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Abstract. Termination analysis has received considerable attention, tra-
ditionally in the context of declarative programming, and recently also
for imperative languages. In existing approaches, termination is per-
formed on source programs. However, there are many situations, includ-
ing mobile code, where only the compiled code is available. In this work
we present an automatic termination analysis for sequential Java Byte-
code programs. Such analysis presents all of the challenges of analyzing
a low-level language as well as those introduced by object-oriented lan-
guages. Interestingly, given a bytecode program, we produce a constraint

logic program, CLP, whose termination entails termination of the byte-
code program. This allows applying the large body of work in termination
of CLP programs to termination of Java bytecode. A prototype analyzer
is described and initial experimentation is reported.

1 Introduction

It has been known since the pre-computer era that it is not possible to write a
program which correctly decides, in all cases, if another program will terminate.
However, termination analysis tools strive to find proofs of termination for as
wide a class of (terminating) programs as possible. Automated techniques are
typically based on analyses which track size information, such as the value of
numeric data or array indexes, or the size of data structures. This information is
used for specifying a ranking function which strictly decreases on a well-founded
domain on each computation step, thus guaranteeing termination.

In the last two decades, a variety of sophisticated termination analysis tools
have been developed, primarily for less-widely used programming languages.
These include analyzers for term rewrite systems [15], and logic and functional
languages [18, 10, 17]. Termination-proving techniques are also emerging in the
imperative paradigm [6, 11, 15], even for dealing with large industrial code [11].

Static analysis of Java ByteCode (JBC for short) has received considerable
attention lately [25, 23, 24, 22, 1]. The present paper presents a static analysis
for sequential JBC which is, to the best of our knowledge, the first approach
to proving termination. Bytecode is a low-level representation of a program, de-
signed to be executed by a virtual machine rather than by dedicated hardware.
As such, it is usually higher level than actual machine code, and independent of



the specific hardware. This, together with its security features, makes JBC [19]
the chosen language for many mobile code applications. In this context, anal-
ysis of JBC programs may enable performing a certain degree of static (i.e.,
before execution) verification on program components obtained from untrusted
providers. Proof-Carrying Code [20] is a promising approach in this area: mo-
bile code is equipped with certain verifiable evidence which allows deployers to
independently verify properties of interest about the code. Termination analysis
is also important since the verification of functional program properties is often
split into separately proving partial correctness and termination.

Object-oriented languages in general, and their low-level (bytecode) counter-
parts in particular, present new challenges to termination analyzers: (1) loops
originate from different sources, such as conditional and unconditional jumps,
method calls, or even exceptions; (2) size measures must consider primitive
types, user defined objects, and arrays; and (3) tracking data is more difficult,
as data can be stored in variables, operand stack elements or heap locations.

Analyzing JBC is a necessity in many situations, including mobile code,
where the user only has access to compiled code. Furthermore, it can be argued
that analyzing low-level programs can have several advantages over analyzing
their high-level (Java) counterparts. One advantage is that low-level languages
typically remain stable, as their high-level counterparts continue to evolve — an-
alyzers for bytecode programs need not be enhanced each time a new language
construct is introduced. Another advantage is that analyzing low-level code nar-
rows the gap between what is verified and what is actually executed. This is
relevant, for example, in safety critical applications.

In this paper we take a semantic-based approach to termination analysis,
based on two steps. The first step transforms the bytecode into a rule-based
program where all loops and all variables are represented uniformly, and which is
semantically equivalent to the bytecode. This rule-based representation is based
on previous work [1] in cost analysis, and is presented in Sec. 2. In the second step
(Sec. 3), we adapt directly to the rule-based program standard techniques which
usually prove termination of high-level languages. Sec. 4 reports on our prototype
implementation and validates it by proving termination of a series of object-
oriented benchmarks, containing recursion, nested loops and data structures
such as trees and arrays. Conclusions and related work are presented in Sec. 5.

2 Java Bytecode and its Rule-Based Representation

We consider a subset of the Java Virtual Machine (JVM) language which handles
integers and object creation and manipulation (by accessing fields and calling
methods). For simplicity, exceptions, arrays, interfaces, and primitive types be-
sides integers are omitted. Yet, these features can be easily handled within our
setting: all of them are implemented in our prototype and included in bench-
marks in Table 1. A full description of the JVM [19] is out of the scope of this
paper.
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A sequential JBC program consists of a set of class files, one for each class,
partially ordered with respect to the subclass relation ¹. A class file contains
information about its name, the class it extends, and the fields and methods it
defines. Each method has a unique signature m from which we can obtain the
class, denoted class(m), where the method is defined, the name of the method,
and its signature. When it is clear from the context, we ignore the class and the
types parts of the signature. The bytecode associated with m is a sequence of
bytecode instructions 〈pc1:b1, . . . , pcn:bn〉, where each bi is a bytecode instruc-
tion, and pci is its address. The local variables of a method are denoted by
〈l0, . . . , ln−1〉, of which the first k≤n are the formal parameters, and l0 corre-
sponds to the this reference (unlike Java, in JBC, the this reference is explicit).
Similarly, each field f has a unique signature, from which we can obtain its name
and the name of the class it belongs to. The bytecode instructions we consider
include:

bcInst ::= istore v | astore v | iload v | aload v | iconst i | aconst null

| iadd | isub | iinc v n | imul | idiv

| if φ pc | goto pc | ireturn | areturn

| new c | invokevirtual m | invokespecial m | getfield f | putfield f

where c is a class, φ is a comparison condition on numbers (ne, le, icmpgt)
or references (null, nonnull), v is a local variable, i is an integer, and pc is an
instruction address. Briefly, instructions are: (row 1) stack operations referring
to constants and local variables; (row 2) arithmetic operations; (row 3) jumps
and method return; and (row 4) object-oriented instructions. All instructions
in row 3, together with invokevirtual, are branching (the others are sequential).
For simplicity, we will assume all methods to return a value. Fig. 1 depicts the
bytecode for the iterative method fact , where indexes 0, . . . , 3 stands for local
variables this, n, ft and i respectively. next(pc) is the address immediately after
the program counter pc. As instructions have different sizes, addresses do not
always increase by one (e.g., next(6)=9).

