
A Minimal Set of Refactoring Rules for Object-Z

Tim McComb1 and Graeme Smith2

1 ARC Centre of Excellence in Bioinformatics
Institute for Molecular Bioscience, The University of Queensland, Australia

2 School of Information Technology and Electrical Engineering
The University of Queensland, Australia

Abstract. This paper presents a minimal and complete set of structural
refactoring rules for the Object-Z specification language that allow for
the derivation of arbitrary object-oriented architectures. The rules are
equivalence preserving and work in concert with existing class refinement
theory, so that any design derived using the rule set can be shown to be
equivalent to, or a refinement of, the original specification.

1 Introduction

Class instantiation, class inheritance, polymorphism, and generics (class param-
eters or templates) are four object-oriented architectural constructs which are
almost universal. They underpin the paradigm and provide the modularity and
reuse capabilities. Object-oriented formal specification languages such as Object-
Z [14], Alloy [6], and VDM++ [7] share these core features with their program-
ming language counterparts. However, the way they are utilised to capture re-
quirements associated with a problem domain is often quite different from the
way in which they are used to implement a specific solution to a problem. The
result is that an object-oriented specification does not usually directly resemble,
in a structural sense, the design of the desired implementation. Here, structure is
interpreted as the relationships between classes. Generally, a set of specification
classes will describe a system of many more interacting implementation classes.

To bridge this gap between specification and implementation, specification
refactoring rules have been proposed [7–9, 11, 2, 5]. These allow the structure of a
specification to be incrementally transformed to represent a given design. Gold-
sack and Lano [7, 8], for example, introduced the Annealing rule to VDM++.
This rule effectively splits a class’s state and operations into two classes — one
holding a reference to an instance of the other. It was later adapted to Object-Z
by McComb [9] who also introduced the Coalescence rule. This second rule
merges two classes together to create a new class that simulates both. Together
these rules have been shown quite effective for introducing designs [11].

However, these rules both deal with referential structure, and do not cover
the other primary forms of object-oriented design structure: inheritance, poly-
morphism and generics. In this paper, we fill this gap by formalising rules for
Object-Z that permit the modification of inheritance hierarchies and allow classes



to be parameterised. Furthermore, we show that our set of rules is both minimal
and complete for refactoring Object-Z specifications to derive designs.

We begin in Section 2 with an overview of the Object-Z language. We then
provide rules to introduce generic class parameters, to introduce polymorphic
behaviour, and to introduce inheritance in Sections 3 to 5 respectively. Together
with the Annealing rule, these three rules have been shown to be complete in
the sense that any reasonable design can be derived from any specification [10].
The proof is outlined in Section 6 before we conclude in Section 7.

2 Object-Z

Object-Z [14] extends the formal specification language Z [16] with explicit sup-
port for the fundamental constructs of object orientation: (generic) classes, ob-
jects, inheritance and polymorphism. Here we overview the notation for basic
classes and objects. Other notation will be introduced in the following sections.

A class in Object-Z groups together a collection of state variables with their
initial conditions and a set of operations which may change their values. The
state variables, initialisation predicate, and operations of a class are collectively
referred to as its features. The interface of the class is specified by a visibility list
of the form �(. . .) listing its externally accessible features.

Consider, for example, the following Object-Z class Stack .

Stack
�(Push,Pop, INIT )

LIMIT : N

LIMIT = 1024

items : seq N

#items ≤ LIMIT

INIT

items = 〈 〉

Push
∆(items)
item? : N
status! : Z

#items < LIMIT ⇒ status! >= 0 ∧ items ′ = 〈item?〉a items
#items ≥ LIMIT ⇒ status! < 0 ∧ items ′ = items

Pop =̂ [∆(items) item! : N | items = 〈item!〉a items ′ ]

The class Stack has a state variable items of type seq N (a sequence where
the elements are natural numbers). The possible bindings of values for state
variables are constrained initially by the initialisation predicate, and by the
invariant predicate contained within the state schema. Hence, the items sequence
is initially empty.

