial configur-
ation to ensure that the thread is active.

3.2 Dynamic semantics of UML

TheASMtransition rule that captures aUMLmodel’s dynamic semantics is structured
roughly as follows:i) choose the current thread,ii) select the current object and cur-
rent statechart,iii) choose one of the enabled transitions andiv) fire the transition. It
sketches some of theASMrules that are used to implement the transition relation of the
abstract operational model defined in Sec. 2.1.

Sub-rulesi) andiii) use a non-deterministic choice to model thread-level and statechart-
level concurrency. Sub-rulesi) models a simple thread scheduler. The current objectõ
is selected from an active thread’s calling stack, i.e.õ would be executing a method.
Sub-rulesiii) computes the transition interleaving of a statechart’s concurrent regions.

In sub-ruleii), the current statechart is either the statechart of the current object’s
class or the statechart of one of its superclasses if inherited behavior is to be executed
(this is decided according to thelookup function of Eq. 3). This mechanism captures
behavioral inheritance, an important feature of object-orientation.

Sub-ruleiii) dynamically determines whether a transition is enabled. The basic
condition that the source state is active, is checked against the current value of function
as (Eq. 5). Moreover, a transition is enabled ifa) its trigger corresponds to an active
event,b) its guard is satisfied, andc) all of its actions can be fired. An assignment action,
for example, will not be fired if it violates the multiplicityrequirement (see Fig. 3).

In sub-ruleiv), the selected transitioñt is fired. The basic effect of deactivating
and activating states is captured by updating functionas using the statically elaborated
functionsact anddeact (Eq. 4):as(õ) := (as(õ) \ deact(t̃)) ∪ act(t̃).

Then, the transition’s action list is iterated and every action is fired. Objects are
created by using the sort extensions mechanism of theASMformalism, and by updating
functionheap (Eq. 5) accordingly. If an object creation actiona of the form “new f ” is
fired by the current object̃o, for example, the followingASMsub-rule updates theUML
model configuration:

extend Objects with x do
heap(õ, f) := x :: heap(õ, f) (6)

The assignment action uses theOCLexpression evaluation function and updates
functionheap (Eq. 5) accordingly. For example, if an assignment actiona of the form
“content := self.content + i” is fired by the current object̃o, the followingASM
sub-rule updates theUMLmodel configuration:heap(õ, content) := [[a.e]]ρ. This
sub-rule uses function[[]]ρ to evaluatea.e, theOCLexpression of the assignment action
(in this case “self.content + i”), and updates functionheap (Eq. 5). Function[[]]ρ
evaluates anOCLexpression by recursively evaluating its sub-expressionsrelative to the
currentUMLconfiguration and a variable assignmentρ. The environment always maps
the variableself to the current object̃o. In this case it also maps variablei to the value
of the formal parameter of methodinc as indicated on the calling stack. As the function
is external, it usesASMfunctions to access the currentUMLmodel configuration, but is
not enumerated in theASMstate.

4 The tool SOCLe

The SOCLe tool is divided into three main modules:i) anXmiToAsm compiler,ii) a
specializedASMinterpreter andiii) anon-the-flyEOCLmodel checker. This architec-
ture is depicted in Fig. 7.UMLmodels are expressed in the XML Metadata Interchange
format, which is supported by mostUML CASEtools.

The verification process has two phases:i) the UMLmodel is translated into an
ASMspecification according to itsUMLmodel static semantics, andii) an execution
graph implementingOOTSUML is generated from theASMspecification whileOCL
constraints are verifiedon-the-flyby this execution graph. The model checker imple-
ments a version of the Vergauven and Levi’son-the-flylinear timeCTLmodel checking
algorithm [12], that is extended to cope withOOTSUML andEOCL, thus improving
an earlier version of SOCLe presented in [17], which is based on a naive approach to
verification ofOCL extended with fixed points to express temporal contracts.