We assume an operational semantics which is a subset of the JVM specifica-
tion [19]. The execution environment of a bytecode program consists of a heap h

and a stack A of activation records. Each activation record contains a program
counter, a local operand stack, and local variables. The heap contains all objects
(and arrays) allocated in the memory. Each method invocation generates a new
activation record according to its signature. Different activation records do not
share information, but may contain references to the same object in the heap.

2.1 From Bytecode to Control Flow Graphs

The JVM language is unstructured. It allows conditional and unconditional
jumps as well as other implicit sources of branching, such as virtual method
invocation and exception throwing. The notion of a Control Flow Graph (CFG
for short) is a well-known instrument which facilitates reasoning about programs
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int fact(int);

0 : iconst 1
1 : istore 2
2 : iconst 1
3 : istore 3

4 : iload 3
5 : iload 1
6 : if icmpgt 19

9 : iload 2
10 : iload 3
11 : imul
12 : istore 2
13 : iinc 3, 1
16 : goto 4

19 : iload 2
20 : ireturn

int fact(int n){
int ft=1;
for (int i=1; i<=n; i++) ft=ft*i;
return ft;

}

20 : ireturn 6 : if icmpgt 19

i > n

fact2

4 : iload 3
5 : iload 119 : iload 2

fact4

class DoSum
0 : iconst 1
1 : istore 2
2 : iconst 1
3 : istore 3

fact3

9 : iload 2
10 : iload 3

12 : istore 2
13 : iinc 3, 1
16 : goto 4

i ≤ n

fact1

11 : imul

Fig. 1. A JBC method (left) with its corresponding source (center) and its CFG (right)

in unstructured languages. A CFG is similar to the older notion of a flow chart,
but CFGs include a concept of “call to” and “return from”. Methods in the byte-
code program are represented as CFGs, and calls from one method to another
correspond to calls between these graphs. In order to build CFGs, the first step
is to partition a sequence of bytecode instructions into a set of maximal sub-
sequences, or basic blocks, of instructions which execute sequentially, i.e., with-
out branching nor jumping. Given a bytecode instruction pc:b, we say that pc′:b′

is a predecessor of pc:bc if one of the following conditions holds: (1) b′=goto pc,
(2) b′=if φ pc, (3) next(pc′)=pc.

Definition 1 (partition to basic blocks). Given a method m and its se-
quence of bytecode instructions 〈pc1:b1, . . . , pcn:bn〉, a partition into basic blocks
m1, . . . ,mk takes the form

pci1 :bi1 , . . . , pcf1
:bf1

︸ ︷︷ ︸

m1

, pci2 :bi2 . . . , pcf2
:bf2

︸ ︷︷ ︸

m2

, . . . pcik
:bik

. . . , pcfk
:bfk

︸ ︷︷ ︸

mk

where i1=1, fk=n and

1. the number of basic blocks (i.e. k) is minimal;
2. in each basic block mj, only the instruction bfj

can be branching; and
3. in each basic block mj, only the instruction bij

can have more than one
predecessor.

A partition to basic blocks can be obtained as follows: the first sequence
m1 starts at pc1 and ends at pcf1

=min(pce1
, pcs1

), where pce1
is the address of

the first branching instruction after pc1, and pcs1
is the first address after pc1
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s.t. the instruction at address next(pcs1
) has more than one predecessor. The

sequence m2 is computed similarly starting at pci2
=next(pcf1

), etc. Note that
this partition can be computed in two passes: the first computes the predecessors,
and the second defines the beginning and end of each sub-sequence.

Example 1. The JBC fact method on the left of Fig. 1 is partitioned into four
basic blocks. The initial addresses (pcix

) of these blocks are shown within boxes.
Each block is labeled by fact id where id is a unique block identifier. A directed
edge indicates a control flow from the last instruction in the source node to the
first instruction in the destination node. Edges may be labeled by a guard which
states conditions under which the edge may be traversed during execution. 2

In invokevirtual, due to dynamic dispatching, the actual method to be called may
not be known at compile time. To facilitate termination analysis, we capture this
information and introduce it explicitly in the CFG. This is done by adding new
blocks, the implicit basic blocks, containing calls to actual methods which might
be called at runtime. Moreover, access to these blocks is guarded by mutually
exclusive conditions on the runtime class of the calling object.

Definition 2 (implicit basic block). Let m be a method which contains an
instruction of the form pc:b, where b=invokevirtual m′. Let M be a superset
of the methods (signatures) that might actually be called at runtime when ex-
ecuting pc:b. The implicit basic block for m′′∈M is mpc:c, where c=class(m ′′)
if class(m ′′)¹class(m ′), otherwise c=class(m ′). The block includes the single
special instruction invoke(m′). The guard of mpc:c is mg

pc:c=instanceof(n, c,D),
where D={class(m ′′) | m ′′∈M , class(m ′′)≺c}, and n is the arity of m′.

