Mechanizing a correctness proof for a lock-free
concurrent stack

John Derrick!, Gerhard Schellhorn?, and Heike Wehrheim?

!Department of Computing, University of Sheffield, Sheffield, UK
J.Derrick@dcs.shef.ac.uk

2Universitit Augsburg, Institut fiir Informatik, 86135 Augsburg, Germany
schellhorn@informatik.uni-augsburg.de

3Universitit Paderborn, Institut fiir Informatik, 33098 Paderborn, Germany
wehrheim@uni-paderborn.de

Abstract. Distributed algorithms are inherently complex to verify. In
this paper we show how to verify that a concurrent lock-free implemen-
tation of a stack is correct by mechanizing the proof that it is lineariz-
able, linearizability being a correctness notion for concurrent objects.
Our approach consists of two parts: the first part is independent of the
example and derives proof obligations local for one process which im-
ply linearizabilty. The conditions establish a (special sort of non-atomic)
refinement relationship between the specification and the concurrent im-
plementation. These are used in the second part to verify the lock-free
stack implementation. We use the specification language Z to describe
the algorithms and the KIV theorem prover to mechanize the proof.

Keywords: Z, refinement, concurrent access, linearizability, non-atomic refine-
ment, theorem proving, KIV.

1 Introduction

Locks have been used to control access by concurrent processors to shared ob-
jects and data structures. However, performance and other issues have led to
the development of lock-free algorithms which allow multi-processors access to
the data structures in a highly interleaved fashion. Such concurrent algorithms
providing access to shared objects (e.g., stacks, queues, etc.) are intrinsically
difficult to prove correct, and the down-side of the performance gain from using
concurrency is the much harder verification problem: how can one verify that a
lock-free algorithm is correct? This paper is concerned with the development of
a theory that allows mechanized proof of correctness for lock-free algorithms.
As an example we use the lock-free stack from [?] which implements atomic
push and pop operations as instructions to read, write and update local variables
as well as the stack contents, the individual instructions being devised so that
concurrent access can be granted. The only atomic operations are the reading and
writing of variables and an atomic compare-and-swap (atomically comparing the

values of two variables plus setting a variable). Sequential notions of correctness,
such as refinement [?,?], which rely on strict atomicity being preserved for all
operations in an implementation have to be adapted to provide a correctness
criteria for such a concurrent non-atomic setting. Linearizability [?] is one such
criteria which essentially says that any implementation could be viewed as a
sequence of higher level operations. Like serializability for database transactions,
it permits one to view concurrent operations on objects as though they occur in
some sequential order [?]:

Linearizability provides the illusion that each operation applied by con-
current processes takes effect instantaneously at some point between its
invocation and its response.

Recent work on formalizing and verifying lock-free algorithms includes [?,?,7,7?]
as well as our own [?]. These show correctness by showing that an abstraction (or
simulation or refinement) relation exists between the abstract specification and
the concurrent implementation [?,?,7,7,2,?]. The proofs are manual or partly
supported by theorem provers like, for instance, PVS.

All these papers argue informally that refinement implies the original lin-
earizability criterion of [?]. Our work instead gives a formal theory that relates
refinement theory and linearizability, which has been fully mechanized using the
interactive theorem prover KIV [?]. A web presentation of the KIV proofs is
available [?].

Linearizability
1 (Sect. ??)
Data Refinement

1)

Forward Simulation using Possibilities (Sect. ?77)
f

Local proof obligations for one process (Sect. 77)

f
Proof obligations for the lock-free stack (Sect. ?77?)

fr
Lock-Free Stack (Sect. ?77)

Fig. 1. Structure of the linearizability proof for the lock-free stack

Our methodology of proving linearizability consists of two parts: A generic
part, shown in the upper half of Fig. 77 which derives proof obligations for one
process. These proof obligations are shown to imply linearizability, and their
genericity means they should be applicable to other algorithms in addition to
the case study presented here. The second part is thus an application specific
part (the lower half of Fig. ??) which instantiates these proof obligations for our
particular case study.

We start with the lower half, which extends our work in [?], where we used
non-atomic refinement to verify linearizability. The specifications given there
were expressed as a combination of CSP and Object-Z. We only considered two
processes, one doing a push operation on the stack, and the other one a pop
operation. In addition, we restricted the linearization point to always occur at
the end of a sequence of operations implementing an atomic abstract operation.
This allowed us to prove the correctness of a slightly simplified version of the
algorithm given in [?].