2



Each operation is a schema describing the relationship between pre- and
post-state variables. A variable decorated with a prime, e.g., x ′, denotes the
post-state value. All post-state variables from the state schema are available to
operations, but by default they are equated to their pre-state counterparts (they
do not change). Operations may introduce constraints over post-state variables
by including them in a delta-list of the form ∆(. . .). Any variables included in
the delta-list have their pre-/post-state equality constraint relaxed.

For example, the operation Push from the Stack class concatenates (a) the
input item? to the beginning of the items sequence, if the size of items is less than
the LIMIT . Thus, items appears in the delta-list of Push. An output variable
status! is set to be greater-than or equal-to zero if items can indeed accommodate
the new item, otherwise the status! binds to a value strictly less-than zero and
items remains unchanged. The operation Pop in this example removes the first
item, bound to output variable item!, from the beginning of the sequence.

Such a class can be instantiated within another class and its visible features
accessed using standard dereferencing notation. For example, consider the fol-
lowing class System which references a single object of class Stack .

System
�(Push,Pop, INIT )

s : Stack
INIT

s.INIT

Push =̂ s.Push
Pop =̂ s.Pop

Given the declaration s : Stack , the notation s.INIT denotes a predicate
which is true precisely when the referenced object is in its initial state. Also,
the notation s.Push is an operation corresponding to the referenced object un-
dergoing its Push operation, and s.Pop is an operation corresponding to the
referenced object undergoing its Pop operation.

3 Introduce Generic Parameter

This section provides a description of the Introduce Generic Parameter
refactoring rule. Generic parameters in Object-Z allow a type, or a list of types,
to be passed as parameters to a class. Refactoring a specification to add support
for generic parameterisation of classes is desirable, as it allows for the derivation
of library components, and increases reuse throughout the design as a single class
may be instantiated many times with different parameters. The parameterised
classes in Object-Z could possibly be implemented using the support for generics
in Java [1] or templates in C++ [15].

The rule is illustrated in Figure 1. A class C has a locally defined type L
which is defined to be the actual type T . When the rule is applied, the class C is
replaced with a class C [X ], where the name X is fresh, and the local definition

3



which previously defined L as T is changed to define L as X . All references to
C in the specification are replaced with references to C [T ], including references
for inheritance.

(references to C )

C

L == T
...

≡

(references to C [T ])

C [X ]

L == X
...

where X is fresh

Fig. 1. Introduce generic parameter refactoring

This refactoring rule only introduces one parameter, but repeated application
can provide as many parameters as necessary. As new parameters are added,
they can be appended to the right of the parameter list. For example, Figure 2
represents the result of the rule being applied again to the right-hand side of
Figure 1, introducing a new parameter Y to stand for an actual type S . Exactly
where in the list of parameters the new parameter is inserted is arbitrary, as
long as the references are updated in a consistent manner.

(references to C [T ])

C [X ]

L == X

M == S
...

≡

(references to C [T , S ])

C [X , Y ]

L == X

M == Y
...

where Y is fresh

Fig. 2. Repeated application of the introduce generic parameter refactoring

The soundness of this rule follows directly from the semantics of generic
parameters in Object-Z. A formal proof is presented in [10].

4



3.1 Example

The Stack in Section 2 specifically deals with natural numbers, but through the
application of the above refactoring rule we are able to systematically introduce
a generic parameter.

First, the Stack class must undergo a refinement step to introduce a local
definition, such that the class conforms to the precondition required by the
refactoring rule. The refinement step (actually, an equivalence transformation)
would be proved using the simulation rules for Object-Z [3]. We present just the
result of the refinement step here.

