CoBoxes: Unifying Active Objects and
Structured Heaps

Jan Schéfer* and Arnd Poetzsch-Heffter

University of Kaiserslautern
{jschaefer,poetzsch}@informatik.uni-kl.de

Abstract. Concurrent programming in object-oriented languages is a
notoriously difficult task. We propose coboxes — a novel language con-
cept which combines and generalizes active objects and techniques for
heap structuring. CoBoxes realize a data-centric approach that guaran-
tees mutual-exclusion for groups of objects. This is important for more
complex data structures with invariants ranging over several objects.
CoBoxes support multiple entry objects, several cooperating tasks in a
cobox, and nesting of coboxes for composition and internal parallelism.
Communication between coboxes is handled by asynchronous method
calls with futures, which is in particular suitable for distributed program-
ming. In this paper, we explain how aspects of concurrent programming
can be solved by coboxes. We develop a core language for coboxes and
present a formal operational semantics for this language.

1 Introduction

Today’s programming languages support concurrency mainly by multi-thread-
ing. Especially in object-oriented settings, multi-threaded programming is noto-
riously hard. The programmer has to control the shared state of threads which
is difficult in object-oriented programming because state sharing is a dynamic
property depending on the reference structure in the heap. Another problem for
thread safety is the fact that programming invariants often depend on several
objects. Thus, after violating an invariant by modifying some object X, a thread
needs to work on other objects to reestablish the invariant before another thread
can access X. As threads are based on preemptive scheduling and every thread
may be suspended at any time leading to an arbitrary interleaving of threads,
the programmer must explicitly prevent certain interleavings by using locking,
a fairly primitive and error-prone programming construct.

Whereas preemptive scheduling causes problems within a single process, it
is successful for processes on the operating system level. The reason is simple:
processes do not share state and communicate via message passing. However,
to substitute all method calls in OO programming by asynchronous message
passing would throw out the baby with the bath water. The state space of a
process would be restricted to a single object and the well-understood sequential

* Supported by the Deutsche Forschungsgemeinschaft (German Research Foundation)

reasoning that can be used for thread-safe parts of programs with synchronous
method calls could no longer be applied.

In this paper, we present a model that tries to combine the best of two worlds.
It builds upon and integrates techniques for active objects [7] and for structuring
the heap into groups of objects, so-called bozes, which have only been presented
in a sequential setting [37] (sequential bozes). We call this symbiosis concurrent
bozxes or cobozes. Like sequential boxes, coboxes hierarchically partition the heap
into runtime components consisting of multiple objects. To use coboxes, the
programmer simply has to declare certain classes as cobox classes. Instantiating
such a class creates a cobox together with its main object (also called owner
object). A cobox may have multiple tasks which are scheduled cooperatively
and where only one at a time may be active. Thus, within a cobox programs
are executed sequentially with programmer-defined points of suspension and
scheduling. CoBoxes run concurrently and communicate via message passing.
To support composition of boxes and a restricted form of internal concurrency,
coboxes can be nested, i.e. coboxes can contain other coboxes.

Contributions and Overview. This paper extends the sequential box concept that
we developed in [37] to concurrency. The novel concurrency model generalizes
active objects with asynchronous messages and futures to multiple object com-
ponents. The resulting concurrent programming model enables the programmer
to develop instantiable and composable components of scalable sizes. Although a
cobox may expose several objects to the environment the model guarantees that
tasks within a cobox are free of data-races and are executed atomically between
suspension points.

After a discussion of related work, we explain and illustrate our programming
model (Sect. 3). As central technical contribution, we present a formal small-step
operational semantics of a core language for concurrent boxes and investigate
some of its properties (Sect. 4). We conclude the paper after a discussion of the
current limitations of our approach as well as possible solutions (Sect. 5).

2 Related Work and Motivation

Heap Structuring. A heap in OOLs is an unstructured graph of objects.
The missing structure makes it difficult to reason about the behavior of object-
oriented programs. Different approaches have been proposed to handle this prob-
lem. Ownership Types [11, 6, 34] and variants [2, 36, 38] statically structure the
heap into ownership contexts. This can be used, for example, to ease program
verification [13, 35] or to statically guarantee data-race and deadlock freedom in
multi-threaded programs [5]. The concept of object ownership can also be en-
coded in a programming logic to achieve data-race [30] and deadlock [31] freedom
by program verification. In a previous work, we used hierarchical structuring of
the heap to modularly describe the behavior of sequential object-oriented run-
time components [37].