It can be seen that m is used to denote both methods and blocks in order to make
them globally unique. The above condition instanceof(n, c,D) states that the
(n+1)th stack element (from the top) is an instance of class c and not an instance
of any class in D. Computing the set M in the above definition can be statically
done by considering the class hierarchy and the method signature, which is
clearly a safe approximation of the set of the actual methods that might be called
at runtime when executing b. However, in some cases this might result in a much
larger set than the actual one, which in turn affects the precision and performance
of the corresponding static analysis. In such cases, class analysis [25] is usually
applied to reduce this set as it gives information about the possible runtime
classes of the object whose method is being called. Note that the instruction
invoke(m′) does not appear in the original bytecode, but it is instrumental to
define our rule-based representation in Sec. 2.2. For example, consider the CFG
in Fig. 2, which corresponds to the recursive method doSum and calls fact . This
CFG contains two implicit blocks labeled doSum11:DoSum and doSum19:DoSum .

The following definition formalizes the notion of a CFG for a method. Al-
though the invokespecial bytecode instruction always corresponds to only one
possible method call which can be identified from the symbolic method reference,
in order to simplify the presentation, we treat it as invokevirtual, and associate
it to a single implicit basic block with the true guard. Note that every bytecode
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int doSum(List x);
0 : aload 1
1 : ifnonnull 6
4 : iconst 0
5 : ireturn
6 : aload 0
7 : aload 1
8 : getfield List.data
11 : invokevirtual fact

14 : aload 0
15 : aload 1
16 : getfield List.next
19 : invokevirtual doSum

22 : iadd
23 : ireturn

1 : ifnonnull 6

doSum1 class DoSum

x 6= null

6 : aload 0

doSum3

x=null

doSum2

4 : iconst 0

5 : ireturn

0 : aload 1

7 : aload 1

8 : getfield List.data

11 : invokevirtual fact

14 : aload 0

15 : aload 1

16 : getfield List.next

19 : invokevirtual doSum

22 : iadd

23 : ireturn

(1) doSum11:DoSum

doSum4

(2) doSum19:DoSum

doSum5

invoke(doSum)

invoke(fact)

instanceof(1, DoSum, {})
instanceof(1, DoSum, {})

(G1)

(G2)

int doSum(List x) {
if (x==null) return 0;
else return fact(x.data)+ doSum(x.next);

}

Fig. 2. The Control Flow Graph of the doSum example

instruction belongs to exactly one basic block. By BlockId(pc,m)=i we denote
the fact that the instruction pc in m belongs to block mi. In addition, for a given
invokevirtual instruction pc:b in a method m, we use Mm

pc and Gm
pc to denote the

set of its implicit basic blocks and their corresponding guards respectively.

Definition 3 (CFG). The control flow graph for a method m is a graph G =
〈N , E〉. Nodes N consist of:

(a) basic blocks m1, . . . ,mk of m; and
(b) implicit basic blocks corresponding to calls to methods.

Edges in E take the form 〈mi → mj , conditionij〉 where mi and mj are, resp.,
the source and destination node, and conditionij is the Boolean condition la-
beling this transition. The set of edges is constructed, by considering each node
mi∈N which corresponds to a (non-implicit) basic block, whose last instruction
is denoted as pc:b, as follows:

1. if b=goto pc′ and j=BlockId(pc′,m) then we add 〈mi → mj , true〉 to E;
2. if b=if φ pc′, j=BlockId(pc′,m) and i′=BlockId(next(pc),m) then we add

both 〈mi → mj , φ〉 and 〈mi → mi′ ,¬φ〉 to E;
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3. if b∈{invokevirtual m′, invokespecial m′}, and i′=BlockId(next(pc),m) then,
for all d∈Mm

pc and its corresponding gm
pc:d∈Gm

pc, we add 〈mi → mpc:d, g
m
pc:d〉

and 〈mpc:d → mi′ , true〉 to E;
4. otherwise, if j=BlockId(next(pc),m) then we add 〈mi → mj , true〉 to E.

For conciseness, when a branching instruction b involving implicit blocks leads to
a single successor block, we include the corresponding invoke instruction within
the basic block b belongs to. For instance, consider that the classes DoSum and
List are not extended by any other class. In this case, the branching instructions
11 and 19 have a single continuation. Their associated implicit blocks marked
with (1) and (2) in Fig. 2 are, thus, just included within the basic block doSum3.
G1 and G2 at the bottom indicate the guards which should label the edge.

2.2 Rule-Based Representation

The CFG, while having advantages, is not optimal for our purposes. Therefore,
we introduce a Rule-Based Representation (RBR) on which we demonstrate our
approach to termination analysis. This RBR is based on a recursive representa-
tion presented in previous work [1], where it has been used for cost analysis.

The main advantages of the RBR are that: (1) all iterative constructs (loops)
fit in the same setting, independently of whether they originate from recursive
calls or iterative loops (conditional and unconditional jumps); and (2) all vari-
ables in the local scope of the method a block corresponds to (formal parameters,
local variables, and stack values) are represented uniformly as explicit arguments.
This is possible as in JBC the height of the operand stack at each program point
is statically known. We prefer to use this rule-based representation, rather than
other existing ones (e.g., BoogiePL [13] or those in Soot [26]), as in a simple
post-processing phase we can eliminate almost all stack variables, which results,
as we will see in Sec. 3.1, in a more efficient analysis.