Stack
�(Push,Pop, INIT )
L == N

LIMIT : N

LIMIT = 1024

items : seq L

#items ≤ LIMIT

INIT

items = 〈 〉

Push
∆(items)
item? : L
status! : Z

#items < LIMIT ⇒ status! >= 0 ∧ items ′ = 〈item?〉a items
#items ≥ LIMIT ⇒ status! < 0 ∧ items ′ = items

Pop =̂ [∆(items) item! : L | items = 〈item!〉a items ′ ]

We are now in a position to apply the refactoring rule, which introduces the
parameter X to Stack and updates the reference to Stack in the System class to
instantiate the parameter with N.

System
�(Push,Pop, INIT )

s : Stack [N]
INIT

s.INIT

Push =̂ s.Push
Pop =̂ s.Pop

5



Stack [X ]
�(Push,Pop, INIT )
L == X

LIMIT : N

LIMIT = 1024

items : seq L

#items ≤ LIMIT

INIT

items = 〈 〉

Push
∆(items)
item? : L
status! : Z

#items < LIMIT ⇒ status! >= 0 ∧ items ′ = 〈item?〉a items
#items ≥ LIMIT ⇒ status! < 0 ∧ items ′ = items

Pop =̂ [∆(items) item! : L | items = 〈item!〉a items ′ ]

4 Introduce Polymorphism

Not all inheritance hierarchies take advantage of polymorphism in Object-Z, and
conversely not all polymorphism must be confined to inheritance hierarchies.
In programming languages like Java it is common to have classes implement
interfaces that provide a mechanism for polymorphism that is not related to
inheritance. This orthogonal treatment of polymorphism both in Object-Z and
in some programming languages warrants a rule specifically for its introduction,
rather than treating it as a by-product of introducing inheritance.

In Figure 3, the class C [P1, . . . ,Pm ] on the left-hand side has exactly n +1
means of referencing it: by C [P1, . . . ,Pm ], or by n axiomatically defined aliases
A1[P1, . . . ,Pm ],. . .,An [P1, . . . ,Pm ] which disjointly partition the references to
objects of C [P1, . . . ,Pm ]. The parameter lists [P1, . . . ,Pm ] are irrelevant to the
application of the rule, except that all classes A1, . . . ,An and C must have the
same arity. For brevity of presentation these parameter lists are omitted from
the discussion below.

The introduction of polymorphism is normally motivated by the identification
of a class (C ) that behaves in different ways depending upon the context in
which it is used. The Introduce Polymorphism rule requires that the designer
identify the contexts where alternate behaviours are expected, and divide the
references between A1, . . . ,An accordingly. Since the collection of class aliases
A1, . . . ,An are together disjoint, any introduced references to these classes must
be proved to be invariantly unequal whenever the references are to different
aliases. This can be proved as a data refinement.

6



C [P1, . . . , Pm ]

F

[P1, . . . , Pm ]

A1[P1, . . . , Pm ] : P C [P1, . . . , Pm ]
...

An [P1, . . . , Pm ] : P C [P1, . . . , Pm ]

〈A1[P1, . . . , Pm ], . . . , An [P1, . . . , Pm ]〉
partitions

C [P1, . . . , Pm ]

≡

A1[P1, . . . , Pm ]

F

...

An [P1, . . . , Pm ]

F

[P1, . . . , Pm ]

C [P1, . . . , Pm ] ==

A1[P1, . . . , Pm ] ∪
. . . ∪An [P1, . . . , Pm ]

Fig. 3. Introduce polymorphism refactoring

Assuming this identification and partitioning of object references has oc-
curred, the Introduce Polymorphism rule allows for the splitting of the be-
haviours into separate class definitions (A1 to An on the right-hand side of Fig-
ure 3). To execute the refactoring transformation, all of the features of class C
are copied verbatim to define the classes A1 to An . The class C is removed from
the specification, but C is globally defined to be the class union A1 ∪ . . . ∪ An

— thus providing for the polymorphism. The identical feature sets of the classes
are represented with the symbol F in Figure 3.