Actors. The actor [1, 33] or active object model [7] treats every object as
an actor. Actors run in parallel and communicate via asynchronous messages.
To allow result values for asynchronous method calls, futures [33] are used. In
general, actors only have a single thread of control. This makes it difficult to
implement multiple interleaved control flows within an actor, as this has to
be explicitly implemented. This problem has been solved by Creol [32, 12], for
example, which supports multiple control flows in objects. Another problem
is the flat object model of actors. In general, actors cannot have a complex
aggregate state. Some approaches allow actors to have local or passive objects
[7, 8], which are deep copied between actors or cannot be referenced by other
actors at all. To the best of our knowledge, no actor model has been proposed
yet which allows multiple entry objects or treats hierarchical nesting.

Monitors. Monitors [20, 27] couple data with procedures, which are guaranteed
to run in mutual exclusion. They support multiple control flows coordinated by
condition variables. The original monitor concept has been designed without
pointers and the aliasing problem [28] in mind. The realization of monitors in
mainstream OO-languages typically has two shortcomings. It merely supports
internal concurrency and only protects single objects.

Several Java modifications have been proposed to overcome these shortcom-
ings. Guava [3] distinguishes between monitors and objects and allows monitors
with complex aggregate state consisting of multiple objects, but without multiple
entry objects for a single monitor. JAC [22] is an approach to specify concurrency
mechanisms in Java in a declarative way, but only on the granularity of single
objects. Sequential Object Monitors (SOM) [9] separate scheduling of requests
from objects that handle requests. SOM does not allow multiple entry objects,
nor multiple tasks in a SOM. Parallel Object Monitors (POM) [10] generalize
SOM, by allowing multiple concurrently running threads in a single POM. In
addition, multiple objects can be controlled by a single POM. In contrast to
SOM, POM does not guarantee data-race freedom.

Transactions. When talking about (software) transactions one must distin-
guish the implementation side and the language side. There are many proposals
how to implement transactions, either using ordinary locks [25], or implement-
ing a transactional memory in software only [39], in hardware [23], or both [24].
A still open question is how transactional behavior could be integrated into
object-oriented languages. Atomic blocks [21] are one idea, another are atomic-
ity annotations [15]. The problem of these pure code-centric approaches is that
still high-level inconsistencies can occur if invariants range over several objects
[41]. Atomic sets [41] are one answer to overcome this problem. Communication
of threads as well as other waiting conditions within transactions are addressed
in [40]. Although transactions can be implemented distributively, transactional
memory is not a concept which can easily be generalized to the distributed set-
ting. Thus we see transactional memory as an orthogonal concept which may be
integrated in our model to allow truly parallel tasks within a single cobox, for

cobox class Consumer { interface Producer { Product produce(); }
Producer prod;

Consumer(Producer p) { prod = p; } cobox class SimpleProducer
void consume() { implements Producer {
Fut<Product> f = prod!produce(); Product produce() {
... // do something else Product p = ... // produce p
Product p = f.get; // wait for result return p
... // consume p }
I }

Fig. 1. Producer-Consumer example

example. An interesting starting point would be the work of Smaragdakis et al.
[40].

3 Programming with Concurrent Boxes

The novel concept of our programming language are coboxes. Like objects,
coboxes are runtime entities. CoBoxes are containers for objects. Every object
exactly belongs to a single cobox for its entire lifetime. CoBoxes are also con-
tainers for cooperatively scheduled tasks, where at most one task is active and
all other tasks are suspended. The important difference to other active object
approaches is that activity is not bound to a single object, but to a set objects,
namely the objects that belong to the same cobox. This also means that coboxes
generalize active objects as active objects can be simulated by coboxes contain-
ing only single objects. All objects of a cobox can be referenced by other coboxes
without any restriction. Moreover, coboxes can be nested, i.e. coboxes can be
contained in other coboxes, which allows cobox-internal concurrency and reuse
of cobox classes.

To explain our cobox concept we use a Java-like language called JCoBox.
JCoBox is Java where the standard concurrency mechanisms are replaced by
the following ones:

— Annotation of classes as cobox classes
— Asynchronous method invocation with futures as results
— Task coordination by await, get and yield expressions.