Returning to this paper, in the next section we specify the stack and its lock-
free implementation, given here as a Z specification rather than an integration of
CSP and Object-Z (since this allows for simpler proof conditions). (The use of Z
also allows the specification of several processes to be very elegantly captured in
the specification using Z’s notion of promotion, although we suppress this aspect
here due to space restrictions.)

Section 77 then describes the background and the methodology that we have
derived. Tt results in proof obligations that generalize the ones in [?] in two
ways. First, we relax the assumption of having just two processes, and verify
linearizability for an arbitrary numbers of processes. Second, we allow arbitrary
linearization points. The proof obligations are applied on our running example
in Section ?77.

The second half of our paper is concerned with the top half of Fig. ?7. In
Section 7?7 we give a formal definition of linearizability and show that it can be
viewed as a specific form of data refinement. Section 77 justifies our local proof
obligations by constructing a global forward simulation using the possibilities
employed in [?]. The last section concludes and discusses related work.

2 The Stack and its Lock-free Implementation

Our example stack and its lock-free implementation is based on that given in
[?]. Initially the stack is described as a sequence of elements of some given type
T together with two operations push and pop. push pushes its input v? on the
stack, and pop removes one element that is returned in v!. When the stack is
empty, pop leaves it and returns the special value empty (assumed to be not in
T). The specification is given in Z [?,?], with which we assume the reader is
familiar. The abstract stack specification is defined by:

AS _Alnit
(stack :seq T AS'

stack’ = ()

_ push _pop

AAS AAS; vl TU{empty}
2. —
i stack = () =
stack’ = (v?) ™ stack v! = empty A stack’ = stack
stack # () =

v! = head stack A stack’ = tail stack

The lock-free implementation uses a linked list of nodes which can be accessed
by a number of processes. We use a free type to model linked lists so that a node
is either null or consists of an element plus a further node (its successor in the
list), we also define functions for extracting values from the nodes in a list:

Node ::= node((T x Node) | null

first : Node + T second : Node - Node
Vt:T,n: Nodee Vt:T,n: Nodee
first node(t,n) =t second node(t,n) =n

We will furthermore use a function collect : Node — seq T later on, which
collects all values of nodes reachable from some initial node in a list.

Informally a node consists of a value val : T and a pointer next, which
either points to the next node in the list or is empty and then has value null. A
variable head is used to keep track of the current head of the list. Operations push
and pop are split into several smaller operations, making new nodes, swapping
pointers etc.. There is one operation atomically carrying out a comparison of
values and an assignment: CAS(mem, exp, new) (compare-and-swap) compares
mem to ezp; if this succeeds (i.e. mem equals exp), mem is set to new and CAS
returns true, otherwise the CAS fails, leaves mem unchanged and returns false.
In pseudo-code the push and pop operations that one process executes are given
as follows (here, head refers to the head of the linked list):

push(v : T): popO: T:

1 n:= new(Node); 1 repeat

2 n.val := v; 2 ss:= head;

3 repeat 3 if ss = null then

4 ss:= head; 4 return empty;

5 n.next := ss; 5 ssn := ss.next;

6 until CAS(head,ss,n) 6 lv := ss.val
7 until CAS(head,ss,ssn);
8 return 1lv

Thus the push operation first creates a new node with the value to be pushed
onto the stack. It then repeatedly sets a local variable ss to head and the pointer
of the new node to ss. This ends once the final CAS detects that head (still)
equals ss upon which head is set to the new node n. Note that the CAS in push

does not necessarily succeed: in case of a concurrent pop, head might have been
changed in between. The pop is similar: it memorizes the head it started with
in ss, then determines the remaining list and the output value. If head is still
equal to ss in the end, the pop takes effect and the output value is returned.

Previously we used CSP to describe the orderings of the individual operations
as given in the pseudo-code above. However, it is sufficiently simple that we use
a program counter of the form either a number (1) or an O or U (for pop or
push) followed by a number and give the ordering as part of the Z operations.
Thus we get the following values for program counters:

PC:=1|02|03|05|06|07| 08| U4| U5 | U6

We use a global state GS, that consists just of the head of the stack. This state
is shared by all processes executing the algorithms of push and pop above:

GS _ GSInit
(hea,d : Node GS’
head' = null

Every process then possesses its own local state space (where local variables
like ss and n reside) and the global shared data structure, i.e., the linked list
characterised by its current head. The local state LS of a particular process
consists of the variables given in the pseudo-code above together with a program
counter pc:

LS _ LSInit

880, ssu, ssn,n : Node LS’

pc: PC o1
lv: TU{empty} pe =1

To distinguish their use in pop and push we have appended a u, o, respectively,
to variables ss. Each line in the pseudo-code is turned into a Z operation, where
the numbering is according to line numbers in the pseudo-code.