Since C is defined as a class union after the application of the transforma-
tion, C cannot be inherited by any other classes in the specification after this
refactoring is applied (this is a restriction of the Object-Z language [14]). Such
classes must inherit one of A1, . . . ,An instead.

There is an axiomatic definition on the left-hand side that describes the
typing relationships between A1, . . . ,An and C . The designer must add this to
the specification as a precondition to applying the rule. The axiomatic definition
is not only important to declare the meaning of A1, . . . ,An (i.e., that they are
aliases for class C ) but if the rule is applied in reverse (to coalesce two or more
classes), this axiomatic definition retains the vital information that relates the
types.

There does not need to be any distinction between the behaviours of the
aliases A1, . . . ,An , but without it this would render the application of the rule
largely redundant. When there is a distinction, it is expected that the different
behaviours are explicitly guarded. For example, the designer may wish for an
operation Op in C to behave in two different ways captured by the operation
schemas α and β, depending upon its context. The identification of these contexts
is achieved by instantiating C as A1 or A2 respectively. The designer then guards

7



these behaviours through the use of the choice operator [] and the self keyword
inside the operation: using Op =̂ ([self ∈ A1]∧ α) [] ([self ∈ A2]∧ β), ensuring
that the introduction of the guards does not affect the behavioural interpretation
of the specification (e.g., whenever a reference to A1 is introduced, α would have
always been the behaviour of Op prior to the application of the rule).

Although the class definition is copied, the use of these guards becomes cru-
cial after the application of the refactoring. The designer can substantially sim-
plify the class definitions A1, . . . ,An by realising that in class A1 (from the
example above), [self ∈ A1] ≡ [true] and [self ∈ A2] ≡ [false]; and likewise in
class A2, [self ∈ A2] ≡ [true] and [self ∈ A1] ≡ [false]. Therefore, in class A1,
Op simplifies to α. Similarly, in class A2, Op simplifies to β.

It is particularly important to realise that for instances a : A1; b : A2, it is
never the case that a = b because the references are disjoint (A1 ∩ A2 = ∅). If
A1 and A2 objects need to reside in a common data structure, for example a set
declaration using the class union A1 ∪A2, then references to C may be used.

The labels A1, . . . ,An and C are representative only: the rule requires that
A1, . . . ,An are fresh names, and generic parameters are carried across (C [X ],
for example, becomes A1[X ], . . . ,An [X ]). A proof of soundness of the rule is
presented in [10].

4.1 Example

The Introduce Polymorphism rule tends to act as a bridge for applying more
interesting refactorings: it is best utilised in combination with the other rules
and interesting class refinements. So to provide an example for the Introduce
Polymorphism refactoring, we are going to progress towards deriving a class
RepStack [X ] which inherits Stack [X ]. The class RepStack [X ] will define a re-
porting stack, where more helpful information is provided in the status! output
of the Push operation. This requires inheritance, for which a rule will be pro-
vided in the Section 5, so we will only make progress toward the final goal at
this stage (the example will be completed at the end of the Section 5).

We begin our example where the Introduce Generic Parameter rule
ended, with the System class and a parameterised Stack [X ] class (refer to Sec-
tion 3.1). In order to satisfy the prerequisite for the rule (being applied in the
forward direction), we must introduce some new (generic) class aliases into the
specification. As the new identifiers are fresh, this cannot affect the meaning of
the specification.

[X ]
RegularStack [X ],RepStack [X ] : P Stack [X ]

〈RegularStack [X ],RepStack [X ]〉partitions Stack [X ]

Although we have now satisfied the precondition for applying the rule to the
Stack [X ] class, now is a good time to perform a refinement upon the System
class to reference RepStack [X ] rather than Stack [X ]. This refinement is correct,

8



as RepStack [X ] is an alias for Stack [X ] (and therefore has the same meaning),
so we omit a detailed argument as to its correctness and just present the result
of the refinement:

System
�(Push,Pop, INIT )

s : RepStack [N]
INIT

s.INIT

Push =̂ s.Push
Pop =̂ s.Pop

The reason we have chosen to perform the refinement at this stage is because
it is easier to justify (as RepStack [X ] is behaviourally equivalent to Stack [X ]),
and we know that we wish to have System reference RepStack [X ] at the end of
the refactoring process.