The tool also includes a graphical user interface embedded into ArgoUML, a cus-
tomizable open-sourceUML CASEtool developed by Tigris4. It allows the designer to
visualize verification results and inspect the model’s execution graph. A short demon-
stration of the tool is given in Appendix A-2. It compares theperformance of theon-
the-flyapproach in Fig. 8 with the naive approach in Fig. 9, in the verification of the

4 http://argouml.tigris.org/

UML Editing Tool
UML Compiler

ASM InterpreterModel-Checker

UML Model (.xmi)

OCL Constraints (.xmi)

Executable UML Model (.asm)

Execution GraphModel-Checking Diagnosis

Designer

ASM Rule (.asm)

Fig. 7. Tool architecture

following invariant stating informally that the backup value of the attributebackup is
always smaller than or equal tocontent:

context: BackupCell
inv: self.Cell /content <= self.BackupCell /backup

Finally, it should be noted that an extensive case-study on asimplified caveat-
separation system has been carried out for Defence Researchand Development Canada
(DRDC) - Valcartier, as an illustrative example of possibleapplication of SOCLe in the
design of secure software. The full case-study has been reported in [18].

5 Conclusion and future work

In this paper we have presented the main issues related to SOCLe, anEOCLmodel-
checker ofUMLmodels. Firstly, an extension ofOCLinterpreted into an OO Transition
System withUML-type values, in which inheritance and overriding are considered as
possibly leading to richer interpretations of extendedOCLconstraints, where these OO
features will have to be taken into account in practice for such things as invariance veri-
fication. Secondly, illustrations of how theASMbased semantics ofUMLmodels capture
complex features ofUMLsuch as concurrency, inheritance, overriding, and object cre-
ation; and integrate anOCLexpression evaluation function that is defined relative to the
UMLconfiguration, thus generating an implementation ofOOTSUML which includes
EOCLmodels. Finally, the architecture of the tool itself is presented.

We have not extensively discussed the scheme for transformation from ASMto
OOTSUML in this paper. Considerable further work is needed to prove the correct-
ness of this transformation. Alongside this, we may directly extract anOOTSUML that
represents aUMLmodel saved asXML. Also, abstraction and symbolic techniques to
check whether or not theOOTSUML satisfies anEOCLformula have to be developed.
BecauseEOCLincorporatesOCLas its lower-level logic, abstraction and symbolic tech-
niques used to checkCTL or real-timeCTL formulae could be extended toEOCLfor-
mulae in a quite simple way.

References

[1] Latella, D., Majzik, I., Massink, M.: Automatic verification of a behavioural subset of
UML statechart diagrams using the SPIN model-checker. The International Journal of
Formal Methods11 (1999) 637–664

[2] Shen, W., Compton, K., Huggins, J.K.: A tool for supporting UML static and dynamic
model checking. In: 26th IEEE International Computer Software and Applications Confer-
ence (COMPSAC), Oxford, England, IEEE Computer Society (2002) 147–152

[3] Gnesi, S., Mazzanti, F.: On the fly model checking of communication UML state machine.
In: Second ACIS International Conference on Software Engineering Research, Manage-
ment and Applications (SERA2004). (2004)

[4] Bozga, M., Graf, S., Ober, I., Ober, I., Sifakis, J.: Tools and applications II: The if tool. In
Corradini, F., Bernardo, M., eds.: Proceedings of SFM’04. Volume
3185 of LNCS., Bertinoro, Italy, Springer (2004)

[5] Lilius, J., Paltor, I.P.: vUML: a tool for verifying UML models. In: IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE), IEEE Computer Society
(1999) 255–258

[6] Schäfer, T., Knapp, A., Merz, S.: Model Checking UML State Machines and Collabora-
tions. In: CAV 2001 Workshop on Software Model Checking. Volume 55 (3) of ENTCS.
(2001)

[7] Flake, S., Mueller, W.: An OCL extension for real-time constraints. In Clark, T., Warmer,
J., eds.: Object Modeling with the OCL: The Rationale behindthe Object Constraint Lan-
guage. Springer (2002) 150–171

[8] Bradfield, J., Filipe, J.K., Stevens, P.: Enriching OCL using observational mu-calculus. In
Kutsche, R.D., Weber, H., eds.: Fundamental Approaches to Software Engineering, Fifth
International Conference, FASE 2002. Volume 2306 of LNCS.,Springer (2002) 203–217

[9] Ziemann, P., Gogolla, M.: An OCL extension for formulating temporal constraints. Tech-
nical Report 1/03, Universität Bremen (2003)

[10] Distefano, D., Katoen, J.P., Rensink, R.: On a temporallogic for object-based systems.
In Smith, S.F., Talcott, C.L., eds.: Formal Methods for OpenObject-Based Distributed
Systems IV - Proc. FMOODS’2000, Kluwer Academic Publishers(2000)

[11] Oarga, R.: On-the-fly verification of extendedOCLconstraints overUMLmodels. Master’s
thesis,École Polytechnique de Montréal, Université de Montréal (2005) (In French).