A Rule-Based Program (RBP for short) defines a set of procedures, each of
them defined by one or more rules. As we will see later, each block in the CFG
generates one or two procedures. Each rule has the form head(x̄ , ȳ):=guard , instr ,

cont where head is the name of the procedure the rule belongs to, x̄ and ȳ indi-
cate sequences 〈x1, . . . , xn〉, n>0 (resp. 〈y1, . . . , yk〉, k>0) of input (resp. output)
arguments, guard is of the form guard(φ), where φ is a Boolean condition on the
variables in x̄, instr is a sequence of (decorated) bytecode instructions, and cont

indicates a possible call to another procedure representing the continuation of
this procedure. In principle, x̄ includes the method’s local variables and the stack
elements at the beginning of the block. In most cases, ȳ only needs to store the
return value of the method, which we denote by r. For simplicity, guards of the
form guard(true) are omitted. When a procedure p is defined by means of several
rules, the corresponding guards must cover all cases and be pairwise exclusive.

Decorating Bytecode Instructions. In order to make all arguments explicit, each
bytecode instruction in instr is decorated explicitly with the (local and stack)
variables it operates on. We denote by t=stack height(pc,m) the height of the
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stack immediately before the program point pc in a method m. Function dec in
the following table shows how to decorate some selected instructions, where n is
the number of arguments of m.

pc:b dec(b)
iconst i iconst(i, st+1)
istore v istore(st, ℓv)
iload v iload(lv, st+1)
new c new(c, st+1)
ireturn ireturn(st, r)

pc:b dec(b)
iadd iadd(st−1, st, st−1)
invoke(m) m(〈st−n, . . . , st〉, 〈st−n〉)
getfield f getfield(f, st, st)
putfield f putfield(f, st−1, st, st−1)
guard(icmpgt) guard(icmpgt(st−1, st))

Guards are translated according to the bytecode instruction they come from.
Note that branching instructions do not need to appear in the RBR, since their
effect is already captured by the branching at the RBR level and since invoke

instructions are replaced by calls to the entry rule of the corresponding method.

Definition 4 (RBR). Let m be a method with l0, . . ., ln−1 local variables, of
which l0, . . . , lk−1 are the formal parameters together with the this reference l0
(k ≤ n), and let 〈N , E〉 be its CFG. The rule-based representation of 〈N , E〉 is
rules(〈N , E〉) = entry(〈N , E〉)

⋃

mp∈N translate(mp, 〈N , E〉), with:

entry(〈N , E〉)=
{m(〈ℓ0, . . . , ℓk−1〉, 〈r〉):=init local vars(〈lk, . . . , ln−1〉),m1 (〈ℓ0, . . . , ℓn−1〉, 〈r〉)}

where the call init local vars initializes the local variables of the method, and

translate(mp, 〈N , E〉) =
8

>

>

>

<

>

>

>

:

{mp(〈l̄, s0, . . . , spi−1〉, 〈r〉):=TBC p
m.} 6 ∃〈mp 7→ , 〉∈E

{mp(〈l̄, s0, . . . , spi−1〉, 〈r〉):=TBC p
m, mc

p(〈l̄, s0, . . . , spo−1〉, 〈r〉).}
S

{mc
p(〈l̄, s0, . . . , spo−1〉, 〈r〉):=g,mq(〈l̄, s0, . . . , sqi−1〉, 〈r〉).

| 〈mp → mq, φq〉 ∈ E ∧ g=dec(φq)}
otherwise

In the above formula, pi (resp., po) denotes the height of the operand stack of m

at the entry (resp., exit) of mp. Also, qi is the height of the stack at the entry
of mq, and TBC p

m is the decorated bytecode for mp. We use “ ” to indicate that
the value at the corresponding position is not relevant.

The function translate(mp, 〈N , E〉) is defined by cases. The first case is applied
when mp is a sink node with no out-edges. Otherwise, the second rule introduces
an additional procedure mc

p (c is for continuation), which is defined by as many
rules as there are out-edges for mp. These rules capture the different alternatives
which execution can follow from mp. We will unfold calls to mc

p whenever it is
deterministic (mp has a single out-edge). This results in mp calling mq directly.
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Example 2. The RBR of the CFG in Fig. 1 consists of the following rules where
local variables have the same name as in the source code and o is the this object:

fact(〈o, n〉, 〈r〉) := init local vars(〈ft, i〉), fact1 (〈o, n, ft, i〉, 〈r〉).
fact1 (〈o, n, ft, i〉, 〈r〉) := iconst(1, s0), istore(s0, ft), iconst(1, s0),

istore(s0, i), fact2 (〈o, n, ft, i〉, 〈r〉).
fact2 (〈o, n, ft, i〉, 〈r〉) := iload(i, s0), iload(n, s1),

factc
2(〈o, n, ft, i, s0, s1〉, 〈r〉).

factc
2(〈o, n, ft, i, s0, s1〉, 〈r〉) := guard(icmpgt(s0, s1)), fact4 (〈o, n, ft, i〉, 〈r〉).

factc
2(〈o, n, ft, i, s0, s1〉, 〈r〉) := guard(icmple(s0, s1)), fact3 (〈o, n, ft, i〉, 〈r〉).

fact3 (〈o, n, ft, i〉, 〈r〉) := iload(ft, s0), iload(i, s1), imul(s0, s1, s0),
istore(s0, ft), iinc(i, 1), fact2 (〈o, n, ft, i〉, 〈r〉).

fact4 (〈o, n, ft, i〉, 〈r〉) := iload(ft, s0), ireturn(s0, r).