If none of these constructs is used, a JCoBox program behaves like a correspond-
ing sequential Java program.
3.1 CoBoxes as Active Objects

If a cobox only consists of one object, it behaves like active objects in Creol [12].
We illustrate this with a simple producer-consumer example shown in Fig 1. Be-
sides a Producer interface, the example contains a Consumer and SimpleProducer

cobox class PipelineProducer cobox class PreProducer {

implements Producer { PreProduct produce() { ... }

PreProducer pp = new PreProducer(); }

FinalProducer fp = new FinalProducer();

Product produce() { cobox class FinalProducer {
PreProduct pl = pp!produce().await; Product produce(PreProduct p) {
Product p = fp!produce(pl).await;
return p; 1}

b}

Fig. 2. Producer with a pipelined production

class, which both are declared as cobox classes. This means that objects of these
classes always live in separate coboxes, as instantiating a cobox class creates a
new cobox together with its main object. The Consumer object has a reference to
a Producer object. To get a new Product, the consumer asynchronously invokes
the produce method of the producer. That call immediately returns a future ob-
ject of type Fut<Product>. While the producer is busy producing the product,
the consumer can do something else in parallel. Eventually, the consumer uses
get on the future object. This blocks the active task of the consumer until the
future value is available, which is the case when the producer returns from the
produce method.

Different coboxes can run concurrently. Thus, multiple consumers can con-
currently access the same producer. The cobox semantics serializes such accesses.
Each cobox manages an internal set of tasks. Whenever a method is invoked on
an object of a cobox, a new task is created. At most one task is active in a cobox,
all other tasks are suspended. An active task terminates if the execution of the
invoked method terminates. It suspends itself by executing a yield statement or
an await on a future. If no task is active, a scheduler selects one of the suspended
tasks.

3.2 Nested CoBoxes and Internal Concurrency

To support concurrency within a cobox and to implement new cobox classes
using existing ones, it is possible to create nested coboxes. A cobox is always
nested in the cobox which created it. For example, the developer of the Producer
class recognizes that the production process can be divided into two steps. The
first step produces a PreProduct which can then be used in a second step to
produce the final product. Thus, it has a production pipeline, which doubles the
throughput of the producer. The pipelined producer implementation is shown
in Fig. 2. The implementation of the produce method, asynchronously invokes
the produce methods of the nested producers and uses await to wait for the
result. Thus, the task that executes the produce method suspends itself after it
has sent the first message and waits for the result. While the nested coboxes
concurrently work on the production, the Producer can accept other produce

class LinkedList<V> { ... } class ProducerProxy implements Producer {
ProducerPool pool;

cobox class ProducerPool { ProducerProxy(ProducerPool p) {
LinkedList<Producer> prods; pool = p;
ProducerPool() { }
prods = Product produce() {
new LinkedList<Producer>(); while (pool.prods.isEmpty()) yield;
// ... fill pool with producers Producer p = pool.prods.removeFirst();
Product res = plproduce().await;
Producer getProducer() { pool.prods.append(p);
return new ProducerProxy(this); return res;
b} b}

Fig. 3. Producer pool example

messages and activate tasks, resulting in an interleaved execution of multiple
tasks in the producer, as well as a parallel execution of the nested pre- and
final producers. Notice that the use of nested coboxes is transparent to users of
PipelinedProducer objects.

3.3 Multiple Entry Objects

The granularity of an object is often insufficient to model complex components.
In general, a component has a complex internal state consisting of multiple
objects as well as multiple objects which act as entry objects to the component,
extending its external interface. For example, in the producer-consumer scenario,
it might be useful to improve parallelism by introducing a pool of producers. The
producer pool implementation is shown in Fig. 3. The ProducerPool cobox class
has a field prods holding a list of currently free producers. A client can use the
getProducer method to obtain a new Producer instance. The getProducer method
returns an instance of a ProducerProxy. As the ProducerProxy class is not a cobox
class, all its instances are contained in the ProducerPool cobox that created them.
To better understand the cobox structure that appears at runtime, we show a
runtime snapshot of the producer pool example in Fig. 4. It shows the nesting
of the coboxes as well as which objects belong to which coboxes.

A ProducerPool is an example of a more realistic cobox. It consists of the
main object of type ProducerPool, further ProducerProxy entry objects, the ob-
jects implementing the LinkedList, and the nested PipelinedProducer coboxes. The
interesting part is the implementation of the produce method. First, it ensures
that the list of free producers is not empty. This is done in a while loop, suspend-
ing the running task with a yield statement, until the list is not empty anymore.
This illustrates a non-blocking wait. (So far, we did not include orthogonal con-
cepts like guards or wait conditions to the language; cf. Sect. 5 for a discussion).
As the active task always has exclusive access to all objects of its cobox until it
explicitly suspends itself, the code in the produce method of class ProducerProxy

ProducerPool CoBox

ProducerPool o
PipelinedProducer CoBox

,‘ PipelinedProducer
/ 1 4) N
(PreProducer) (FinaIProducer)

Client CoBox LinkedList

I

ProducerProxy

Fig. 4. A runtime snapshot of the producer pool example. Rectangles denote coboxes,
rounded rectangles denote objects, edges with arrows denote references.

can safely remove the first entry of the free producers list, as the list belongs to
the same cobox as the ProducerProxy object. After removing the first element,
the task asynchronously calls the produce method of the producer and suspends
itself until the result is available by using the await operation. Finally, the used
producer is appended to the list of free producers again.