First the operations are described in terms of their effect for one process, i.e.
in terms of the state GS and one state LS. We classify the operations into invok-
ing operations (INVOP, the first operation in a push or pop) and return operations
(RETOP). For instance psh2 is the invoking operation of push, constructing a new
node.

psh2____ psh4 pshd

=GS INVOP] |=GS =ZGS

ALS ALS ALS

v?: T , ,
pc=U4dANpc=Ub pc=UbApc’ = U6

pc=1Apc = U4 ssu’ = head n' = node(first n, ssu)

n' = node(v?, null)

_CAS;psh — CAS;psh
AGS [RETOP] =GS
ALS ALS
pc=U6Apc =1 pc=UG6Apc = U4
head = ssu head # ssu
head' = n

As usual, the notation = specifies that the respective state space is unchanged,
whereas A allows for modifications. However, we adopt the Object-Z (as opposed
to Z) convention that all variables not mentioned in the predicate of a schema
stay the same. This simply makes the specifications much more readable (other-
wise we would have to add a lot of predicates of the form ssu’ = ssu etc.) and has
no semantic consequence. Note that the only operation within push modifying
the global data structure is CAS;psh (the succeeding CAS), which is also the
return operation.

Similarly, we model pop. The operation pop2 which reads head at line 2 is
duplicated, since it is called as an invoking operation (when pc = 1) as well as
when the loop is iterated (pc = 02).

_pop2inv pop2___ _pop3t_—
=ZGS [INVOP] =GS =GS [RETOP]
ALS ALS ALS

A t
pc=1Apc =03 ! U {empty}

sso’ = head

pc= 02 A pc’ = 03
sso’ = head

pc=03Apc =1
sso = null A v! = empty

pop3f —__ _pop5b___ _pop6___
2GS 2GS 2GS

ALS ALS ALS

pc= 03 A pc’ = 05 pc = 05 A pc’ = 06 pc= 06 A pc’ = O7
sso # null ssn’ = second sso ' = first sso
_CAS;pop ~CASipop______ _pop8____
AGS =GS ZGS [RETOP]
ALS ALS ALS

I

pc= 07 A pc’ = 08 pc= OT7Apc =02 ot TU {empty}
head = sso head # sso pc=08Apc =1
head’ = ssn vl =lv

Here, we find two return operations: a pop can return with output empty (op-
eration pop3t) or with the effect of one node actually removed from the front of
the linked list and its value returned as an output (operation pop8).

All these operations are defined for the local state. For the full scenario, it is
assumed that each operation is executed by processes p € P, then working on
GS and a local state LS = Isf(p) returned by a function lsf that stores all local
states. A formal definition of this full scenario could be given in terms of promo-
tion (see [?] or [?]), for reasons of space we only give a simple relational definition
which also adds histories in Section ?? (histories are needed for linearizabilty).

We now have an abstract model of the stack, where push and pop occurs atom-
ically, and an implementation with several processes operating concurrently on
the linked list implementing the stack. The objective then is to show that this
lock-free implementation is linearizable with respect to the initial abstract model.
Technically, this is done showing a particular form of refinement relation between
abstract and concrete specification.

3 The Refinement Methodology

To show that linearizability holds we take the local view of one process and define
forward simulation conditions that show that the concrete implementation is a
non-atomic refinement [?,?] of the abstract stack. The purpose of this type of
non-atomic refinement is to show that the concrete system (with many small
steps) resembles the abstract system with a smaller number of “larger” steps.
We will argue informally, that the proof obligations are sufficient to guarantee
linearizability, a formal justification will be given in Sections 7?7 and ?7?.

In a standard (atomic) refinement, an abstract operation is implemented by
one concrete operation, and to verify the correctness of such a transformation
forward (and backward) simulations are used to describe how the abstract and
concrete specifications proceed in a step by step fashion. The simulations are
given in terms of an abstraction relation R relating states of the concrete and
abstract specification, and then one proves that from related states, every step
of a concrete operation can be mimicked by a corresponding abstract operation
leading to related states again. In the case of non-atomic refinement one abstract
operation is now implemented by a number of concrete operations. To adapt the
simulation conditions one requires that concrete steps are either matched by an
abstract step or by no operation at all. One scenario of this kind is depicted in
Figure ?77.