We now apply the Introduce Polymorphism rule to the Stack [X ] class.
The yields two class paragraph definitions RegularStack [X ] and RepStack [X ]
which exactly match (apart from the class name) the definition of Stack [X ]
prior to the rule being applied. The definition of Stack [X ], in turn, becomes:

[X ]
Stack [X ] == RegularStack [X ] ∪ RepStack [X ]

Our intention is to have RepStack [X ] inherit RegularStack [X ], which will
become possible with the Introduce Inheritance refactoring rule presented
in Section 5.

5 Introduce Inheritance

Reuse of data constructs and operations in classes is achieved through inheritance
in the object-oriented paradigm (both with programming and specification). The
Introduce Inheritance rule offers a means by which to build an inheritance
hierarchy from existing classes.

The Introduce Inheritance rule creates an inheritance relationship be-
tween any two classes in the specification, as long as the addition of the relation-
ship does not result in a circular dependency. Figure 4 illustrates the application
of the rule to two classes A and B with features F and G respectively.

The rule is most effectively applied to link together classes that contain com-
mon features in order to maximise the potential for reuse, but the classes need
not share any features at all. This is because the Introduce Inheritance rule
not only adds the inheritance relationship (indicated in Figure 4 by the inclusion
of A in B) but also hides every feature of the superclass by assigning them a
fresh name (the notation ‘H/F ’ indicates that all features F of the superclass
A are hidden by assigning fresh names H for the features). The combination of

9



A

F

B

G

≡

A

F

B

A[H/F ]

G

where H are fresh

Fig. 4. Introduce inheritance refactoring

inheritance and hiding makes the refactoring rule an equivalence transformation,
so long as we assume that the inheritance-based polymorphism operator ↓ is not
used in the specification. ↓C is an abbreviation for the class union of C with
all of its subclasses. All occurences of ↓ in the specification must be replaced to
specifically enumerate the inheritance hierarchy as a class union (that is, the ↓
must be replaced by its definition).

Some classes have an implicit visibility-list, whereby it is understood that
every feature of the class is externally visible [14]. In such circumstances, the
rule is still equivalence preserving as the interface of B is only widened, and the
fresh features cannot possibly have been referenced as they did not previously
exist.

To use the features inherited from the superclass, the designer must make
refinements local to the subclass to reference the features in H. Note that the
introduced reference to the superclass must parameterise the superclass if it has
generic parameters. These parameter instantiations of the superclass reference
may include formal parameters of the subclass.

The reversal of the Introduce Inheritance rule removes the inheritance
relationship under the condition that every feature of the superclass concerned
is not referenced (“fresh”). As inheritance in Object-Z is syntax-based [14], this
precondition can be satisfied by copying any referenced feature definitions from
the superclass into the subclass. A soundness proof for the rule is presented in
[10].

5.1 Example

The example of the previous section (4.1) was left unfinished owing to the absence
of the Introduce Inheritance rule described above; we are now in a position
to complete it.

The two classes, RegularStack [X ] and RepStack [X ], are identical. We wish to
break this symmetry, however, by encapsulating the general stack behaviour in
the RegularStack [X ] class and extending that behaviour in the RepStack [X ] class

10



via inheritance. The refactoring rule can be applied immediately to the specifi-
cation at the end of Section 4.1 to yield an altered definition for RepStack [X ]:

RepStack [X ]
�(Push,Pop, INIT )
RegularStack [X ][SuperL/L,SuperLIMIT/LIMIT ,SuperPush/Push,