3.4 Controlling Reentrant Calls

An important aspect of coboxes is that coboxes can control reentrant calls. Reen-
trant calls even happen in a purely sequential setting and complicate the reason-
ing about object-oriented programs. Figure 5 shows a typical subject-observer
scenario. A Subject has an internal state and allows to register Observers which
get notified about state changes. When notified, the Observer calls back to the
Subject to get the new state. If this scenario would be implemented in sequen-
tial Java, the method call o.changed(this) would result in a reentrant call by the
called observer. While the observers are notified about the state change, theoret-
ically arbitrary calls to the Subject could happen. In the cobox implementation,
the observers are notified by an asynchronous call. As the notifying task does
not suspend itself, no other method can be activated in the cobox of the Sub-
ject until the task has finished. Thus, the s.getState() calls of the observers are
delayed until all observers have been notified. This guarantees that the Subject
cannot be changed while the observers are notified. Note that even though we
are in a concurrent setting, we get stronger guarantees than in the sequential
Java setting, which eases behavioral reasoning.

The Java behavior can be simulated in JCoBox by calling await on the result
of the olchanged(this) call, as in this case the current task suspends itself until
the future value is available, i.e. until the called method has been finished. In
between, other tasks can be activated, for example, tasks created by reentrant
calls. Using a get instead of an await would result in a deadlock, because the
active task waits for the result of the future without allowing other tasks to be
activated — it blocks the cobox. Thus tasks created by reentrant calls cannot be
activated. Note that this only applies if the future value is calculated by a task

cobox class Subject { cobox class Observer {

LinkedList<Observer> obs = void changed(Subject s) {
new LinkedList<Observer>(); // callback
State state = ... // initialize state State state = s.getState();
State getState() { return state; } // ... do something
void updateState(State newState) { }
state = newState; notifyObservers(); }

void notifyObservers() {
for (Observer o : obs) { olchanged(this); }

}

void register(Observer o) { ... }

Fig. 5. Subject-Observer example

of a different cobox. If the future was the result of a self-call, that is, a call on
an object of the same cobox, then such dependencies are resolved by activating
the task responsible for calculating the future value.

4 Formal Semantics

In this section we present a formal dynamic semantics for a core language of
coboxes, called JCoBox®. JCoBox® shares ideas from Featherweight Java [29],
CrassICJAVA [16], Creol [12] and a previous formalization of a sequential lan-
guage with boxes by the authors [37]. JCoBox® only contains the core object-
oriented language constructs for inheritance with method overriding and syn-
chronous method calls as well as the new features for cobox classes, asynchronous
method calls, futures, and task suspension. Other language features could be
added as usual. Typing for JCoBox® is similar to Java. The only necessary
adaptation is the integration of futures which is straightforward.

4.1 Syntax

Figure 6 shows the abstract syntax of our language. Lower-case letters represent
meta-variables, capital letters represent subsets of syntactic categories, and over-
bars indicate sequences of elements (e is the empty sequence, o is concatenation
of sequences). A program p is a set of class declarations D. To be executable a
program must contain a cobox class Main with a main method. Such a program
is then executed by creating an instance of Main and executing the main method.
A class declaration d consists of a class name ¢, a super class name ¢/, a list of
field declarations ¢ f, and a set of method declarations H. We assume a prede-
fined class Object with no fields, no methods and no super class. A class can be
declared to be a cobox class by using the cobox keyword. Methods return the
value of their body expression as result. New objects are created by the new c

p € Prog :=D
d € D C ClassDecl ::= [cobox] class c extends ¢’ {c f; H}
h € H C MethDecl ::= c n(cz){e}
e€c ECExpra=z|null |newc|ef|ef=el|letz=cine|
en(€) | eln(e) | e.get | e.await | yield | e; €’

¢ € class names, n € method names, f € field names, x € variable names

Fig. 6. Abstract syntax of JCoBox®

expression, all fields are initialized to null, constructors are not supported. let
expressions introduce new local variables and can be used for sequential compo-
sition. An asynchronous method invocation, indicated by an exclamation mark,
always results in a reference to a future. A future is an object of the special
class Fut (details below). The value of a future can be obtained by either using
get or await expressions with different blocking semantics. A yield suspends the
currently active task allowing other tasks to proceed.