Fig. 2. Linearization in the middle

In the diagram, the upper level shows states and transitions of the abstract
specification, the lower those of the concrete system. Dashed lines depict the
abstraction relation R. (The labellings will be explained later). Starting from a
pair of related states, a number of steps in the concrete system might abstractly

have no effect on the state, thus the abstraction relation R stays at the same
abstract state while changing the concrete. However, some concrete transitions
(in this case the one in the middle) match a corresponding abstract operation,
and the usual condition in simulations tells us that an abstract operation needs
to be executed such that the after-states are again related. Matching with an
abstract step has to take place whenever the current concrete operation has a
visible effect, and in our setting such visible effects are the linearization points.
Details of how the non-atomic simulation conditions are derived and examples
of their use are given in [?,?].

For our purposes we tailor the simulation conditions to our particular appli-
cation of concurrent algorithms. First of all, since our concrete specification is
partitioned into a global state GS together with local states LS for each process,
we will describe the abstraction relation R as sets of elements (as, gs,ls) € R
which we also write as R(as, gs,ls). R(as, gs,ls) then means that an abstract
state as is related to a global concrete state gs and one local state Is L.

The second adaption concerns the processes themselves. Processes can have
three different states: they can be idle (IDLFE), have already invoked the im-
plementation of an abstract operation possibly with some input in (IN(in)) or
they have already produced some output out for this operation (OUT (out)).
This gives rise to the following types:

STATUS ::= IDLE | IN{T U {empty})) | OUT{(T U {empty})

To verify the simulation conditions, we require that a function status : LS —
STATUS has been defined. We furthermore require the concrete set of opera-
tions that implement one abstract operation AOP to be split into three classes:
invocations INVOP, returns RETOP and other operations (here denoted COP), as is
the case in our stack example above. The formal KIV specification has concrete
operations { COp; };cs with J partitioned into IJ, RJ and CJ, abstract opera-
tions {AOp; }ier, and a mapping abs : J — I to define which concrete operation
implements which abstract operation. For better readability we drop indices in
the proof obligations.

Fig. 3. Linearization on invocation or on return

The forward simulation conditions consist of six separate clauses: Init, Invoke,
Before Sync, After Sync, Return before sync and Return after sync, which we
describe in turn. In addition to the initialisation, these describe a number of
different possibilities. First of all we have to say how invocations, returns and
other operations behave. Second, we have to describe whether these operations
match the abstract one (we call this a linearization with AOP in the descriptions

! Note that we do not have all local states together in R.

below), or whether they should have no observable effect. This second aspect
gives us the disjunctions in the conditions below.

First of all, Init is the standard initialisation condition, requiring that initial
states of the two specifications are related:

Init
Jas € AInit e R(as, gs, ls)

Like all following conditions, the formula is implicitly universally quantifies over
all its free variables (here: gs : GS and Is : LS). Invoke places a requirement
on the operations marked as INVOP, which are the operations that begin a se-
quence of concrete operations corresponding to one abstract operation. In our
example psh2 and pop2inv are of type INVOP. Invoke requires that if a process
is idle and an invoking operation is executed then one of two things happen.
Either the concrete after states are linked to the same abstract states as before
(R(as, gs',1s"), see diagram INV1 to the right of Figure ??) and the status is
moved from IDLE to IN, or that linearization has already taken place (diagram
INV2 left of Figure ??), the process moves to its OUT state and we must match
this invoke operation with the abstract AOP:

Invoke

R(as, gs, ls) A status(ls) = IDLE N INVOP(gs, ls, gs', Is’, in)
= (R(as,gs’,ls’) N (Vlisq: LS @ R(as, gs,lsq) = R(as, gs',lsq))
A status(ls") = IN (in))
V (status(ls’) = OUT (out)
AJas’: AS e AOP(in,as, as’, out) A R(as’, gs’,1s")
A (Visq: LS e R(as, gs,lsq) = R(as’, gs',1sq))

An additional condition Visq : LS e R(as, gs,lsq) = R(as’, gs’,lsq) is the price
to pay for interleaving processes compared to standard non-atomic refinement:
the condition prevents that other processes with an unknown, arbitrary state lsq
are affected by the local operation.

Before sync describes what happens if a concrete COP is executed before we
have reached the linearization point. It has two cases: either we have still not
linearized after the COP, or this is the linearization point (see Figure ??), in
which case we must match with the abstract operation AOP:

Before Sync

R(as, gs,1s) A status(ls) = IN (in) A COP(gs, s, gs’,ls")
= (status(ls’) = IN (in) A R(as, gs', ls)
A (Vlisq: LS o R(as, gs,lsq) = R(as, gs',1sq)))
V (status(ls") = OUT (out)
ATas' : AS ¢ AOP(in, as, as’, out)
A R(as’, gs',1s")
A (Visq: LS e R(as, gs,lsq) = R(as’, gs',1sq)))

In our example, psh4, psh5, CAStpop, pop3f, pop6, pop5, CAS;pop are all of type
Before Sync. A dual condition After Sync describes the effect of a concrete
operation taking place after the linearization point:

After Sync

R(as, gs,ls) A status(ls) = OUT (out) A COP(gs, s, gs', ls")
= R(as, gs',1s") A status(ls’") = OUT (out)
A (Vlisq: LS o R(as, gs,lsq) = R(as, gs',1sq))

In our particular example, we do not have an operation that requires this
condition.