The first rule corresponds to the entry. Block fact4 is a sink block. Blocks fact1

and fact3 have a single out-edge and we have unfolded the continuation. Finally,
block fact2 has two out-edges and needs the procedure factc

2. The RBR from the
CFG of doSum in Fig. 2 is (doSum3 merges several blocks with one out-edge):

doSum (〈o, x〉, 〈r〉) := init local vars(〈〉), doSum1 (〈o, x〉, 〈r〉).
doSum1(〈o, x〉, 〈r〉) := aload(x, s0), doSumc

1(〈o, x, s0〉, 〈r〉).
doSumc

1(〈o, x, s0〉, 〈r〉) := guard(nonnull(s0)), doSum3 (〈o, x〉, 〈r〉).
doSumc

1(〈o, x, s0〉, 〈r〉) := guard(null(s0)), doSum2 (〈o, x〉, 〈r〉).
doSum2(〈o, x〉, 〈r〉) := iconst(0, s0), ireturn(s0, r).
doSum3(〈o, x〉, 〈r〉) := aload(o, s0), aload(x, s1), getfield(List.data, s1, s1),

fact(〈s0, s1〉, 〈s0〉), aload(o, s1), aload(x, s2),
getfield(List.next, s2, s2), doSum(〈s1, s2〉, 〈s1〉),
iadd(s0, s1, s0), ireturn(s0, r).

We can see that a call to a different method, fact , occurs in doSum3. This shows
that our RBR allows simultaneously handling the two CFGs in our example. 2

Rule-based Programs vs JBC Programs. Given a JBC program P , Pr denotes
the RBP obtained from P . Note that, it is trivial to define an interpreter (or ab-
stract machine) which can execute any Pr and obtain the same return value and
termination behaviour as a JVM does for P . RBPs, in spite of their declarative
appearance, are in fact imperative programs. As in the JVM, an interpreter for
RBPs needs, in addition to a stack for activation records, a global heap. These
activation records differ from those in the JVM in that the operand stack is no
longer needed (as stack elements are explicit) and in that the scope of variables
is no longer associated to methods but rather to rules. In RBPs all rules are
treated uniformly, regardless of the method they originate from, so that method
borders are somewhat blurred. As in the JVM, call-by-value is used for passing
arguments in calls.
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3 Proving Termination

This section describes how to prove termination of a JBC program given its
RBR. The approach consists of two steps. In the first, we abstract the RBR rules
by replacing all program data by their corresponding size, and replacing calls
corresponding to bytecode instructions by size constraints on the values their
variables can take. This step results in a Constraint Logic Program (CLP) [16]
over integers, where, for any bytecode trace t, there exists a CLP trace t′ whose
states are abstractions of t states. In particular, every infinite (non terminating)
bytecode trace has a corresponding infinite CLP trace, so that termination of the
CLP program implies termination of the bytecode program. Note that, unlike in
bytecode traces which are always deterministic, the execution of a CLP program
can be non-deterministic, due to the precision loss inherent to the abstraction.

In the second step, we apply techniques for proving termination of CLP
programs [9], which consist of: (1) analyzing the rules for each method to infer
input-output size relations between the method input and output variables;
(2) using the input-output size relations for the methods in the program, we infer
a set of abstract direct calls-to pairs which describe, in terms of size-change, all
possible calls from one procedure to another; and (3) given this set of abstract
direct calls-to pairs, we compute a set of all possible calls-to pairs (direct and
indirect), describing all transitions from one procedure to another. Then we focus
on the pairs which describe loops, and try to identify ranking functions which
guarantee the termination of each loop and thus of the original program.

3.1 Abstracting the Rules

As mentioned above, rule abstraction replaces data by the size of data, and
focuses on relations between data size. For integers, their size is just their in-
teger value [12]. For references, we take their size to be their path-length [24],
i.e., the length of the maximal path reachable from the reference. Then, bytecode
instructions are replaced by constraints on sizes taking into account a Static Sin-
gle Assignment (SSA) transformation. SSA is needed because variables in CLP
programs cannot be assigned more than one value. For example, an instruction
iadd(s0, s1, s0) will be abstracted to s′0=s1+s0 where s′0 refers to the value of s0

after executing the instruction. Also, the bytecode getfield(f, s0, s0) is abstracted
to s0>s′0 if it can be determined that s0 (before executing the instruction) does
not reference a cyclic data-structure, since the length of the longest-path reach-
able from s0 is larger than the length of the longest path reachable from s′0.

bytecode b abstract bytecode bα ρi+1

iload(lv, sj) s′j=ρi(lv) ρi[sj 7→s′j ]
iadd(sj , sj+1, sj) s′j=ρi(sj)+ρi(sj+1) ρi[sj 7→s′j ]
guard(icmpgt(sj , sj+1)) ρi(sj)>ρi(sj+1) ρi

getfield(f, sj , sj) if f is of ref. type: ρi(sj)>s′j if sj is not cyclic ρi[sj 7→ s′j ]
otherwise ρi(sj) ≥ s′j . If f is not of ref. type: true

putfield(f, sj , sj+1) if sj and sj+1 do not share, s′k≤ρi(sk)+ρi(sj+1) ρi[sk 7→ s′k]
s.t f is of ref. type for any sk that shares with sj , otherwise true.
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To implement the SSA transformation we maintain a mapping ρ of variable
names (as they appear in the rule) to new variable names (constraint variables).
Such a mapping is referred to as a renaming. We let ρ[x 7→ y] denote the modi-
fication of the renaming ρ such that it maps x to the new variable y. We denote
by ρ[x̄ 7→ ȳ] the mapping of each element in x̄ to a corresponding one in ȳ.