In the syntax above, we listed synchronous calls and sequential composition
to stress that they are covered by the core language. However, in the following,
we treat them as syntactic sugar to further compactify the semantics: e.n(e) =
eln(e).get and e;e’ =let x = e in €/, where x ¢ FV (/).

4.2 Semantic Entities

A new aspect of the cobox semantics is that the heap is explicitly partitioned
into the subheaps corresponding to coboxes. In particular, each cobox has its
own objects. Compared to a formalization with a global heap and additional
mappings capturing the box structure and the information to which box an ob-
ject belongs, an explicit partitioning allows the creation of objects in a box-local
way without knowing the global state. This simplifies modular treatment of box
implementations (see [37]) and reflects distributed object-oriented programming.

The necessary semantic entities are shown in Figure 7. The state b of a cobox
is represented by a tuple B(w, O, B, T, M, t.,m.), consisting of a cobox reference
w, a set of objects O, a set of nested coboxes B, a set of suspended tasks T, a
set of incoming messages M, an optional active task t. and an optional current
message m.. To simplify wording, we will not distinguish between a cobox and
its state when it is clear from the context. A cobox reference is a sequence of
cobox identifiers ¢, describing the path of the cobox in the nesting hierarchy of
coboxes. This means that if a cobox has reference w then all its directly nested
coboxes have references of the form w.i;,, whereas the root cobox has a single ¢,
as reference.

Objects and their states are represented by triples o(t,, ¢,) with a box-
unique object identifier ¢,, a class name ¢, and the list of field values v. An
object o always belongs to a certain cobox. If w is the reference of this cobox

b€ B C CoBox :=B(w,0, B, T, M,t.,m.) coboxes
0 € O C Obj ::= 0{to, ¢, D) objects
| O(to, Fut, ve) future objects
t € T C Task ::= T(r,e) tasks
m € M C Msg == M(r,r’,n(v)) call messages
| M(r, v) return messages
v €V C Value ::=r | null values
r € RC Ref ::= w.., object references
w € W C CoRef :=w.cp | cobox references
e € E C Expr ::= | v extended expressions
leLab:=Tm||m|T labels
Lo € Objld object identifiers
w € BoxId cobox identifiers

Fig. 7. Semantics entities of JCoBox®. Optional terms are indicated by an ¢ as index
and may be e. Small capital letters like B or K are used as “constructors” to distinguish
the different semantic entities syntactically.

and ¢, the object identifier of o, the globally unique name of o is w.t,." The
fields of an object can only be accessed by objects of the same cobox. Objects
of other coboxes must use method calls.

Every cobox has a set of suspended tasks T and an optional active task
te. A task t corresponds to a single method activation and is represented by
a pair T(r,e) where r references the future that will receive the result of the
call and where e is the expression to be reduced. CoBoxes communicate by
exchanging messages. A message is either a call or return message. A call message
m{r, 7', n(v)) consists of a future reference r, which waits for the result of the call,
a receiver reference 1’ together with the called method name n, and argument
values T. A return message M(r,v) consists of the target future reference r and
the result value v.

Futures are modeled as objects of the predefined class Fut with the following
implementation:

class Fut extends Object { Object await() { this.await } }

Instances of the Fut class cannot be created explicitly, but are implicitly created
by an asynchronous method call. A future object has a single optional value v,
which is € until the value of the future is available. This value cannot be set
by field updates and may only be read by e.get or e.await expressions. Future
references can be used like object references, in particular they can be passed to
and used by other coboxes. Therefore, the Fut class contains an await() method
that is not invoked explicitly, but used whenever a get or await operation is
executed on a future object, not belonging to the current cobox. In that case,

! This is similar to the naming scheme in a tree-structured file system: coboxes corre-
spond to directories, objects to files.