The final two conditions describe the effect of the RETOP operations and
there are two cases. We could either have linearized already (Return after
sync, diagrams RAS in the figures) in which case the concrete operation should
have no observable effect, but the output produced by RETOP has to match the
current one in status (stored during a previous linearization), or we haven’t
already linearized, and Return before sync then says we must now linearize
with the abstract operation AOP.

Return before sync

R(as, gs, Is) A status(ls) = IN(in) N RETOP(gs, s, gs', ls', out)
= Jas’: AS ¢ AOP(in, as, as’, out) A R(as’, gs’,ls’)
A status(ls’) = IDLE
A (Vlisq: LS : R(as, gs,lsq) = R(as’, gs',1sq))

Return after sync

R(as, gs, Is) A status(ls) = OUT (out) N RETOP(gs, s, gs', ls’, out”)
= out’ = out A status(ls') = IDLE A R(as, gs',1s")
A (Visq: LS e R(as, gs,lsq) = R(as, gs’,lsq))

In our example, CAS;psh is of type Return before sync, whilst pop8 and
pop3t are of type Return after sync.

4 Application to the Stack Example

In this section we describe how the methodology of the previous section can be
applied to our running example. This involves mainly working out the correct
abstraction relation and the status function, and then verifying the conditions
that we detailed above.

The representation relation is constructed out of several specific ones, detail-
ing the particular local state at various points during the execution. In summary:

R = collect(head) = stack AN\/,,cpc R™ A pc=n

The overall R is the disjunction over individual R™s, for n being some specific
value of the program counter, conjoined with the predicate pc = n and — the ac-
tual relationship between abstract and concrete state space — a predicate stating
that collecting the values from head on gives us the stack itself. The individ-
ual R™s capture information about the current local state of a process being at
pc = n. For several ns no specific information is needed:

Rl
| 45; GS; LS RO2 = R, RO = R1, ROS = R

For others, certain predicates on the local state are needed. For instance, RY*
states the existence of a locally created node, or RO the relationship between sso
and ssn. There is no further specific relationship between abstract and concrete
state known (except for collect(head) = stack, which is true everywhere). Even
a previous read of head gives us no relationship to, e.g., sso since this may have
been invalidated by other concurrently running processes.

*RU4— *RU‘B— *RUG—
LS LS LS

Jv,no’ e Jv,n0’ e Jv e n = node(v, ssu)

n = node(v, no’) n = node(v, no’)

*ROS— *RO6— *R07—
LS LS LS

880 # null ss0 # null ss0 # null

ssn = second $so ssn = second sso
lv = first sso

Furthermore we need the definition of status. The status of a local state essen-
tially depends on the program counter, it determines whether a process is in
state IDLE, IN or OUT, thereby determining the linearization points. Local
variables m, sso and [v can be used to determine values for input and output.

status : LS — STATUS

Vise LS e
(Is.pc = 1 = status(ls) = IDLE)
(Is.pc € {U4, U5, U6} = status(ls) = IN(first ls.n))
(Is.pc = O3 A ls.sso = null = status(ls) = OUT (empty))
(Is.pc € {02, 05,06, 07} V (Is.pc = O3 A ls.sso # null)
= status(ls) = IN (empty))
(Is.pc = 08 = status(ls) = OUT (Is.lv))

For our example, the linearization point of the push algorithm is the last re-
turning instruction CAS;psh (so all intermediate values of the program counter

