Redesign of the LMST Wireless Sensor Protocol
through Formal Modeling and Statistical Model
Checking

Michael Katelman, José Meseguer, and Jennifer Hou

Department of Computer Science
University of Illinois at Urbana-Champaign, U.S.A.
{katelman,meseguer, jhou}Quiuc.edu

Abstract. The local minimum spanning tree (LMST) topology control
protocol tries to maintain connectivity in an ad-hoc wireless sensor net-
work while minimizing power consumption and maximizing data band-
width. Our formal, statistical model checking analysis of LMST under
realistic deployment conditions shows that the invariant of maintaining
network connectivity is easily lost. We then propose a formally-based
system redesign methodology in which quantitative temporal logic for-
mulas and further statistical model checking can be used to identify the
causes of bugs, and to reach a correct system redesign. We show this
methodology effective in the redesign of a version of LMST that ensures
network connectivity under realistic deployment conditions.

1 Introduction

The design of wireless sensor network protocols presents many challenges. On the
one hand, it is infeasible to comprehensively evaluate an ad-hoc wireless sensor
network protocol based solely on deployment in the field. On the other, faithfully
modeling such a protocol is far from trivial, because this requires a precise model
of communication in which physical distance, location, power, and time must
all be taken into account. Simulation is a widely used analysis method; but it
falls short of formal analysis in its capacity to verify in a more conclusive way
desired requirements. Formal modeling and analysis itself is nontrivial, because
of the need for faithfully capturing the communication model, real time, and
the often probabilistic algorithms (e.g. 802.11 MAC contention), or probabilistic
phenomena (e.g. quartz clock drift).

The best way of using such formal modeling and analysis is not a posteriori,
after a wireless protocol has been designed, but as a powerful method to design
and redesign several times such a protocol, using the insights gained from the
formal analysis to meet the desired requirements in a final design. In this work
we do exactly this for the local minimum spanning tree (LMST) topology con-
trol protocol [18]. Only a high-level design of such a protocol under idealized
circumstances existed prior to our work. At that idealized level, the key prop-
erty that the protocol always maintains network connectivity had been shown

by mathematical analysis in [18]. The nontrivial challenge has been to refine
this high-level, idealized design into an implementable protocol version that can
deal in practice with unavoidable issues such as clock drift, MAC contention,
and transmission delay. The challenge has been nontrivial because our formal
analysis has shown that the key invariant of maintaining network connectivity
fails rather badly when these additional conditions are accounted for.

Our starting point has been the work of Olveczky and Thorvaldsen [23,24].
They show how to formally model and analyze the OGDC wireless sensor net-
work protocol using Real-Time Maude [22], an extension of the rewriting logic
language Maude [5] for real-time and hybrid systems. Real time is of the essence
for wireless sensor network protocols such as OGDC and LMST; and we have
adopted their elegant way of faithfully modeling all relevant aspects of a wireless
communication model, such as its broadcast nature, plus its sensitivity to loca-
tion, distance, and transmission range; and of specifying message sending and
receiving events by rewrite rules, proposed in [23, 24]. We begin by specifying in
this way the idealized LMST protocol as a real-time rewrite theory and analyz-
ing it in Real-Time Maude, thus confirming by model checking the connectivity
maintenance property established analytically in [18]. This serves as our base
specification and provides key infrastructure on which to tackle the important
challenge of arriving at a realistic (re-)design of the LMST protocol.

As soon as we introduce into the protocol model more realistic implementa-
tion details and environmental pressures, two important things happen. First,
since various probabilistic phenomena naturally appear at this more realistic
level, our formal specifications of the various refinements of the original model
now become real-time probabilistic rewrite theories [13]. Probabilistic rewrite the-
ories can be not only simulated in Maude using standard sampling techniques [3],
they can also be formally analyzed by statistical model checking using the VeStA
tool [26]. Second, our analysis shows that the idealized design fails quite badly
to maintain network connectivity when such realistic issues are made explicit in
the model; and therefore LMST requires a nontrivial redesign.

This work makes two main contributions. The first is to show, using a con-
crete state-of-the-art wireless sensor protocol like LMST, how the very successful
Real-Time Maude approach to modeling and analysis of wireless sensor protocols
initiated in [23,24] can be seamlessly extended to the probabilistic setting, both
at the level of specifications (passing from real-time rewrite theories to proba-
bilistic real-time rewrite theories), and at the level of formal analysis (passing
from LTL model checking in Real-Time Maude to statistical model checking
in VeStA). We believe that this extension is quite useful because: (i) wireless
sensor networks must operate in a probabilistic environment and often include
probabilistic algorithms in some protocol components (e.g. 802.11 MAC con-
tention); and (ii) performance issues are of the essence, and it is therefore very
useful to generalize the absolute Boolean-valued guarantees of LTL requirements
to probabilistic real-valued guarantees associated to probabilistic temporal logic
requirements in a logic like QuaTEx [3]. In QuaTEx, the evaluation of a temporal

logic formula yields a real number (not necessarily between 0 and 1) correspond-
ing to some quantitative measurement of the system.

Our second contribution, also illustrated in the context of LMST for the sake
of concreteness, but of general applicability, is to show how this style of prob-
abilistic real-time formal specification and analysis can be the basis of a very
useful design and redesign methodology. In our methodology, probabilistic real-
time formal specifications and quantitative statistical model checking analysis
are used throughout the design process to support three mutually-reinforcing
tasks: (i) to uncover flaws in a given design; (ii) to conjecture the causes of the
various malfunctions and to confirm such conjectures by means of statistical
correlations between further analyses; and (iii) to then use the confirmed conjec-
tures of the hypothesized causes of flaws to redesign the protocol several times
and ultimately to verify by statistical model checking that the final design sat-
isfies the desired requirements. In addition to LMST, the methodology is widely
applicable for other wireless protocols and to other probabilistic systems, such
as DoS protection protocols [2] and stochastic hybrid systems [20]. Our appli-
cation of the methodology in this paper results in a new, implementable design
of the LMST protocol that satisfies desired requirements in the face of realistic
operating conditions.