(nested-msg-send),
(nested-step),

(nested-msg-send),
(nested-step), Q‘ (select-*) ‘
(msg-rcv) £ | >
/" (nested-msg-rcv), (exec-call-msg),

(msg-rcv)
A - (msg-send), (set-future)
L
— 2
32| (B
>'© P
= X
(new-), (ﬁeld—:), = \ 4 (msg-send), (set-future),
(Ie_t), (get"), (nested-msg-rcv), (exec-call-msg)
(await-remote), te [« — tm (nested-msg-send),
(nested-msg-send), (async-call), (select—rtrn-msg),' (nested-step)
(nesEed—step)s (rtrn-self) (msg-rcv)
msg-rcv

Fig. 8. Overview of the different reduction rules, showing the possible state transitions.

the await() method is asynchronously called on the future with an immediate
get or await, respectively, resulting in a new future object, which acts as a proxy
for the former future.

Evaluation Contexts. For a compact presentation we define some evaluation
contexts [14]. An evaluation context is a term with a “hole” O at a certain
position. By writing eg[e’] that hole is replaced by term e’. In our syntax, holes
can only appear at positions where expressions are expected.

eqg==0]eq.f|lea.f=e|v.f=eq|en.get]|eq.await |
let z =egin e | eglm(e) | vIm(v,eq,e)
tg = T(r,eq)

4.3 Transition Rules

The dynamic semantics of JCoBox® is defined in terms of a labeled transition
system as a relation on coboxes and labels:

— C CoBox x Lab x CoBox.

The notation b —— ' means that cobox b can be reduced to b with label
. We distinguish three kinds of transitions: internal steps (I = 7), receiving
a message (I = |m), and sending a message (I = Tm). The transition rules
are shown in Figures 10 and 12, which use auxiliary predicates and functions
defined in Figures 9 and 11. To better understand in which order the different
rules may be executed, we give an overview in terms of an automaton shown
in Figure 8. The automaton states represent the currently active task and the
current message of a cobox. The edges are labeled with the rules that can be
applied. Objects, nested boxes, suspended tasks, and incoming messages are not
shown in the automaton.

R
cobox class ¢ ... _class cextends ¢ { ¢’ f; H }

coboz(c) fields(Object) = o fields(c) = fields(c') o f
_classc ... { ... _n(Cz){e} ... } _class cextends ¢’ { ... ;H} n not in H
mbody(c,n) = (T)e mbody(c,n) = mbody(c',n)

Fig. 9. Auxiliary predicates and functions extracting information from the (underlying)
program code

Expressions. We start by explaining how expressions are reduced, assuming
that some task is active in the current cobox and that no current message exists
(state t, €). let expressions are handled by standard capture-avoiding substitution
(LET). New objects of non-cobox classes are created in the current cobox with
all values initialized to null (NEw-0BJ). If a class is annotated with cobox, a new
nested cobox is created and the new object is created in that cobox instead of
the current cobox (NEw-coBox). Field selects and field updates are only allowed
on objects of the current cobox (FIELD-SELECT, FIELD-UPDATE). The rules selec-
t/update the ith value of the corresponding ith field and reduce to the old/new
value. An asynchronous call is reduced to a reference of a new future object,
which is added to the object set of the cobox. In addition, a call message is
created and set as current message (ASYNC-CALL). A vyield expression moves the
active task into the set of suspended tasks, giving other tasks the possibility to
be activated (YIELD).

Future Ezxpressions. When a future reference r is used, two cases can be dis-
tinguished: local futures and remote futures. Local futures belong to the current
cobox (r = w.t,, where w is the reference of the current cobox), remote futures
belong to a different cobox (r # w.t,). A get expression on a local future is
reduced to the value of the future if the value is available (GET-LOCAL-SUCCESS),
otherwise the current task is blocked and remains active until the value be-
comes available. However, to prevent deadlocks, we have to treat synchronous
self-calls as a special case. If a future is computed by a task of the same cobox
(tgw.co.get] € T) then that task is activated, and the currently active task is
suspended (GET-LOCAL-SELF) and later reactivated by (RTRN-SELF). Like a yield,
an await on a local future suspends the currently active task (awarr-Locar). On a
remote future reference r an await or get expression is transformed into an asyn-
chronous method call of the await() method on that future with an immediate
await or get, i.e. into a rlawait().await or rlawait().get expression, respectively
(AWAIT-REMOTE, GET-REMOTE). These calls create corresponding local futures
in the current cobox that are handled by the rules explained above.