within push have status IN). For the pop algorithm it is also the last instruction
pop8 for the case of a nonempty stack. But when pop2 finds an empty stack
in head and therefore sets sso’ to null this must already be the linearization
point, since at any later point during the execution the stack might already be
nonempty again. There status is OUT (empty) at pc = O3 and sso = null.
Finally, we look at the verification of one of our conditions. Here, we take
a look at condition Return after sync and the case where the return oper-
ation is pop8. Thus, on the left side of our implication we have R(as, gs,ls) A
status(ls) = OUT (out) A pop8(gs,ls, gs’,ls’, out’). Since pop8 is executed, we
have pc = 08. Hence status(ls) = OUT (lv). By definition of pop8, we further-
more get gs = gs', out’ = lv, p¢’ = 1. Hence out’ = out (first conjunct to
be shown), status(ls’) = IDLE (follows from p¢’ = 1, second conjunct), and
R(as, gs',1s") holds by definition of R' (pc’ = 1) and the previous validity of
collect(head) = stack. Furthermore, from R(as, gs,lsq) we get R(as, gs’,lsq)
since gs’ = gs. This can similarly be done for all conditions and all operations,
but - as a manual verification is error prone - KIV was used for this purpose,
which lead to several small corrections. For example, RY4 and RY5 originally
contained (erroneously) the condition Jv e n = node(v, null). Since the com-
plexity of the linearizability proof is contained in the generic theory, and proof
obligations are tailored to interleaved execution of processes, applying them is
easy: specification and verification of the stack example needed two days of work.

5 Linearizability as Refinement

In this and the following section we show that our local proof obligations are
sufficient to guarantee linearizability as defined in Herlihy and Wing’s paper
[?]. The process to do this is as follows: in this section we give two data types
ADT and CDT with operations {AOpy i}pep,icr and {COpyp ;}pep e These
are derived from the local operations {COp;}jes and {AOp;}ic; used in the
proof obligations by adding a second index p € P that indicates the process p
executing the operation. For the concrete level, COp, ; now works on a local
state Isf(p) given by a function Ilsf : P — LS instead of LS. We also add
histories to the states and operations on both levels, which are lists of invoke
and return events. This is necessary, since the formal definition of linearizability
is based on a comparison of two histories created by the abstract and concrete
level. By placing this criterion in the finalization of ADT and CDT, we encode
linearizability as a specific case of standard data refinement ([?], see [?] for the
generalization to partial operations) between the two data types (the discrepancy
between the sets of indices is bridged by function abs, as explained below).

Our proof obligations are then justified in the next section by showing that
they imply a forward simulation F'S between ADT and CDT. This is the most
complex step in the verification, since the additional concept of possibilities is
needed to define F'S.

We start by defining the histories H € HISTORY that are maintained by
the two data types. They are lists of invoke and return events e € EVENT.

An event indicates that an invoke or return operation has taken place executed
by a certain process with some input (invoke) or output (return). The formal
definition is

EVENT == inv{(P x I x IN)) | ret{(P x I x OUT))
HISTORY ::= seq(EVENT)

Predicates inv?(e) and ret?(e) check an event to be an invoke or a return.
e.p € P is the process executing the event, e.i denotes the index of the abstract
operation to which the event belongs. For a history H, #H is the length of the
sequence, and H(n) its nth element (for 0 < n < #H). Executing operations
adds events to a history. If an invoke operation INVOP; with input in is executed
by process p, it adds inv(p, i, in) to the history, where i = abs(j) is the index
of the corresponding abstract operation as given by function abs : J — I of
Section ??. Using a function Ilsf : P — LS such that Isf(p) is the local state of
process p we therefore define COp, ; to be the operation

COpy.i(gs,Isf, H, gs', Isf' ,H") ==
Jls" « INVOP;(in, gs, lsf(p), gs, ls")
ANH' = H "™ (inv(p, abs(j), in))
Nisf' = lIsf @ {p— Is'}

Similarly, COp, ; for a return operation RETOP; adds the corresponding return
event to the history. Other operations leave the history unchanged.

The histories created by interleaved runs of processes form legal histories
only: a legal history contains matching pairs (mp) of invoke and return events,
for operations that have already finished, and pending invocations (pi), where
the operation has started (i.e. the invoke is already in the history), but not yet
finished. Corresponding formal definitions are

mp(m,n,H) == m<n<#HANH(m).p=H(n).pANH(m).i=H(n).i
AVEkem<k<n= H(k)p#H(m).p

pi(n, H) == inv?(H(n)) A\Vmen<m<#H = H(m).p # H(n).p

legal(H) ==V n < #H o if inv?(H(n)) then pi(n, H)V I m e mp(n, m, H)
else Im e mp(m,n, H)

Histories created by abstract operations are sequential: each invoke is immedi-
ately followed by a matching return. A predicate seq(HS) determines whether
HS is a sequential history. Atomically executing AOp; by process p adds both
events to the sequential history. Therefore AOp, ; is defined as

AOp, ;(as, HS, as’, HS') ==
AOp;(in, as, as’, out) AN HS" = HS ™ (inv(p, 1, in), ret(p, i, out))