SuperPop/Pop,SuperItems/items,SuperInit/INIT ]
L == X

LIMIT : N

LIMIT = 1024

items : seq L

#items ≤ LIMIT

INIT

items = 〈 〉

Push
∆(items)
item? : L
status! : Z

#items < LIMIT ⇒ status! >= 0 ∧ items ′ = 〈item?〉a items
#items ≥ LIMIT ⇒ status! < 0 ∧ items ′ = items

Pop =̂ [∆(items) item! : L | items = 〈item!〉a items ′ ]

RepStack [X ] is then capable of being refined to utilise the definitions inher-
ited by RegularStack [X ]. As the features are identical, the refinement step is
trivial:

RepStack [X ]
�(Push,Pop, INIT )
RegularStack [X ]

The desired definition of RepStack [X ] can be derived through refinement
from the above definition, by strengthening the postcondition of the Push oper-
ation (by reducing non-determinism over the output variable status!).

RepStack [X ]
�(Push,Pop, INIT )
RegularStack [X ]

Push
#items < LIMIT ⇒ status! = #items ′

#items ≥ LIMIT ⇒ status! = −LIMIT

11



6 Completeness

In the previous sections we introduced three rules for structural refactoring of
Object-Z specifications: Introduce Generic Parameter, Introduce In-
heritance and Introduce Polymorphism. In [9], McComb also introduced
Annealing, which partitions a class state by introducing an instance to a fresh
class definition. These four rules are minimal in the sense that they each operate
upon one of the four orthogonal aspects of the object-oriented paradigm: no rule
(or sequence of rules) can perform the function of any other rule.

We present an argument that the combination of these four rules with com-
positional class refinement [12] yields a complete method for design in Object-Z.
That is, we demonstrate that it is possible to move from any structural design in
Object-Z to any other design that represents a valid refinement of the original.
However, we rely on some assumptions which we believe to be reasonable con-
cerning the “system” class, i.e., the class describing the whole system (System
in the example). First, we assume that the system class is not parameterised.
In specifications where parameters exist over the system class, we expect these
parameters to be instead expressed as given types in the specification. We also
assume that the system class does not directly expose state variables via its
visibility-list (although other classes may do this). This is because we cannot
reason about the use of such variables, as the context of the system class is un-
known, and this constrains possibilities for compositional class refinement. We
expect accessor operations to be utilised in these circumstances.

Recall that each of the rules is an equivalence transformation that acts on
the structure of a specification. We take advantage of this to demonstrate com-
pleteness by applying a commuting argument based on reduction. The reduction
argument is as follows: if a sequence of rule applications exists that can reduce
any arbitrary structure down to a canonical form, then it follows that the original
structure can be constructed from that canonical form by the reverse application
of the rules. By a commuting argument it follows that if a refinement ordering ex-
ists over the reduced form, then this ordering exists over arbitrary specifications,
as all specifications are reducible to this form. Consequently, from any specifi-
cation structure it is possible to construct another specification, with different
structure, that is a valid refinement.

(System, C1, . . . , Cn)
≡

> (System, Delegate)

(System ′, D1, . . . , Dm)

v

∨
<

≡
(System ′, Delegate ′)

v

∨

Fig. 5. Commuting argument for design reduction and construction with refinement

12



Figure 5 illustrates this schematically. A designer wishing to refactor a spec-
ification (System,C1, . . . ,Cn) to a specification (System ′,D1, . . . ,Dm) that is
a refinement of or equivalent to (System,C1, . . . ,Cn) may do so by reducing
(System,C1, . . . ,Cn) to two classes (System,Delegate) (our reduced form); refin-
ing System and/or Delegate to derive (System ′,Delegate ′); and then constructing
(System ′,D1, . . . ,Dm) from (System ′,Delegate ′).