Definition 5 (abstract compilation). Let r ≡ p(x, y) := b1, . . . , bn be a rule.
Let ρi be a renaming associated with the point before each bi and let ρ1 be the
identity renaming (on the variables in the rule). The abstraction of r is denoted
r

α and takes the form p(x, y′) := bα
1 , . . . , bα

n where bα
i are computed iteratively

from left to right as follows:

1. if bi is a bytecode instruction or a guard, then bα
i and ρi+1 are obtained from

a predefined lookup table similar to the one above.

2. if bi is a call to a procedure q(w, z), then the abstraction bα
i is q(w′, z′) where

each w′
k∈w′ is ρi(wk), variables z′ are fresh, and ρi+1=ρi[z 7→ z′, u 7→ u′]

where u′ are also fresh variables and u is the set of all variables in w which
reference data-structures that can be modified when executing q and those
that share (i.e., might have common regions in the heap) with them.

3. at the end we define each y′
i ∈ y′ to be the constrained variable ρn+1(yi).

In addition, all reference variables are (implicitly) assumed to be non-negative.

Note that in point 2 above, the set of variables such that the data-structures
they point to may be modified during the execution of q can be approximated by
applying constancy analysis [14], which aims at detecting the method arguments
that remain constant during execution, and sharing analysis [23] which aims at
detecting reference variables that might have common regions on the heap. Also,
the non-cyclicity condition required for the abstraction of getfield can be verified
by non-cyclicity analysis [22]. In what follows, for simplicity, we assume that
abstract rules are normalized to the form p(x, y) := ϕ, p1(x1, y1), . . . , pj(xj , yj)
where ϕ is the conjunction of the (linear) size constraints introduced in the
abstraction and each pi(xi, yi) is a call to a procedure (i.e., block or method).

Example 3. Recall the following rule from Ex. 2 (on the left) and its abstraction
(on the right) where the renamings are indicated as comments.

fact3 (〈o, n, ft, i〉, 〈r〉) :=
iload(ft, s0),
iload(i, s1),
imul(s0, s1, s0),
istore(s0, ft),
iinc(i, 1),
fact2 (〈o, n, ft, i〉, 〈r〉).

fact3 (〈o, n, ft, i〉, 〈r′〉) := % ρ1 = id

s′0 = ft, % ρ2 = ρ1[s0 7→ s′0]
s′1 = i, % ρ3 = ρ2[s1 7→ s′1]
true, % ρ4 = ρ3[s0 7→ s′′0 ]
ft′ = s′′0 , % ρ5 = ρ4[ft 7→ ft′]
i′ = i + 1, % ρ6 = ρ5[i 7→ i′]
fact2 (〈o, n, ft′, i′〉, 〈r′〉). % ρ7 = ρ6[r 7→ r′]

Note that imul is abstracted to true, since it imposes a non-linear constraint. 2
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3.2 Input Output Size-relations

We consider the abstract rules obtained in the previous step to infer an abstrac-
tion (w.r.t. size) of the input-output relation of the program blocks. Concretely,
we infer input-output size relations of the form p(x, y) ← ϕ, where ϕ is a con-
straint describing the relation between the sizes of the input x and the output
y upon exit from p. This information is needed since output of one call may
be input to another call. E.g., consider the following contrived abstract rule
p(〈x〉, 〈r〉):={x>0,x>z}, q(〈z〉, 〈y〉), p(〈y〉, 〈r〉). To prove termination, it is cru-
cial to know the relation between x in the head and y in the recursive call to p.
This requires knowledge about the input-output size relations for q(〈z〉, 〈y〉). As-
suming this to be q(〈z〉, 〈y〉) ← z>y, we can infer x>y. Since abstract programs
are CLP programs, inferring relations can rely on standard techniques [4].

Computing an approximation of input-output size relation requires a global
fixpoint. In practice, we can often take a trivial over-approximation where for all
rules there is no information, namely, p(x, y) ← true. This can prove termination
of many programs, and results in a more efficient implementation. It is not
enough in cases as the above abstract rule, which however, in our experience,
often does not occur in imperative programs.

3.3 Call-to Pairs

Consider again the abstract rule from Ex. 3 which (ignoring the output variable)
is of the form fact3 (x̄) := ϕ, fact2 (z̄). It means that whenever execution reaches
a call to fact3 (x̄) there will be a subsequent call to fact2 (z̄) and the constraint ϕ

holds. In general, subsequent calls may arise also from rules which are not binary.
Given an abstract rule of the form p0 := ϕ, p1, . . . , pn, a call to p0 may lead to
a call to pi, 1≤i≤n. Given the input-output size relations for the individual
calls p1, . . . , pi−1, we can characterize the constraint for a transition between the
subsequent calls p0 and pi by adding these relations to ϕ. We denote a pair of
such subsequent calls by 〈p0(x) ; pi(y), ϕi〉 and call it a calls-to pair.