2 The Idealized Local Minimum Spanning Tree Protocol

We begin by briefly reviewing the idealized version of the local minimum span-
ning tree (LMST) topology control protocol presented in [18]. The function of a
topology control protocol is to define which nodes in an ad-hoc wireless sensor
network communicate with each other, and with what transmission power they
communicate. The goal is to minimize power consumption, prolong network life-
time, and maximize data bandwidth while maintaining network connectivity. In
the case of the LMST protocol, a distributed algorithm is employed whereby
each sensor node periodically updates its own local topology. The local topology
of a node is the set of neighbors to which it routes data.

In the protocol, each wireless node is presumed to have internal quartz clock
timers, a memory for buffering messages, and a wireless transmitter which is
adjustable to different power levels. The periodic, real-time nature of the pro-
tocol is governed by a global constant called the round time, denoted rd, and is
approximately 10s. Each node constantly employs one of its timers to count the
time between round boundaries, at which point the node may adjust its local
topology by changing its wireless transmission strength. We refer to this timer
as the round timer. There are therefore two notions of a round, one global and
one local. A global round is any interval [¢,t 4 rd] where ¢ is a multiple of rd. A
local round is determined with respect to a particular node, and is defined as
any interval between successive round timer expirations. The protocol is then
defined by what happens when the local round timer of a node expires:

1. The node first broadcasts a message, called a hello message, at mazimum
transmission strength. The hello message contains a unique identifier of the

node and its current physical location. Hello messages are buffered by any
visible neighbor, that is, any node within wireless transmission range.

2. The node reads from its message buffer all hello messages received during
the previous round and distills from these a graph of its visible neighbors
weighted by distance.

3. Taking the local graph of visible neighbors just distilled by the node, it then
calculates the minimum spanning tree of that graph.

4. The nodes in the local minimum spanning tree which are directly connected
(one-hop away) are selected to be the node’s new neighbors, meaning those
to which it will transmit data during this local round.

5. The node resets its round timer for rd, and waits for the timer to expire.

As shown in [18], LMST has a number of advantageous properties, including low
power usage, and a provably small number of neighbors for each node, which
reduces medium contention and increases bandwidth. Furthermore, it is also
shown that LMST satisfies the crucial property of maintaining network connec-
tivity. That is, if the graph whose edges link the sensor nodes within wireless
reach of each other is connected, then the considerably smaller subgraph com-
puted by LMST is also connected. However, LMST is an idealized design, which
does not take into account crucial issues that must be faced in a real imple-
mentation. As we show later, the crucial requirement of maintaining network
connectivity is soon lost when such issues are modeled. It thus remains an open
question how LMST can be refined into a realistic design where such realistic
issues are addressed and where network connectivity is still maintained.

3 Idealized LMST Model in Real-Time Maude

This section describes our formal specification and analysis in Real-Time Maude
(RTM) [22] of the idealized version of LMST summarized in Section 2. We do
this following the general methodology for formal modeling of wireless sensor
networks proposed in [23, 24], incorporating many modeling constructions essen-
tially unchanged. This first step of modeling and analysis serves two purposes.
First, since probabilistic phenomena are not yet modeled at this idealized level,
it serves as a warm-up exercise to later see how real-time specifications of wire-
less sensor network protocols in RTM can be naturally extended to probabilistic
real-time specifications. Second, since the network connectivity invariant was
only shown by high-level analytic arguments in [18] but never formally verified,
it also serves as a sanity check to obtain independent, model checking evidence
that the invariant holds, and to indirectly gain further confidence that our for-
mal RTM specification faithfully captures the idealized LMST design. We first
recall some background on real-time rewrite theories and their use in modeling
wireless network protocols. We then summarize the specification of LMST as a
real-time rewrite theory and its formal analysis in RTM.

3.1 Modeling Wireless Networks in Real-Time Maude

The key idea of rewriting logic [19] is to model a concurrent system as a rewrite
theory R = (X, E, R), where (X, E) is an equational theory whose types and
function symbols are described by a signature X', and having a set of equations
FE; and where R is a collection of rewrite rules. The basic idea is that the states
of the concurrent system thus specified are elements of the algebraic data type
(initial algebra) T’ p associated to the equational theory (X, E), whereas the
concurrent transitions of the system are the possible rewrites allowed by the
rewrite rules R. For our purposes in this paper it is useful to instantiate this
general idea to the case of object-based distributed systems. For such systems it
is often useful to model the distributed state as a “soup” or multiset of objects
and messages, of types (sorts) Object and Msg. Such distributed, soupy states
can be called configurations and belong to a sort Configuration, which contains
Object and Msg as subsorts. The soup-like nature of the state is algebraically
modeled by declaring a binary multiset union operator (which we can describe
with empty, juxtaposition syntax) satisfying the axioms of associativity and com-
mutativity, and having the empty multiset null as its identity element. Thus, if
O, and Oy are objects, and My, Ms, and M3 are messages, then the juxtaposi-
tion O1 O2 My My M3 is a configuration made up of those objects and messages,
where the associativity and commutativity axioms mean that no parentheses are
needed, and the order in which the objects and messages appear is immaterial.
In the Maude rewriting logic language [5] and in its RTM extension, objects of
a given class C in a given state are represented as terms of the form

<O :C lattry :valy,...,attr, : val,>

where O is the object’s name or identifier, C' is the object’s class, and where
valy to val, are the current values of the attributes attr; to attr,, respectively,
which in a given class C are required to have specified sorts si,...,s,. This
requirement is specified in a class declaration of the form

class C | attry : s1,...,attr, : S,.

The dynamics of an object-based distributed system are then specified by multi-
set rewrite rules, where one or more objects and/or messages in a configuration
are rewritten to other objects and/or messages.