Task Termination. A task terminates if its expression has been reduced to a
single value. If the task was created due to a self-call and another task in the
current cobox is blockingly waiting for the result (¢g[r.get] € T'), that task is di-

(LET)
B(w,O0, B, T, M,tgflet x = v in ¢],¢) — B{w, O, B, T, M, tg[[v/x]e], €)

(NEW-0BJ)
=coboz(c) Lo fresh in O

7 = null [v] = |fields(c)| 0= 0(to, ¢, V)
B(w, O, B, T, M, tn[new c,e) — B{w,0U{o0}, B, T, M,tg[w.t.], €)

(NEW-COBOX)
o cobozx(c) tp fresh in B

7 = null [v] = |fields(c)| 0= 0{to, ¢, V) b=B(w.,{0},3,0,0,¢€¢€)
B(w,O, B, T, M, tq[new c],¢) —— B{w,0,BU{b},T, M, tq[w.tp.to), €)

(FIELD-UPDATE)

B O =0"U{0{to,c,0) } fields(c) = f
0(to, c,T) € O fields(c) = f 0" = 0" U{0{to, ¢, [v/vs]D) }

B{w, O, B, T, M, tg[w.to. fi], €) B{w, O, B, T, M, tg|w.to.fi = v],€)
s B(w,0, B, T, M, tg[v], €) s B(w,0", B, T, M, tg[v],¢)

(FIELD-SELECT)

(ASYNC-CALL)
Lo fresh in O (YIELD)
m = M{w.to, 7, n(T)) 0 = 0(to, Fut, €) t = tnyield]
B(w,O, B, T, M, T{r',eg[rn(v)]), €) B{w, 0, B, T, M,t,e€)
s B(w,0U{0},B, T, M,T{r', eqlw.to]), m) 5 B(w,0,B,TU{t}, M,¢,c)

(GET-LOCAL-SUCCESS) (GET-LOCAL-SELF)
0(to, Fut,v) € O t = tgfw.co.get] t' = T{(w.t0, €)
B(w,O, B, T, M, tg[w.t..get], €) B(w,0,B,TU{t'}, M,te)
s B{w,0, B, T, M, tg[v],€) s B(w,0,B,TU{t}, M,t ¢

(AWAIT-LOCAL) (GET-REMOTE)

T # W.lo
B<w> 07 B7 T> M, tn [T'getL €>
s 8(w, 0, B, T, M, to[rlawait().get], ¢)

t = to[w.Lo.await]
8(w,0, B, T, M,1,e)
5 B(w,0,B,TU{t}, M,e,e)

(AWAIT-REMOTE) (RTRN-OTHER)

T # W.lo tofr.get] ¢ T
B(w, O, B, T, M, tn[r.await], €) B(w, O, B, T, M, T(r,v), €)
s B(w, 0, B, T, M, tq[rlawait().await], €) s B{w, 0, B, T, M, e, M{r,v))

(RTRN-SELF)
t' = tg[r.get]
B<w7 07 B7 T U {tl }7 M7T<r’ U>’ €> ;) B<w7 07 B7 T7 M7 t/’ M<,r7 U>>

Fig. 10. Expression reduction rules

rectly activated (RTRN-SELF). Together with rule (GET-LOCAL-SELF) this simulates
a stack-like behavior for synchronous self-calls. If no task in the current cobox
is blockingly waiting for the result, the active task is set to e, i.e. it vanishes
(RTRN-OTHER). In both cases a return message with the corresponding result
value is set as current message. That message is treated in a next step by a
message handling rule.

Tasks and Message Handling. Each task corresponds to a method activation.
As method calls are initiated by call messages, a new task is created whenever
the current message is a call message targeting an object of the current cobox
(EXEC-CALL-MSG). The new task gets the reference of the future, which will hold
the return value and the body expression of the called method, where formal pa-
rameters are substituted by actual parameters. A yield statement is prepended,
so that newly created tasks are treated like yielded tasks in the set of suspended
tasks. If the current message is a return message targeting a future of the cur-
rent cobox, the value of the future is set to the value of the return message
(SET-FUTURE).

A cobox is idle if it has no active task and no current message (state e, ¢€).
In an idle cobox, a task can be activated if it either was suspended by a yield
expression (ACTIVATE-YIELDED-TASK), or it was suspended by an await expression
on a future whose value is available (ACTIVATE-WAITING-TASK). An idle cobox can
as well select a message from the set of incoming messages and make it its new
current message (SELECT-*). Whereas a call message can only be selected by an
idle cobox, return messages can also be selected if a current task is active. This
design decision reflects the goal to control all incoming calls, but allow return
messages to reach their destination in nested coboxes without being blocked by
active tasks in the surrounding box.