Linearizability compares a legal history H and a sequential history HS. For pend-
ing invokes the effect of the operation may have taken place (this will correspond

to status = OUT in our proof obligations). For these operations corresponding
returns must be added to H. Assuming these returns form a list H’, all other
pending invokes must be removed. Function complete removes pending invokes
from H ™ H'. Formally we define

linearizable(H, HS) ==
IFH' C ret? o legal(H ™ H') A seq(HS) A lin(complete(H ™ H'), HS)

where lin requires the existence of a bijection f between the complete(H ™
H') and HS that is order-preserving: for two matching pairs mp(m,n, H) and
mp(m’,n’, H), if the first operation finishes before the second starts (i.e., n <
m'), the corresponding matching pairs in HS must be in the same order. This
gives the following definitions

lin(H,HS) ==3f e inj(f, H, HS) A surj(f, H, HS) A presorder(f, H, HS)

A (mp(m,n, H) = f(n) = f(m) +1)

surj(f,H,HS) ==V m < #H o f(m) < #HS AN HS(f(m)) = H(m)

presorder(f, H, HS) ==V m,n,m',n’ e
mp(m,n, H) Amp(m’,n',H) An <m' = f(n) < f(m')

Finally, we define a refinement between two data types (CInit, { COP, ; }, CFin)
and (AInit,{AOP, ;}, AFin). Both initialization operations are required to set
the history to the empty list. AOp, ; is AOp, aps(j) V skip where abs : J — I
maps the index of the concrete operation to the abstract operation it implements.
The concrete finalization extracts the collected history and abstract finalization
is the linearizability predicate:

AFin(as, HS, H') == linearizable(H’', HS)
CFin(gs,lsf H/H)==H =H

With these finalization operations linearizability becomes equivalent to data
refinement for the two data types.

6 Possibilities and Forward Simulation

Reasoning with the definition of linearizability as given in the previous section
is rather tricky, since it is based on occurrences of events (i.e. positions in the
history list). This is the reason why all work we are aware of on linearizability
does not use this definition, but other definitions, for example, those based on 10
automata refinement such as [?] argue informally that these imply linearizability.
The problem was already noticed by Herlihy and Wing themselves, and they
gave an alternative definition based on possibilities. Possibilities require a set of
operations AOp; already, so they are less abstract than linearizability which only

uses events. The following rule set defines an inductive predicate Poss(H, S, as)?
where H is a legal history, S is a set of returns that match pending invokes in H
(those pending invokes for which the effect has already occurred), and as is an
abstract state that can possibly be reached by executing the events in H (hence
the term ‘possibility’).

ASInit(as) o Poss(H,S,as) Vm.pi(m,H)= H(m).p#p !
Poss((),d, as) it Poss(H ™ (inv(p,i,in)), S, as)

Poss(H,S,as) Im.pi(m, H) N H(m) = inv(p, i,in) AOp;(in, as, as’, out)
Poss(H, S U{ret(p, i, out)}, as’)
Poss(H,S,as) ret(p,i,out) €S

Poss(H ™ (ret(p, i, out)), S\ {ret(p, i, out)}, as)

Rule Init describes the possible initial states: No event has been executed, the
abstract state is initial, and the set of returns is empty. Rule I allows to add an
invoke event for process p, provided there is not already a pending one in H. Rule
S corresponds to linearization points: the effect of the abstract operation takes
place (which requires a pending invoke), and the return is added to the set S of
returns. The return takes place in the last rule R, which adds the return to the
history. Compared to the informal definition in [?], we had to add some explicit
constraints which guarantee that all created histories are legal. Note that the
rules for possibilities are a close match for the invoke-linearization point-return
structure also present in our proof obligations.

One of the main tasks in formally justifying our proof obligations therefore
is a proof that all possibilities are linearizable:

Poss(H, S, as) = 3 HS e linearizable(H, HS)

Essentially this is Theorem 9 of [?]. For our own proof within KIV we needed to
generalize the theorem to

Poss(H,S,as) = 3HS eV H'e
eq(H',S) = legal(H ™ H') A lin(complete(H ™ H'), HS)

where eq(H’,S) is true, iff H' is a duplicate free list that contains the same
events as the set S. The proof is inductive over the number of applied rules. The
case of the induction step, where rule S is applied is the most complex, since
both complete(H ™ H') and HS increase by adding a matching pair. Therefore
the bijection between H and HS must change, which creates a large number of
subcases to prove that the modified function is bijective and still preserves the

2 The notation of the original definition is (v, P, R) € Poss(H). We use a predicate
instead of a set, as instead of v for the abstract state and S instead of R to avoid
confusion with the simulation relation. The parameter P of the original definition is
redundant: P can be shown to be the set of pending invocations of H.

order of matching pairs. This proof, and the lemmas consumed, 10 days of the
15 days needed to do the KIV proofs for the whole case study.