How about real-time object-based distributed systems? They can be formally
specified by real-time rewrite theories [21], where the rewrite rules now have time
duration information, that is, they are conditional rewrite rules of the form

t -t if cond

with ¢ and ¢ multiset expressions involving objects and messages, and with 7
a time expression, that is, a term of sort Time, where the time domain can
be chosen to be either discrete or dense. If 7 = 0, then we call the rule an
instantaneous rule, and we omit the 0 label. Otherwise we call the rule a tick rule,

because time is advanced. Since time should advance not just for a local state, but
for the whole system, the global configuration of a system is encapsulated by a
bracket operator, so that the global state has the form {¢}, with ¢ a configuration
of objects and messages. theories can be desugared into ordinary rewrite theories
[22]. The trick is to model the global state {t} as a pair ({t}, «), where « is the
current value of a global clock. Then a tick rule {t} — {¢} if cond is
desugared into an ordinary rewrite rule

({t},a) — ({t'},a+71) if cond

Real-Time Maude is an extension of Maude that directly supports the speci-
fication of real-time systems as real-time rewrite theories. It performs the above
desugaring to execute such rewrite theories in the underlying Maude system. It
also supports breadth-first search and model checking of LTL properties by com-
pilation into Maude, where now such LTL properties may involve predicates that
inspect the global clock or the state of particular timers in some objects, and
where the model checking can specify a time bound [22]. In [23,24], Real-time
Maude has been shown to be very well suited to model and formally analyze wire-
less network protocols, in particular we utilize their models of standard wireless
communication types. The first is unicast messaging:

sort DirectedMsg . subsort DirectedMsg < Configuration .
op directed-msg : Receiver Msg -> DirectedMsg .

Broadcast messages are used generally to send a message to all nodes within
a certain physical radius of the transmitting node. In our specification we use
them to model both wireless data transmission as well as part of our 802.11
MAC model. They use the following syntax:

sort BroadcastMsg . subsort BroadcastMsg < Configuration .
op broadcast-msg : Sender Msg -> BroadcastMsg .

Message broadcasting is modeled as in [24], by defining a set of equations to
turn each broadcast message into a set of unicast messages, one such message
for each node within transmission range.

The last wrapper is used to delay the reception of a message with respect to
real time. If the message is a true wireless transmission, then this delay corre-
sponds to the transmission delay; in other cases it may model different things.
We use delayed messages extensively to model timers like the one used by each
node to count time between successive rounds.

sort DelayedlMsg . subsort DelayedMsg < Configuration

sort Delay . subsort Timelnf < Delay .
op delayed-msg : DirectedMsg Delay -> DelayedMsg [right id: 0]
op delayed-msg : BroadcastMsg Delay -> DelayedMsg [right id: 0]

Finally, [22] shows how all of the time-elapsing events of the system should
be distilled into a single tick rewrite rule of the form

crl [tick]
{Cx:Configuration} => {delta(Cx, Tx)} in time Tx:Time
if Tx <= mte(Cx)

using two operator symbols delta and mte. The first operator defines the effect
of the time elapse for the system configuration, and the second operator defines
the maximum time that can elapse before the next instantaneous event. Both
are defined over the Configuration sort, and act to distribute over the objects
and messages in the configuration. For example, the delta function is partially
defined by (we indicate the sort of each variable with its first use)

eq delta(delayed-msg(DMx:DirectedMsg, Dx:Delay)
Cx:Configuration
, Tx:Time)
= delayed-msg(DMx, Dx monus Tx)
delta(Cx, Tx)

3.2 Idealized Model of LMST in Real-Time Maude

Our definition of the LMST protocol hand specifies the description given in [18]
through a set of (mostly) localized rewrite rules governing state changes of the
nodes individually. In order to make our version conform to the idealized defini-
tion of the protocol, we have to define guards for each rewrite rule that consider
the entire state before firing. For example, we guard the rule for updating a
node’s local topology to ensure that all outstanding hello messages are received
prior to doing the update calculation. This corresponds to a tacit assumption
made by the protocol that before a topology update occurs, a hello message has
been received from every visible neighbor.

The protocol is idealized in the sense that it is free from real-world conditions
such as message loss, node mobility, imperfect quartz clock timers, and so on.
In addition, we assume that all the round timers are synchronized, so that all of
them always signal a new round in unison. The following class definition defines
wireless sensor nodes:

class SensorNode |

location : Location
, received-HMs : HelloMsgValueSet
, neighbor-set : NodeIDSet

, transmit-radius : Float .

The attributes give the node’s physical location, the buffered hello messages
received since the start of the current round, the current set of neighbors, and
the current transmission radius. Since the goal of a topology control protocol
is to determine each sensor node’s wireless transmission strength, it may seem
curious that this information is missing from the above definition. The reason
is that our analysis will only be concerned with connectivity, for which having
the transmission radius is simply more convenient. We note that transmission

strength can be calculated from the transmission radius and knowledge about
the radio propagation model.

There are three message constructors: one to represent wireless communica-
tion of hello messages, and two others representing other state-changing actions
that a node must take itself.

msg round-timer-msg : -> Msg .
msg update-msg : -> Msg .
msg hm-msg : HelloMsgValue -> Msg .

op <_,_> : NodeID Location -> HelloMsgValue .

The payload of a hello message is the sending node’s identifier plus its location.
This message is broadcast by each node at the beginning of each new round (see
Section 2). There are exactly three rewrite rules in the model, one for each of the
messages above. The idea is that every concurrent event in the system has an
associated message, and is acted upon when received by the node it is directed
to. This idea is similar to what is suggested in [3].

Instead of presenting the rules verbatim from our idealized model, we simply
indicate what each rule does using prose. This saves space and omits syntactic
overhead which does not directly contribute to the interesting actions being per-
formed. Our model, which can be downloaded [1], contains the exact definitions.

The events associated with the above messages are as follows:

1. When a round-timer-msg is consumed, the associated node performs three
actions. It first broadcasts a hello message identifying itself and giving its
current location. Second, it schedules an update-msg for itself. Third, it
resets its round timer, emitting a delayed round-timer-msg.

2. When a hm-msg is consumed, the receiving node simply adds the message
payload to the received-HMs set.

3. When a update-msg is consumed, the receiving node updates its local topol-
ogy (setting neighbor-set). The updated topology is calculated from the
minimum spanning tree of the graph defined by the hello messages received
during the previous round. One slight complication is that for the topology
to conform to the idealized specification, we must ensure that all hello mes-
sages be received during the current time instant before a topology update
is executed. This is checked for using an equationally defined guard and a
conditional rewrite rule.

The three rules described above essentially define the entire model. Most of the
specification focuses on defining the minimum spanning tree calculation.