Definition 6 (direct calls-to pairs). Given a set of abstract rules A and its
input-output size relations IA, the direct calls-to pairs induced by A and IA are:

CA =






〈p(x) ; pi(xi), ψ〉

∣
∣
∣
∣
∣
∣

p(x, y) := ϕ, p1(x1, y1), . . . , pj(xj , yj)∈A,

i∈{1, . . . , j}, ∀0<k<i. pk(xk, yk) ← ϕk∈IA
ψ = ∃̄x ∪ xi.ϕ ∧ ϕ1 ∧ . . . ∧ ϕi−1







where ∃̄v means eliminating all variables but v from the corresponding constraint.
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Example 4. Consider the rule for doSum in Ex. 2: note that input-output rela-
tions for fact and doSum are true. Direct calls-to pairs for those rules are:

〈doSum(o, x) ; doSum1(o
′, x′), {x′=x, o′=o}〉

〈doSum1(o, x) ; doSumc
1(o

′, x′, s0), {x′=x, o′=o, s0=x}〉
〈doSumc

1(o, x, s0) ; doSum3(o
′, x′), {x′=x, o′=o, s0>0}〉

〈doSumc
1(o, x.s0) ; doSum2(o

′, x′), {x′=x, o′=o, s0=0}〉
〈doSum3(o, x) ; fact(s′0, s

′′
1), {s′0=o}〉

〈doSum3(o, x) ; doSum(s′′′1 , s′′2), {s′′′1 =o, x>s′′2}〉

In the last rule, s′′2 corresponds to x.next, so that we have the constraint x>s′′2 .
It can be seen that since the list is not cyclic and does not share with other
variables, size analysis finds the above decreasing of its size x>s′′2 . Note also
that all variables corresponding to references are assumed to be non-negative.
Similarly, we can obtain direct calls-to pairs for the rule of fact. 2

It should be clear that the set of direct calls-to pairs relations CA is also
a binary CLP program that we can execute from a given goal. A key feature
of this binary program is that if an infinite trace can be generated using the
abstract program described in Sec. 3.1, then an infinite trace can be generated
using this binary CLP program [10]. Therefore, absence of such infinite traces
(i.e., termination) in the binary program CA implies absence of infinite traces in
the abstract bytecode program, as well as in the original bytecode program.

Theorem 1 (Soundness). Let P be a JBC program and CA the set of direct
calls-to pairs computed from P . If there exists a non-terminating trace in P then
there exists a non-terminating derivation in CA.

Intuitively, the result follows from the following points. By construction, the
RBP captures all possibly non-terminating traces in the original program. By
the correctness of size analysis, we have that, given a trace in the RBP, there
exists an equivalent one in CA, among possibly others. Therefore, termination
in CA entails termination in the JBC program.

3.4 Proving Termination of the Binary program CA

Several automatic termination tools and methods for proving termination of
such binary constraint programs exists [9, 10, 17]. They are based on the idea of
first computing all possible calls-to pair from the direct ones, and then finding a
ranking function for each recursive calls-to pairs, which is sufficient for proving
termination. Computing all possible calls-to pairs, usually called the transitive
closure C∗

A, can be done by starting from the set of direct calls-to pairs CA, and
iteratively adding to it all possible compositions of its elements until a fixed-point
is reached. Composing two calls-to pairs 〈p(x) ; q(y), ϕ1〉 and 〈q(w) ; r(z), ϕ2〉
returns the new calls-to pair 〈p(x) ; r(z), ∃̄x̄ ∪ z̄.ϕ1 ∧ ϕ2 ∧ (ȳ = w̄)〉.
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Example 5. Applying the transitive closure on the direct calls-to pairs of Ex. 4,
we obtain, among many others, the following calls-to pairs. Note that x (resp.
i) strictly decreases (resp. increases) at each iteration of its corresponding loop:

〈doSum(o, x) ; doSum(o′, x′), {o′=o, x>x′, x≥0}〉
〈fact2(o, n, ft , i) ; fact2(o

′, n′, ft ′, i′), {o′=o, n′=n, i′>i, i≥1, n≥i′−1}〉

2

As already mentioned, in order to prove termination, we focus on loops in
C∗

A. Loops are the recursive entities of the form 〈p(x) ; p(y), ϕ〉 which indicate
that a call to a program point p with values x̄ eventually leads to a call to the
same program point with values ȳ and that ϕ holds between x and y. For each
loop, we seek a ranking function f over a well-founded domain such that ϕ |=
f(x)>f(y). As shown in [9, 10], finding a ranking function for every recursive
calls-to pair implies termination. Computing such functions can be done, for
instance, as described in [21]. As an example, for the loops in Ex. 5 we get the
following ranking functions: f1(o, x)=x and f2(o, n, ft , i)=n−i+1.

3.5 Improving Termination Analysis by Extracting Nested Loops

In proving termination of JBC programs, one important question is whether we
can prove termination at the JBC level for a class of programs which is compa-
rable to the class of Java source programs for which termination can be proved
using similar technology. As can be seen in Sec. 4, directly obtaining the RBR
of a bytecode program is non-optimal, in the sense that proving termination on
it may be more complicated than on the source program. This happens because,
while in source code it is easy to reason about a nested loop independently of
the outer loop, loops are not directly visible when control flow is unstructured.
Loop extraction is useful for our purposes since nested loops can be dealt with
one at a time. As a result, finding a ranking function is easier, and computing
the closure can be done locally in the strongly connected components. This can
be crucial in proving the termination of programs with nested loops.

To improve the accuracy of our analysis, we include a component which can
detect and extract loops from CFGs. Due to space limitations, we do not describe
how to perform this step here (more details in work about decompilation [2],
where loop extraction has received considerable attention). Very briefly, when a
loop is extracted, a new CFG is created. As a result, a method can be converted
into several CFGs. These ideas fit very nicely within our RBR, since calls to
loops are handled much in the same way as calls to other methods.