[12] B. Vergauwen, J. Lewi: A Linear Local Model Checking Algorithm for CTL. In E. Best,
ed.: 4th International Conference on Concurrency Theory (CONCUR’93). Volume 715 of
LNCS., Hildesheim, Germany, Springer-Verlag (1993) 447–461

[13] Cavarra, A., Riccobene, E., Scandurra, P.: Mapping UMLinto abstract state machines: a
framework to simulate UML. Studia Informatica Universalis. Volume 3(3) (2004) 367–398

[14] Bergeron, M.: AnASMsemantics forUML/OCL. Master’s thesis,́Ecole Polytechnique de
Montréal, Université de Montréal (2004)

[15] OMG: Response to the UML 2.0 OCL RfP (ad/2000-09-03). Technical Report ad/2002-
05-09 (2002)

[16] Harel, D., Naamad, A.: The STATEMATE Semantics of Statecharts. ACM Transactions
on Software Engineering and Methodology5 (1996) 293–333

[17] Azambre, D., Bergeron, M., Mullins, J.: Validating UMLand OCL models in SOCLe by
simulation and model checking. In J. Lilius et al., ed.: Proc. of MOMPES’05, 2nd Interna-
tional Workshop on Model Based Methodologies for Pervasiveand Embedded Software.
Number 39 in General Publications, TUCS (2005) 67–76

[18] Painchaud, F., Azambre, D., Bergeron, M., Mullins, J.,Oarga, R.: Socle: Integrated design
of software applications and security. In: Proceedings of The Tenth International Command
and Control Research and Technology Symposium (ICCRTS 2005). (2005)

A-1 UML and OCL tools for objectives other than model checking

Some tools supportOCLexpressions and constraints, but with different objectives in
mind (e.g. [1, 2, 3]).

The KeY tool [1] integrates deductive verification techniques within UML/OCL. It
translatesOCLconstraints into dynamic logic forJava CARD, a proper subset ofJava
for smart-card applications and embedded systems (to specify proof obligations), and
provides a state-of-the-art theorem prover to perform verification. TheUSE tool [2]
offers the evaluation ofOCLexpressions and constraints on manually constructed ob-
ject models and sequence diagrams. TheOCLEtool [3] offers validation ofOCLwell
formedness, profile and methodological rules, defined at themeta-model level onUML
models, and i.e., static semantic validation ofOCLconstraints onUMLmodels.

References

[1] Ahrendt, W., Baar, T., Beckert, B., Bubel, R., Giese, M.,Hähnle, R., Menzel, W.,
Mostowski, W., Roth, A., Schlager, S., Schmitt, P.H.: The KeY tool. Technical Re-
port 2003-05, Department of Computing Science, Chalmers University of Technology and
Göteborg University (2003)

[2] Gogolla, M., Richters, M., Bohling, J.: Tool Support forValidating UML and OCL Mod-
els Through Automatic Snapshot Generation. In: SAICSIT ’03: Proceedings of the 2003
annual research conference of the South African institute of computer scientists and in-
formation technologists on Enablement through technology, South African Institute for
Computer Scientists and Information Technologists (2003)248–257

[3] Chiorean, D., Pasca, M., Carcu, A., Botiza, C., Moldovan, S.: Ensuring UML Models
Consistency Using The OCL Environment. In: UML 2003 - OCL Workshop. (2003)

A-2 A quick tool demonstration

As an illustration of theon-the-flyapproach compared to the naive one, consider the
verification of the following invariant stating informally, that the backup value of the
attributebackup is always smaller than or equal tocontent:

context: BackupCell
inv: self.Cell /content <= self.BackupCell /backup

Fig. 8 and 9 provide illustrations of the screen-shots obtained using both approaches
for verifying this invariant. With theon-the-flyEOCLverification algorithm, a counter-
example is found after exploration of only eleven states of the model, while the naive
fixed pointOCLextension verification algorithm requires exploration of the full state
space of the model (4630 states).

Fig. 8. The SOCLe tool diagnosis -µ-calculus

Fig. 9. The SOCLe tool diagnosis -EOCL-logic