The formal model can be analyzed through time-bounded LTL model checking
in RTM. When we analyze the model, we start with an initial configuration
that is primed by inserting one directed round timer message for each node in
the configuration, set to be consumed instantly at time 0. The property that
we are interested in is total network connectivity, which means that multi-hop
connections exist from every node to every other node in the network. As an LTL

safety formula, the property is expressed as the invariant [] connected, with
connected an equationally-defined predicate (see [1]). It computes the strongly
connected components of the graph defined by the union of all neighbor sets.
The model checking that we have done is to check that the connectedness
property holds in our model with respect to a set of randomly selected initial
configurations, each involving a small number (4) of nodes and with a time bound
of one round. It is important to make clear exactly what this result means with
respect to the idealized protocol. The non-determinism exhibited in our model
comes from selecting the order in which nodes broadcast hello messages, receive
messages, etc. However, due to the guard on the topology update rule, the non-
determinism that was added does not result in many interesting interactions.

4 Probabilistic Modeling and Analysis of LMST

A major issue with the analysis of the previous section is that standard model
checking algorithms do not apply to probabilistic phenomena, such as the uniform
distribution of nodes in a sensing area. Indeed, many probabilistic phenomena
naturally exist for wireless protocols. In this section we describe two realistic
refinements of the idealized LMST model: one with unsynchronized local round
timers, and the other with quartz clock drift, 802.11 MAC contention, and mes-
sage delay. Due to space limitations, we have omitted two other refinements —
one with node mobility and another with probabilistic message loss — that we
have also modeled and analyzed (see [11]). The refinements are modified ver-
sions of the idealized model, transformed into a standard rewrite theory, with
new rules and probabilistic annotations. The annotations take the formalization
outside the realm of standard rewrite theories and into the realm of probabilistic
rewrite theories [13,3]. After the probabilistic models are defined, we show how
to automatically analyze them using the logic of quantitative temporal expres-
sions (QuaTEx) [3] and the statistical model checking algorithms implemented
by the VeStA tool [3,26]. The analysis reveals significant disconnectedness, or
bugs, under the conditions imposed by each of the refinements.

4.1 Probabilistic Rewrite Theories, QuaTEx, and VeStA

A probabilistic rewrite theory [13,3] replaces the usual rewrite rules with prob-
abilistic ones of the form

l(x) — r(x,y) with probability y := p(x)

Such a rule is non-deterministic, because the term r has new variables y disjoint
from the variables appearing in [. Therefore, a substitution € for the variables
x appearing in [that matches a subterm of a term ¢ at position ¢ does not
uniquely determine the next state after the rewrite: there can be many different
choices for the next state, depending on how we instantiate the extra variables
y in r. In fact, we can denote the different next states by expressions of the

form t[r(0(x), o (y))]q, where 0 is fixed as the given matching substitution, but ¢
ranges over all possible substitutions for the new variables y. The probabilistic
nature of the rule is expressed by the notation: with probability y := p(x),
where p(x) is a probability measure on the set of substitutions o (modulo the
equations F in a given rewrite theory). However, the probability measure p(x)
may depend on the matching substitution 8. We sample y, that is, the substitu-
tion o, probabilistically according the probability measure p(6(x)).

PMaude [3] is an extension of Maude for probabilistic rewrite theories. Like
Real-Time Maude, PMaude is implemented as a theory transformation using
Maude’s reflection capabilities. This involves desugaring the probability anno-
tation in a probabilistic rewrite rule and giving rewriting definitions for the
various probability distributions. The desugaring makes the probability measure
y = p(x) a rewriting condition, p(x) — vy, and goes into a plain conditional
rewrite rule. The probability distributions are implemented using special features
in Maude for generating random numbers according to a uniform distribution
(see [5, §9.3]). The uniform distribution is then used to sample into other distri-
butions, for example

rl BERNOULLI(R) => if rand / rand-max < R then true else false fi .

is used to sample a Bernoulli distribution with success probability R, given as a
rational number. The operator rand is treated specially by Maude; it returns a
natural number between 0 and the constant rand-max.

As we noted above, both Real-Time Maude and PMaude are implemented
as theory transformations. So via Real-Time Maude we can go from a real-
time rewrite theory to a plain rewrite theory, and via PMaude we can go from
a probabilistic rewrite theory to a plain rewrite theory. To combine the two
paradigms what we have done is to manually apply the desugaring described
above for PMaude within our larger real-time rewrite theory.

For analyzing probabilistic rewrite theories, it is often desirable to state logi-
cal queries quantitatively, that is, not with a true or false answer, but with a real
number corresponding, for example, to a probability or, more generally, to some
quantitative measurement of our system. For this reason, we use the QuaTEx
probabilistic temporal logic of Quantitative Temporal Expressions proposed in
[3]. This language is supported by the VeStA tool [26], which has an interface to
Maude. The key idea of QuaTEx is to generalize probabilistic temporal logic for-
mulas from Boolean-valued expressions to real-valued expressions. The Boolean
interpretation is preserved as a special case using the real numbers 0 and 1. As
usual, QuaTEx has state expressions, evaluated on states, and (real-valued) path-
expressions evaluated on computation paths. The notion of state predicates is
now generalized to that of state functions, which can evaluate quantitative prop-
erties of a state. QuaTEx is particularly expressive because of the possibility of
defining recursive expressions. In this way, only the next operator (# in VeStA
syntax) and conditional branching (if Bexp then Pexp else Pexp’ fi, with
Bexp a Boolean expression and Pexp, Pexp’ path expressions) are needed to de-
fine more complex operators, such as “until”. Model checking queries are given

as expected values of path expressions. We refer to [3] for a detailed account of
QuaTEx and its semantics. The VeStA tool [26] then performs statistical model
checking on a probabilistic system by evaluating a QuaTEx expression on com-
putation paths obtained by Monte Carlo simulation. The model checking query
is parameterized by two values, o and ¢, which are user-provided. VeStA re-
sponds to a query with a (1 — «) - 100% confidence interval bounded by § for
the expected value of the random variable defined by the QuaTEx formula. De-
pending on the slack allowed by the given parameters, VeStA may need greater
or fewer sample runs to compute this interval.