We progress in five stages. The first stage applies an equivalence preserving
refinement step to all classes that inherit features of other classes. This allows us
to establish the precondition for applying the Introduce Inheritance rule in
reverse. Through this process we effectively remove all inheritance relationships
in the specification. The second stage introduces a Delegate class that is key to
our reduced form. The third stage applies the Introduce Generic Parame-
ter rule in reverse. The precondition for applying this rule reversal is satisfied
by forward applications of the Introduce Polymorphism rule. Through this
process we show that all generic parameterisation can be removed from the spec-
ification. In the fourth stage, we apply the Introduce Polymorphism rule in
reverse to collapse the entire specification (except for the System class) into the
Delegate class. Again, we use equivalence preserving class refinements to satisfy
the preconditions for applying this rule backwards. The last stage presents the
argument that System and Delegate can be compositionally decoupled [12], and
all possible specification refinements can be expressed as class refinements over
these classes.

We refer to these stages respectively as: inheritance hierarchy flattening, in-
terface isolation, parameterisation reduction, class paragraph definition reduc-
tion, and specification refinement. Below we expand on these stages to provide
a high-level completeness argument; a formal proof can be found in [10].

1. Inheritance hierarchy flattening
(a) Through equivalence preserving class refinements, references to features

of superclasses can be removed.
(b) Given subclasses do not reference features of their superclasses, the pre-

condition for applying Introduce Inheritance in reverse is satisfied
for all inheritance relationships.

(c) Repeated reverse application of Introduce Inheritance removes all
inheritance relationships.

2. Interface isolation
(a) Since there are no inheritance relationships and the system class has

no parameters, a fresh class definition Delegate1 can be created via ap-
plication of the Annealing rule on the system class [9]. Annealing
partitions the state of a class into two parts: S and T , where T is the
part that is moved into the newly created component class. In this case,
the system class state is partitioned such that T represents the entirety
of the state. That is, the entire state of the system class is moved to the
new component class Delegate1.

3. Parameterisation reduction (only necessary if classes with generic parameters
exist)

13



(a) For an arbitrary class definition that has generic parameters, all concrete
types used to instantiate a parameter of that class can be enumerated.

(b) For some class C [P1, . . . ,Pn ] with a generic parameter Pi (1 ≤ i ≤
n), an equivalence step can introduce a set of alias class names
AliasT1[P1, . . . ,Pn ], . . . , AliasTm [P1, . . . ,Pn ] (axiomatically defined):
one member for each different concrete type T1, . . . ,Tm used to instan-
tiate Pi .

(c) Since there are no inheritance relationships, the precondition for Intro-
duce Polymorphism is satisfied for any class C and the alias classes
AliasT1[P1, . . . ,Pn ], . . . , AliasTm [P1, . . . ,Pn ] from the previous step.

(d) Application of Introduce Polymorphism to each class C and its
aliases establishes, in each case, the precondition for the reverse ap-
plication of Introduce Generic Parameter to each alias class for
the chosen parameter Pi . An equivalence preserving data refinement to
introduce a local definition of the form L == X may be necessary.

(e) Reverse application of Introduce Generic Parameter to all alias
classes strictly reduces the number of generic parameters (by exactly 1).

(f) Repeating steps 3(a) through 3(e) removes all generic parameterisation
for all classes, given that the system class is not parameterised.

4. Class paragraph definition reduction
(a) Let n ← 1.
(b) For any class definition C where C is not the system class or Delegaten ,

both C and Delegaten can undergo an equivalence preserving class re-
finement such that each definition has identical features.

(c) The precondition for the reverse application of Introduce Polymor-
phism is satisfied for a fresh class Delegaten+1, which is defined to be
the class union of C and Delegaten .

(d) Reverse application of Introduce Polymorphism to C and Delegaten
yields a strict reduction in the number of classes.

(e) Let n ← n + 1.
(f) Repeating steps 4(b) through 4(e) eventually yields the reduced form,

i.e., the only classes are the system class and Delegaten .
5. Specification refinement

(a) The Delegaten class can be compositionally decoupled from the system
class, such that both may be refined, assuming the system class does not
expose state variables in its interface [12]. Refinements to the system
class and Delegaten constitute all possible specification refinements.