4 Experimental results

Our prototype implementation is based on the size analysis component of [1]
and extends it with the additional components needed to prove termination. The
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Benchmark CFG RBR Size TC RF Total1 Termin Total2 Ratio

Polynomial 138 12 260 1453 26 1890 yes 2111 1.12

DivByTwo 52 4 168 234 4 462 yes 538 1.17

EvenDigits 59 7 383 1565 17 2030 yes 2210 1.09

Factorial 43 3 46 268 3 363 yes 353 0.97

ArrayReverse 58 5 208 339 24 635 yes 834 1.32

Concat 65 8 660 943 38 1715 yes 3815 2.23

Incr 35 12 854 4723 28 5652 yes 6590 1.17

ListReverse 21 5 141 310 5 481 yes 515 1.07

MergeList 107 23 130 5184 21 5464 yes 5505 1.01

Power 14 3 72 357 9 454 yes 459 1.01

Cons 25 7 65 1318 10 1424 yes 1494 1.05

ListInter 136 22 585 9769 49 10560 yes 27968 2.65

SelectOrd 154 16 1298 4076 48 5592 no 25721 4.60

DoSum 57 10 64 923 6 1060 yes 1069 1.01

Delete 121 14 54 2418 1 2608 yes 33662 12.91

MatMult 240 11 2411 4646 294 7602 no 32212 4.24

MatMultVector 254 15 2563 8744 242 11817 no 34688 2.94

Hanoi 39 5 172 979 3 1198 no 1198 1.00

Fibonacci 23 3 90 290 5 411 yes 401 0.98

BST 68 12 97 4643 18 4838 yes 4901 1.01

BubbleSort 152 12 1125 4366 83 5738 no 14526 2.53

Search 65 11 307 756 11 1150 yes 1430 1.24

Sum 64 7 480 1758 35 2343 no 5610 2.39

FactSumList 65 12 80 961 5 1123 yes 1306 1.16

Scoreboard 268 23 1597 4393 81 6362 no 32999 5.19

Table 1. Measured time (in ms) of the different phases of proving termination

analyzer can also output the set of direct call-pairs, which allows using existing
termination analyzers based on similar ideas [10, 17]. The system is implemented
in Ciao Prolog, and uses the Parma Polyhedra Library (PPL) [3].

Table 1 shows the execution times of the different steps involved in prov-
ing the termination of JBC programs, computed as the arithmetic mean of five
runs. Experiments have been performed on an Intel 1.86 GHz Pentium M with
1 GB of RAM, running Linux on a 2.6.17 kernel. The table shows a range of
benchmarks for which our system can prove termination, and which are meant
to illustrate different features. We show classical recursive programs such as
Hanoi, Fibonacci, MergeList and Power. Iterative programs DivByTwo and Con-
cat contain a single loop, while Sum, MatMult and BubbleSort are implemented
with nested loops. We also include programs written in object-oriented style,
like Polynomial, Incr, Scoreboard, and Delete. The remaining benchmarks use
data structures: arrays (ArrayReverse, MatMultVector, and Search); linked lists
(Delete and ListReverse); and binary trees (BST).

Columns CFG, RBR, Size, TC, RF, Total1 contain the running times (in
ms) required for the CFG (including loop extraction), the RBR, the size analysis
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(including input-output relations), the transitive closure, the ranking functions
and the total time, respectively. Times are high, as the implementation has been
developed to check if our approach is feasible, but is still preliminary. The most
expensive steps are the size analysis and the transitive closure, since they require
global analysis. Last three columns show the benefits of loop extraction. Termin
tells if termination can be proven (using polyhedra) without extraction. In seven
cases, termination is only proven if loop extraction is performed. Total2 shows
the total time required to check termination without loop extraction. Ratio
compares Total2 with Total1 (Total2/Total1), showing that, in addition to
improving precision, loop extraction is beneficial for efficiency, since Ratio ≥ 1
in most cases, and can be as high as 12.91 in Delete. Note that termination of
these programs may be proved without loop extraction by using other domains
such as monotonicity constraints [7]. However, we argue that loop extraction is
beneficial as it facilitates reasoning on the loops separately. Also, if it fails to
prove termination, it reports the possibly non-terminating loops.

5 Conclusions and Related Work

We have presented a termination analysis for (sequential) JBC which is, to the
best of our knowledge, the first approach in this direction. This analysis success-
fully deals with the challenges related to the low-level nature of JBC, and adapts
standard techniques used, in other settings, in decompilation and termination
analysis. Also, we believe that many of the ideas presented in this paper are also
applicable to termination analysis of low-level languages in general, and not only
JBC. We have used the notion of path-length to measure the size of data struc-
tures on the heap. However, our approach is parametric on the abstract domain
used to measure the size. As future work, we plan to implement non-cyclicity
analysis [22], constancy analysis [14], and sharing analysis [23], and to enrich the
transitive closure components with monotonicity constraints [7]. Unlike polyhe-
dra, monotonicity constraints can handle disjunctive information which is often
crucial for proving termination. In [5], a termination analysis for C programs,
based on binary relations similar to ours, is proposed. It uses separation logic
to approximate the heap structure, which in turn allows handling termination
of programs manipulating cyclic data structures. We believe that, for programs
whose termination does not depend on cyclic data-structures, both approaches
deal with the same class of programs. However, ours might be more efficient, as
it is based on a simpler abstract domains (a detailed comparison is planned for
future work). Recently, a novel termination approach has been suggested [8]. It
is based on cyclic proofs and separation logic, and can even handle complicated
examples as the reversal of panhandle data-structures. It is not clear to us how
practical this approach is.
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