Using VeStA requires that the PMaude model be free from unrestrained
non-determinism that does not come from sampling a probability distribution.
In particular, for the tool to work correctly it should never be the case that two
rules apply to the same term. One way of solving this is described in [3]. There,
a uniform distribution is used to give each event a (probabilistically) unique
identifier and an event queue then orders the events by identifier. Each rewrite
rule can only fire if the event associated with it is the one indicated by the front
of the event queue. In our case this matching is done by adding a third field to
the directed message construct and adding a special object with the event queue

op directed-msg : Receiver Msg EventID -> DirectedMsg .
class Control |
event-queue : EventQueue .

Finally, we change each of the rules to match the directed message being con-
sumed by the rule (all of our rules are of this form) with the the event at the
front of the queue. We found that the details of handling events and the event
queue are tricky to do cleanly. We did not want the intent of the rules to be ob-
scured by a mass of syntax that simply deals with the event queue mechanism.
The details of our eventual solution can be found in [11,1].

4.2 Refinement 1: Unsynchronized Timers

Our first refinement changes the round timers so that they are no longer globally
synchronized. Instead, the timers are initially set to expire somewhere in the
time interval [0s,10s], rather than at time 0 as in the idealized case. This is
accomplished by adding a new message type , init-msg, and an associated
probabilistic rewrite rule. In the starting configuration the only messages are the
initialization messages, one for each sensor node, and we execute the rule below
to get to the desired starting state where the protocol can be applied. The rule
draws a value uniformly from [0, 10] and uses this value to initialize the node’s
round timer. Note that we use a simplified syntax below, but the intent should
be clear. In addition, we use (...) to indicate omitted code.

rl [init] : init-msg ... => delayed-msg(round-timer-msg, y)
with probability y = uniform-dist(0(s), 10(s))

This rule is also used to initialize the node’s location (not shown), therefore
overcoming one of the problems with the analysis done in Section 3, namely, the
inability to have the model checking analysis directly consider all (probabilisti-
cally) possible starting positions for the nodes.

Although this is a very simple change, it exposes a bug in the protocol. To see
this, we first recast the connectedness property as the QuaTEx formula below.
The key idea is to calculate the percentage of an interval, [Lower, upper]|, when
the network is totally connected. Whenever the tick rule is applied PrctCon looks
at the interval stepped over (using #, QuaTEx’s next operator), determines if the
network was connected, determines if the time interval overlaps [lower, upper],
and concisely records this information.

PrctCon(x:Bool, y:Float, z:Float) =
if time > lower and y < lower then
#PrctCon(connected, time, z + Start(x, y));
else if y >= lower and time <= upper then
#PrctCon(connected, time, z + Mid(x, y))
else if y > upper then
100.0 * (z + End(x, y) / (upper - lower));
else
#PrctCon(connected, time, z);
fi; fi; fi;

The x argument of PrctCon records whether or not during the previous time
step the network was connected, y records the starting time of the previous time
step, and z enumerates the time that the network is connected in the interval.
The state expressions, such as connected and time, have the obvious meanings.
The value returned by model checking the above QuaTEx formula in VeStA is
an interval describing, statistically, the expected value of the percentage of time
the network was totally connected during the time interval [Lower, upper].

In Figure 1b we have plotted the expected value of PrctCon for the first ten
global rounds of network operation. The result shows endemic disconnectedness
during the first two global rounds. For comparison, we plot the same value for a
probabilistic version of the idealized model in Figure la. In Section 5 we use a
novel redesign methodology to fix the bug causing the disconnectedness.

4.3 Refinement 2: Delay Uncertainty

The LMST protocol is highly localized in the sense that very little collaboration
between nodes takes place. Therefore it is especially important to investigate the
inter-node ordering of events and messages. Our second refinement addresses: (1)
wireless transmission delays, (2) imperfections in quartz clock timers, and (3)
the 802.11 MAC contention procedure [4]. Item (1), wireless transmission delay,
is easily implemented using the delayed-msg construct defined in Section 3.1.
For realistic quartz clocks, additional infrastructure is needed. First, the wire-
less sensor node state gets a new attribute, clock-drift, and the initialization
rule is modified so that each sensor node gets a value, uniformly distributed in

50

EXidio] 4 100 + T T et
alf | 1

S} S
g s 3
s oof g |
2 Z 40
2 ot _ ‘
o o
£ E 20¢
L e e e e =
0 L e B e e
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Global Round (#) Global Round (#)
(a) Connectedness in idealized model. (b) Connectedness in refinement 1.
25 T T T T
E[Xr2110] +
20 |
S
= 15+ 4
2 —
S 10}]
= et
- T
g oor g
E

Global Round (#)
(c) Connectedness in refinement 2.

Fig. 1: Quantified connectedness of the idealized model and refinements 1 and 2.

the [—5.0,5.0] interval, for its clock drift. A slow clock is represented with neg-
ative values, and a fast clock with positive values. The absolute value gives the
drift in parts per million.

In addition, we introduce a Timer sort, which we treat as a new type of
Delay, defined by constructors

sort Timer . subsort Timer < Delay
op ACTIVE : Float -> Timer .
op SUS : Float -> Timer .

The floating point arguments indicate the amount of time remaining according
to the node’s internal clock, which may be fast or slow. The two constructs dif-
ferentiate between an active timer and one that has been suspended. Suspended
timers are used as part of the 802.11 MAC contention protocol. Quartz clock
drift is then modeled by replacing all event delays associated with timers with
these constructs; plus a few auxiliary operations to update the constructs to
account for drift. The main change that we need to make is in the definition of
delta for the tick rule, which now must scale time decrements by clock drift. To

do this we add a new equation to the definition of delta, exactly like the one
in Section 3.1 but with

. delayed-msg(DMx, ACTIVE(Fx1 monus Tx with-scale Fx2))) ...
eq Fx monus Tx with-scale Fy =
if Fy < 0.0 then
Fx + float(Tx) - (float(Tx) * ((- Fy) / 1000000.0))
else
Fx + float(Tx) + (float(Tx) * ((Fy) / 1000000.0)) fi .

substituted for delayed messages having a regular delay. Note that we omit
matching the drift (Fx2) in appropriate sensor node to save space. For sus-
pended timers, the delta function leaves the timer unchanged. There are some
complications to deal concurrently with the event queue (see [11,1]).