Given that the existence of possibilities implies linearizability we are now
able to justify our proof obligations. We provide a forward simulation F'S, such
that our proof obligations imply that COp, ; forward simulates AOp,, aps(;)V skip
(where again, abs : J — I maps the index of the concrete operation to the one of
the corresponding abstract operation). The definition of FS is based on relation
R as used in our proof obligations and on possibilities

FS(as,HS, gs,lsf , H) ==
(Vp e R(as, gs, Isf (p))
A {H(n)e pi(n,H)}
= {inv(p, i,in) e runs(Isf(p)) = i A status(lsf (p)) = IN (in)}
ANTS e S ={ret(p,i,out) e runs(lsf(p)) = i A status(lsf(p)) = out}
A Poss(H, S, as)
AV H' o (eq(H',S) = legal(H ™ H') A lin(complete(H ™ H'), HS)

This formula uses an auxiliary function runs defined on local states, that gives
the index of the abstract operation, whose implementation is currently running?.
It is a conjunction of three properties. The first requires that the relation R holds
for all local states of processes. The second is an invariant for the concrete data
type: the pending inputs in the history correspond exactly to those implementa-
tions which run operation ¢ and have not yet passed the linearization point (i.e.,
status is IN (in)). The last conjunct gives the connection to possibilities. The set
S consist of those return events where a process p is running operation ¢ and
has reached status OUT (out). The last line of the formula should be compared
to the proof that possibilities imply linearizability above. There, a possibility
implied the existence of a suitable HS with this property. This HS is now the
HS constructed by the corresponding abstract run.

The proof that the given formula is indeed a forward simulation is moderately
complex. The proof of the main commutativity property for correctness splits
into three cases for invoking, return and other operations. Condition Invoke is
needed for the first case. Internal operations require Before Sync for the case
where status is IN(in), and After sync otherwise. Return operations similarly
require Return before sync and Return after sync respectively.

7 Conclusion

In this paper we have considered the verification of correctness of a lock-free
concurrent algorithm. In a state-based setting we have followed the approach of
using simulations to show that a linearizability condition is met. The correctness
proof involved several steps, showing first of all the existence of a particular
simulation relation between concrete algorithm and abstract specification and
furthermore, via a number of steps, proving that such a simulation relation

3 In our example, runs indicates whether the pe of p is within a push or pop operation.

implies linearizability. All proof steps have been mechanically checked using the
theorem prover KIV.

Similar work on showing linearizability has been done by Groves and several
co-authors [?,?]. In [?] specifications are written as IO-automata and lineariza-
tion is shown using forwards and backwards simulation, and these were mecha-
nized in PVS. The mechanization however only included the concrete case study.
That simulation guarantees linearizability is argued but not mechanized.

Further work by Groves and Colvin includes [?], where they verify an im-
proved version of an algorithm of Hendler et al. [?] which in turn extends the
algorithm of [?] using a new approach based on action systems. This approach,
like ours, starts with an abstract level of atomic push and pop operations. The
approach uses a different proof technique than ours and their earlier work. Specif-
ically, it works by induction over the number of completed executions of abstract
operations contained in a history, and it is based on the approaches of Lipton
[?] and Lamport and Schneider [?].

Additional relevant work in state-based formalisms includes [?], where the
correctness of a concurrent queue algorithm using Event_B is shown. There, in-
stead of verifying a given implementation, correctness is achieved by construction
involving only correct refinement steps.

Another strand of relevant work is that due to Hesselink who has considered
the verification of complex non-atomic refinements in the setting of a refinement
calculus based notation. For example, in [?] he specifies and verifies (using PVS) a
refinement of the lazy caching algorithm, where the model is not linearizable but
only sequentially consistent. In [?] he recasts linearizability proofs as a refinement
proof between two models which are verified by gliding simulations which allow
the concrete model to do fewer steps than the abstract one if necessary.

The emphasis of our work was on the derivation of a generic, non-atomic
refinement theory for interleaved processes and its mechanization. We have not
yet considered the full complexity of the case study as done in [?] which adds
memory allocation, modification counts to avoid the ABA problem and extends
the algorithm by adding elimination arrays. These extensions remain as further
work.

Acknowledgements. John Derrick and Heike Wehrheim were supported by a
DAAD/British Council exchange grant for this work. The authors like to thank
Lindsay Groves for pointing out an erroneous choice of linearization point in an
earlier work and for many helpful comments when preparing this paper.