7 Conclusion

We have emphasised the completeness of the approach for manipulation of archi-
tectural structure (that is, high-level design), in an object-oriented sense. Unless
a light-weight approach is employed, whereby individual class specifications —
having undergone sufficient data refinement — are implemented (and tested)
informally, there is also potential for future work in providing a rigorous method

14



for implementing specifications of individual classes in an object-oriented pro-
gramming language. As Object-Z is not wide-spectrum, this would require an
extension to the language, or a mapping of our method to another object-oriented
specification language that supports low-level programming constructs.

In ongoing work, Ruhroth et al. are investigating refactoring transformations
of Object-Z specifications in the presence of CSP [13], particularly with respect
to those refactoring transformations we refer to as non-structural. Other work
by Estler et al. incorporates model-checking technologies for the verification of
refactorings in Object-Z without CSP [4]. The automation of such verifications
are important for the practicality and relevance of our approach to current soft-
ware engineering practice, and can hopefully be extended to our structural rules.

Acknowledgements

We acknowledge the support of Australian Research Council (ARC) Discovery
Grant DP0558408.

References

1. Java 2 Platform Standard Edition 5.0, http://java.sun.com/j2se/1.5.0/guide/.

2. P. Borba, A. Sampaio, A. Cavalcanti, and M. Cornelio. Algebraic Reasoning for
Object-Oriented Programming. Sci. Comput. Program., 52(1-3):53–100, 2004.

3. J. Derrick and E. Boiten. Refinement in Z and Object-Z: Foundations and Advanced
Applications. FACIT Series. Springer-Verlag, 2001.

4. H.-C. Estler, T. Ruhroth, and H. Wehrheim. Modelchecking correctness of refac-
torings – some experiments. ENTCS, 187:3–17, 2007.

5. R. Gheyi and P. Borba. Refactoring Alloy specifications. ENTCS, 95:227–243,
2004.

6. D. Jackson. Alloy: a lightweight object modelling notation. Software Engineering
and Methodology, 11(2):256–290, 2002.

7. K. Lano. Formal Object-oriented Development. Springer-Verlag, 1995.

8. K. Lano and S. Goldsack. Refinement of Distributed Object Systems. In E. Najm
and J.-B. Stefani, editors, Proc. of Workshop on Formal Methods for Open Object-
based Distributed Systems, pages 99–114. Chapman and Hall, March 1996.

9. T. McComb. Refactoring Object-Z Specifications. In M. Wermelinger and
T. Margaria-Steffen, editors, FASE ’04: Fundamental Approaches to Software En-
gineering, volume 2984 of LNCS, pages 69–83. Springer-Verlag, 2004.

10. T. McComb. Formal Derivation of Object-Oriented Designs. PhD thesis, The
University of Queensland, 2007.

11. T. McComb and G. Smith. Architectural Design in Object-Z. In P. Strooper,
editor, ASWEC ’04: Australian Software Engineering Conference, pages 77–86.
IEEE Computer Society Press, 2004.

12. T. McComb and G. Smith. Compositional class refinement in Object-Z. In J. Misra,
T. Nipkow, and E. Sekerinski, editors, FM 2006: Formal Methods, volume 4085 of
LNCS, pages 205–220. Springer, 2006.

15



13. T. Ruhroth and H. Wehrheim. Refactoring object-oriented specifications with data
and processes. In M. M. Bonsangue and E. B. Johnsen, editors, Formal Methods
for Open Object-Based Distributed Systems, volume 4468 of LNCS, pages 236–251.
Springer, 2007.

14. G. Smith. The Object-Z Specification Language. Kluwer, 2000.
15. B. Stroustrup. The C++ Programming Language, Third Edition. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, 1997.
16. J. C. P. Woodcock and J. Davies. Using Z: Specification, Proof and Refinement.

Prentice Hall International Series in Computer Science, 1996.

16