The 802.11 MAC contention procedure defines how sensor nodes try to ar-
bitrate access for the transmission medium. Too much noise in the medium can
cause messages to be dropped, so the basic idea of the protocol is that each node
measures the noise level and waits when it is too noisy. To model the 802.11
MAC contention procedure we define four new events:

msg difs-timer-msg : —> Msg .
msg backoff-timer-msg : —> Msg .
msg medium-busy-msg : -> Msg .
msg medium-clear-msg : > Msg .

and a modification of the round timer rule. Under the 802.11 regime [4] when a
sensor node wants to transmit a message (e.g. a hello message) it sets two timers.
The DIFS timer is set for a fixed time period and is made active rightaway. The
backoff timer is set probabilistically and waits for the DIFS period to finish before
it becomes active. Therefore we change the round timer message event to emit
two delayed messages according to the protocol (again, simplified syntax below)

rl [round-timer-msg] : round-timer-msg ... =>
delayed-msg(difs-timer-msg , ACTIVE(128(mu-s)))
delayed-msg(backoff-timer-msg , SUS(y * 50(mu-s)) ...
with probability y := uniform-dist(0, 15)

The interaction between the two timers is governed by the carrier sense
mechanism, which is implemented using the other two new message types defined
above. In addition to these messages we add a new field to our sensor node class
called medium-busy, which takes a natural number value and records when the
medium is busy. The value is 0 when the medium is not busy, gets incremented
on every medium-busy-msg, and decremented on every medium-clear-msg.

Due to space limitations we cannot give all of the details of our 802.11 model
(see [11] for full details). The part of the protocol that we have not specified here
defines how the two timers respond to changes in the carrier sense mechanism.
The basic idea is that whenever the medium becomes busy (medium-busy field
goes from 0 to 1), the backoff timer is suspended and the DIFS timer gets

reset. When the backoff timer finishes, then the node can finally transmit its
message. Since we are only concerned with hello messages, whenever a backoff
timer message is consumed, the node transmits its hello message.

Analysis results are plotted in Figure 1lc and show real disconnectedness
during portions of the first ten rounds. The significance of such a level of dis-
connectedness depends on many variables. What we found though is that an
expected disconnectedness value of x% usually corresponds to an x% chance
that the network is disconnected for the entire round. The bugs causing the
disconnectedness are identified and fixed in Section 5.

5 A New Realistic Design of LMST

The methods of statistical quantitative analysis have so far been used to diag-
nose serious issues with the LMST protocol, but, unfortunately, the problems
uncovered remain otherwise idiopathic. Determining the causes of the unde-
sired behavior is a crucial part of the formal analysis process. In this section
we propose a new method for redesigning probabilistic systems by statistical
quantitative analysis. Instead of calculating expected values E[X] directly, we
calculate mathematical correlations, p(X,Y), of two random variables. The idea
is that one of the random variables represents the symptoms of a bug, and the
other a hypothesized cause. This method can save significant time during the
debugging and redesign process by providing a way to isolate the cause of the
a bug without first implementing a hypothesized fix, which might require sub-
stantial effort, and only afterward trying again to detect the bug in the “fixed”
model.

5.1 A Formally-Based System Redesign Methodology

Debugging and redesigning a complex protocol is rarely a trivial task, partic-
ularly when the protocol is concurrent and/or probabilistic, because specific
symptoms are usually difficult to reproduce. For concurrent finite state systems
one can witness bugs directly using standard model checking algorithms to gen-
erate counter-examples. These can then be used to diagnose the cause of a bug
and guide the effort required to actually fix it. However, for probabilistic systems
and approximate quantitative analysis no analogue seems to exist.

Moreover, the process of determining the cause of a bug is extremely impor-
tant, because otherwise, without a known cause, any effort used to modify the
model can easily be wasted if the changes do not happen to hit on the cause. This
wasted effort can be substantial if, for example, a fix does not fit cleanly within
the current architecture of the model specification. Therefore it is essential to
know beforehand that such efforts will likely result in success.

Our proposed methodology to address these issues begins with the idea of us-
ing statistical quantitative analysis to calculate mathematical correlations. The
correlation of two random variables, X representing the symptoms, and Y the
hypothesized cause, is calculated to establish the likelihood of a causal relation-
ship between X and Y. Of course, X and Y being correlated does not prove a

causal relationship, but it is a necessary condition for causality and indicative
of it. Since specifying X and Y, for example as QuaTEx formulas, usually re-
quires much less effort than directly modifying the model, the process can lead
to reduced debugging and redesign time. However, unlike the finite state concur-
rent system case, some extra work must be done to formulate Y. The proposed
system redesign methodology assumes two initial items:

e A probabilistic model M, for example a PMaude module.

e An observable value measuring, for any given sample from the probability
space defined by M, fit or disagreement with required behavior. This takes
the form a random variable X over the sample probability space and can be
defined by a QuaTEx formula.

The methodology then proceeds through the following steps:

1. Use statistical quantitative analysis, using tools such as by VeStA or PRISM [14],
to calculate E[X]. If the value indicates buggy behavior, then go on with
the remaining steps, otherwise there is no need to go further.

2. Hypothesize a cause for the bug. The hypothesized cause can be formulated
also as a QuaTEx formula, yielding a second random variable, Y, on the
sample probability space, M.

3. The next step is to calculate the correlation coefficient (see [25]), p(X,Y),
which is easily accomplished by observing the following expansion, which
turns p(X,Y) into a simple expression of expected values

CovXY E[XY] - E[X]E[Y]
o(X)o(Y) /E[(X — E[X])}]V/E[(Y — E[Y])?]

Therefore, statistical quantitative analysis is used to first calculate E[X],
E[Y], and E[XY]; and then secondarily using these values we calculate
E[(X — E[X))?] and E[(Y — E[Y])?]. The final value of p(X,Y) is easily
calculated from these values. If the correlation is not significant (i.e. close to
0) then this step is repeated with a new hypothesis, otherwise we go on.

4. Modify the model M to remove the cause articulated through Y, yielding a
new model M’. For M’ calculate, via statistical quantitative analysis, the
expected value of X', which captures the same observable value as X but is
a random variable over the probability space defined by M’ instead of M.
If E[X'] shows no buggy behavior then we finish, otherwise repeat.

p(X,Y) =

We feel that this method adds rigor to the process of redesigning a probabilis-
tic system, and does so without a lot of auxiliary, extraneous work that would
otherwise be needed. Compared to a more informal method, the extra burden
on the designer is only in expressing Y concretely. While certainly not always
trivial, writing down the hypothesized cause has a number of benefits outside of
just fixing the immediate bug. For example, it provides concrete documentation
of the bug, assurances that the bug has truly been fixed, and an easy regression
test to make sure the bug is not re-introduced in the future. In Section 5.2 we
apply this methodology to determine the causes of the bugs uncovered in Sec-
tion 4. Using this knowledge we then redesign the LMST protocol to reach a
realistic, implementable design which ensures connectedness.

— ————————— 40
| E[Xr112+D] —+ 280 E[Xr2110] +
100 f--
+ + Efyrii2+D] X 260 Ezraio] X 35
s 9r | 240 . 8 15¢ 20
S ogo P 20 £
T ool | + 20 g 3 5 ®
£ e X w3 2 °f 20 §
E sof e, 140 8§ +;><15§
2 a0l Lo 20 8 2 5 =
2wl T o 5 2 o 10 &
2 . 0 % g o o]
g 07 . ig = £ ot —+~+'+ X 5
10 r it AN 0
20
0p . >< s + S o e e
21 22 23 24 25 26 27 28 29 3 T2 3 456 7 8 9 10
Interval (2+Delta) Round (#)
(a) Debugging of refinement 1. (b) Debugging of refinement 2.
100 L E[Xr5110] +
<
S aof
=
2
9
2 e0f
=
g
g 4o
g
s 20 +
N i i o o i i
1t 2 3 4 5 6 7 8 9 10
Global Round (#)

(c) Connectedness in our LMST redesign.

Fig. 2: Causal analyses used in our LMST redesign.

5.2 Redesign of the LMST Protocol

Let us now consider applying the redesign methodology to our model of the
LMST protocol. The analysis results for refinements 1 and 2 (Figure 1) show
significant disconnectedness behavior. With the first refinement the disconnect-
edness appears to be transient, but the second refinement results in pervasive
disconnectedness across global rounds. We fix both bugs in this section.

According to the methodology outlined in the previous section, we need to
define a random variable X describing the correctness property that we are
interested in. This poses a subtle problem, given the data presented in Figure 1,
because we evaluated multiple separate QuaTEx formulas, one for each global
round, to create the plot. Our solution to making this set of random variables
into a single one is to, for each simulation run, encode a probabilistically chosen
global round to evaluate the disconnectedness property on.

We first look at refinement 1, and the set of intervals partitioning global
round 2 into 10 parts. We still need to hypothesize and quantify a cause for
the undesired behavior witnessed through X. The hypothesis that we made was
that the bug involved something we will call late neighbors. Late neighbors are
visible neighbors that do not make themselves known to other nodes within their

transmission range during global round 1 because their local round begins later.
Since they send their hello messages late, they are not received in time to be
incorporated into the (early) neighbor’s first local topology update. Due to space
limitations, we again refer to [11,1] for full details.

Figure 2a plots connectedness versus the total number of late neighbors for
nodes that have not yet begun their second local round. It is clear that the
two plots exhibit strong correlation, which can be calculated for the random
variables just described using the methods of the previous section. The resulting
correlation is 0.99, thus indicating that we should make sure that the problem
of late neighbors is fixed.

The situation with refinement 2 is even more interesting, because, as seen
in Figure 1c and re-printed in Figure 2b, the disconnectedness behavior of this
model is persistent across rounds. We conjectured that what might be happening
was something like the following: one node with a fast clock processes a round
timer event so early, relative to a neighbor, that it sends its round ¢ + 1 hello
message before the second node processes its round ¢ message. Therefore, the
second node gets a duplicate message from the first node.

To precisely quantify this conjecture, we defined a QuaTEx formula to cal-
culate the number of duplicate messages where the node sending the duplicate
message has a clock that is fast relative to its neighbor. Figure 2b plots results
for both random variables, and it is easy to see in this graph that the two are
correlated. The exact value is —0.13, indicating significant correlation, but not
as high as we would like for such a small number of intervals. However, with
the outlier for global round 1 removed the correlation rises to 0.98. Therefore, it
seems reasonable to try to fix the bug by removing duplicate messages.

We want to fix both bugs uncovered above: the one due to late neighbors
and the other due to duplicated messages from clock drift. The late neighbors
problem is easily solved by each node broadcasting a hello message as soon as
it turns on. To prevent clock drift and MAC contention from causing duplicate
messages, we take a two-pronged approach. Since drift and contention only cause
small perturbations in the amount of time between successive hello messages, our
solution is to delay topology updates for a few milliseconds after a round timer
event. However, this does not completely solve the problem and in fact only
delays it as the clocks drift farther apart. So the second component of our fix is
to apply an ultra-lightweight clock synchronization algorithm [16]. The overhead
of the algorithm is that now each hello message gets time-stamped.

Our new design, with the three fixes explained above, completely removes the
problems that we observed in refinements 1 and 2. Correctness results, based on
quantitative statistical analysis of our new design, are given in Figure 2c.

6 Related Work and Conclusions

Alternatives to Real-Time Maude [22] include Uppaal [17] and HyTech [7], which
use timed and linear hybrid automata as the underlying modeling formalisms.
Compared with Real-Time Maude, Uppaal and HyTech trade expressibility in
the modeling language for certain decidability results.

There are various alternatives to PMaude and VeStA. The PRISM tool [14]
supports a BDD-based probabilistic model checking algorithm and also an ap-
proximate, statistical model checking analysis through Monte Carlo techniques.
PRISM supports a large number of modeling formalisms [14]. In [12] the algo-
rithm used by VeStA is refined so that an the sample size necessary to achieve
normality in the data can be computed before analysis begins. The modeling
language used is probabilistic rewrite theories. Other probabilistic model check-
ing tools include APMC [8], E - MC? [9], and Rapture [10]. As with Real-Time
Maude, the most significant difference between PMaude/VeStA and other tools
is the tradeoff between expressiveness and algorithmic power.

The combination of PMaude and VeStA has been used in multiple case stud-
ies, including the analysis of a DoS resistant TCP/IP protocol [2] and two case
studies involving distributed object-based stochastic hybrid systems [20]. In ad-
dition there are other case studies on 802.11 [15] and sensor networks [6].

In conclusion, this work has presented two main contributions. First, we have
extended the formal specification and analysis approach for wireless sensor net-
works advocated by Olveczky and Thorvaldsen [23,24] to the probabilistic and
statistical model checking setting, demonstrating significant flaws in a realistic
protocol. Second, we have presented a system redesign methodology applicable
to probabilistic systems in general and wireless sensor networks in particular
where QuaTEx-based quantitative measurement of bugs and their hypothesized
causes can be correlated; and the knowledge thus gained can be used to redesign
a system free of the given bugs.

Acknowledgment
This research was supported by The Boeing Company, Grant C8088-557395.
References

1. http://peepal.cs.uiuc.edu/ "katelman/fmoods_2008.tgz.

2. G. Agha, C. Gunter, M. Greenwald, S. Khanna, J. Meseguer, K. Sen, and P. Thati.
Formal Modeling and Analysis of DoS Using Probabilistic Rewrite Theories. In
Foundations of Computer Security (FCS), 2005.

3. G. Agha, J. Meseguer, and K. Sen. PMaude: Rewrite-based Specification Language
for Probabilistic Object Systems. In Proc. of the Third Workshop on Quantitative
Aspects of Programming Languages (QAPL 2005), 2005.

4. ANSI/IEEE. ANSI/IEEE Std 802.11, 1999 Edition (R2003).

5. M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer, and C. Tal-
cott. All About Maude - A High-Performance Logical Framework. Springer, 2007.

6. A. Demaille, T. Hérault, and S. Peyronnet. Probabilistic Verification of Sensor
Networks. Intl. Conf. on Research, Innovation and Vision for the Future, 2006.

7. T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: A Model Checker for
Hybrid Systems. In Proc. of the 9th Intl. Conf. on Computer Aided Verification
(CAV 1997), pages 460-463. Springer-Verlag, 1997.

8. T. Hérault, R. Lassaigne, F. Magniette, and S. Peyronnet. Approximate Proba-
bilistic Model Checking. In Proc. 5th Intl. Conf. on Verification, Model Checking
and Abstract Interpretation (VMCAI’04), volume 2937 of LNCS. Springer, 2004.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

H. Hermanns, J.-P. Katoen, J. Meyer-Kayser, and M. Siegle. A Markov Chain
Model Checker. In Proc. of the 6th Intl. Conf. on Tools and Algorithms for Con-
struction and Analysis of Systems (TACAS 2000), 2000.

B. Jeannet, P. R. D’Argenio, and K. G. Larsen. RAPTURE: A tool for verifying
Markov Decision Processes. In Tools Day’02, affiliated with 13th Int. Conf. on
Concurrency Theory (CONCUR 2002), Technical Report. Faculty of Informatics,
Masaryk University Brno, 2002.

M. Katelman, J. Meseguer, and J. Hou. Formal Modeling, Analysis, and Debugging
of a Localized Topology Control Protocol with Real-Time Maude and Probabilis-
tic Model Checking (In Preparation). Technical report, University of Illinois at
Urbana-Champaign, 2008.

M. Kim, M.-O. Stehr, C. Talcott, N. Dutt, and N. Venkatasubramanian. A Prob-
abilistic Formal Analysis Approach to Cross Layer Optimization in Distributed
Embedded Systems. In Formal Methods for Open Object-Based Distributed Sys-
tems (FMOODS 2007), volume 4468 of LNCS. Springer, 2007.

N. Kumar, K. Sen, J. Meseguer, and G. Agha. A Rewriting Based Model for
Probabilistic Distributed Object Systems. In The 6th IFIP Intl. Conf. on Formal
Methods for Open Object-based Distributed Systems (FMOODS 2003), 2003.

M. Kwiatkowska, G. Norman, and D. Parker. Quantitative analysis with the prob-
abilistic model checker PRISM. ENTCS, 153(2):5-31, 2005.

M. Kwiatkowska, G. Norman, and J. Sproston. Probabilistic Model Checking of
the ITEEE 802.11 Wireless Local Area Network Protocol. In Proc. of the Second
Joint Intl. Workshop on Process Algebra and Probabilistic Methods, Performance
Modeling and Verification (PAPM-PROBMIV 2002), 2002.

L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed System.
Communications of the ACM, 21(7), 1978.

K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a nutshell. Intl. Journal on
Software Tools for Technology Transfer, 1(1-2):134-152, 1997.

N. Li, J. C. Hou, and L. Sha. Design and Analysis of an MST-Based Topology
Control Algorithm. In INFOCOM 2003, 2003.

J. Meseguer. Conditional Rewriting Logic as a Unified Model of Concurrency.
Theor. Comput. Sci., 96(1):73-155, 1992.

J. Meseguer and R. Sharykin. Specification and Analysis of Distributed Object-
Based Stochastic Hybrid Systems. In Hybrid Systems: Computation and Control
(HSCC 2006), volume 3927 of LNCS, pages 460-475. Springer, 2006.

P. C. Olveczky and J. Meseguer. Specification of Real-Time and Hybrid Systems
in Rewriting Logic. Theoretical Computer Science, 285:359-405, 2002.

P. C. Olveczky and J. Meseguer. Semantics and pragmatics of Real-Time Maude.
Higher Order and Symbolic Computation, 20(1-2), 2007.

P.C. Olveczky and S. Thorvaldsen. Formal modeling and analysis of wireless sensor
network algorithms in Real-Time Maude. In 20th Intl. Parallel and Distributed
Processing Symposium (IPDPS 2006), 2006.

P. C. Olveczky and S. Thorvaldsen. Formal Modeling and Analysis of the OGDC
Wireless Sensor Network Algorithm in Real-Time Maude. In Proc. of the 9th
IFIP Intl. Conf. on Formal Methods for Open Object-Based Distributed Systems
(FMOODS 2007), 2007.

E. Parzen. Modern Probability Theory and Its Applications. John Wiley & Sons,
Inc., 1960.

K. Sen, M. Viswanathan, and G. Agha. VESTA: A Statistical Model Checker
and Analyzer for Probabilistic Systems. In 2nd Intl. Conf. on the Quantitative
FEvaluation of Systems, 2005.