Messages are routed following the nesting structure. The parent coboxes are
responsible for handling messages coming from and going to nested coboxes.
This allows the parent cobox to control external communication of nested co-
boxes. If the current message is not targeting the current cobox, nor any nested
cobox, it is emitted by rule (MSG-sEND). Messages can be received by a cobox
if they target the cobox itself or any nested cobox (MsG-rcv). Messages can be
received in any state and are added to the set of incoming messages. This reflects
the asynchronous character of coboxes. If the current message targets a nested
cobox, i.e. a nested cobox can receive that message, that message is send to the
corresponding cobox by (NESTED-MsG-RcV). If a nested cobox emits a message
that message is added to the set of incoming message of the parent cobox by
(NESTED-MSG-SEND).

Internal steps of nested coboxes are propagated to its parent cobox and indi-
rectly to the outermost cobox at the root of the box tree by (NESTED-sTEP). Both
rules are completely independent of the state of the current cobox and thus may
be applied at any time, modeling concurrent behavior.

m = M(r,v)

isReturn(m)

m = M(r,r’, n(T))

target(m) = r'

m = M(r,v)

target(m) =r

Fig. 11. Auxiliary predicates and functions

(EXEC-CALL-MSG)

0{to,c,-) € O mbody(c,n) = (T)e

t = T{r,yield; [w..o/this, T/T]e)

B(w,O, B, T, M,te,M(r,w.t.o,n(7))) = B(w,O0,B, TU{t}, M,tc,ec)

(SET-FUTURE)

m = M{W.to,v)

B(w, O WU {0{to, Fut,e) }, B, T, M, t.,m) — B{w, O U {0(to, Fut,v) }, B, T, M, tc,¢)

(ACTIVATE-WAITING-TASK)
O{to, Fut,v) € O

(ACTIVATE-YIELDED-TASK)

B{w, O, B, T U {tnw.co.await] }, M, €, €)

- B(w,0, B, T, M, tq[v],€)

(SELECT-CALL-MSG)
—isReturn(m)

B{w,0,B, T,MU{m},ec¢)
s B(w,0, B, T, M, ¢, m)

(MSG-SEND)
target(m) # w.r
B(w,O, B, T, M,t., m)

Tm

— B(w,0, B, T, M, tc,c)

(NESTED-MSG-RCV)

b0 b

B(w,O, B, T U {tglyield] }, M, ¢, ¢€)
- B{w, 0, B, T, M, tg[null], €)

(SELECT-RTRN-MSG)
isReturn(m)
B(w,0,B,T,MJ{m},tc,e)
s 8(w,0, B, T, M, t.,m)

(MSG-RCV)

target(m) = w.r

B(w,O, B, T, M,t.,me)
B<’LU,O,B,T,MU {m}7té7m5>

(NESTED-MSG-SEND)

by

B(w,0,BU{b},T, M, tc,m)
s B(w,0,BU{V },T, M, t.,¢)

(NESTED-STEP)

B(w,0,BU{b},T, M, te,me)

s B(w,0,BU{V },T,MU{m}, t,m.)

B(w,0,BU{b},T, M, t.,m) — Blw,O0,BU{b },T,M,tc, me)

Fig. 12. Message and task handling rules as well as nested box reduction rules

4.4 Program Execution

A program with a cobox class Main is executed by nesting a cobox instance b,,qin
of Main in a special root or environment cobox bey, and setting the current
message of by, to a call message My,qin, Which invokes the main method of the
main object ¢, of bygin:

benv = B<Lba { O<I,0, Fut, €> }a { bmain }7 I, ¢€, mmain>
bnlai'n/ = B<Lb'L;]’ { O<L/O, Main,m> }7 g’ ®7 ®7 67 6>

Mmain = M<Lb-Loa LbJ/;)"’i)v main(.)>

Program execution is performed by 7-transitions on the environment cobox:

bemz D b/env
When the main cobox finishes its execution of the main method, it will answer
with a return message, whose result value is stored in the future object ¢, of the

environment cobox.

4.5 Properties

JCoBox® guarantees data-race freedom. As tasks can only access fields of objects
of the same cobox and only one task in a cobox can be active, data-races can
never occur. Furthermore, a task has atomic access to the objects of its cobox
until it explicitly suspends itself.

Internal parallelism by nested coboxes is transparent to clients as all messages
to nested coboxes are controlled by the parent cobox. This allows introducing
parallelism within a cobox without changing its externally visible behavior.

A task can prevent reentrancy while waiting for a result value of a different
cobox using get or synchronous method calls, as then the currently active task is
not suspended. Consequently, no other task can be activated in the cobox. The
only exception are tasks that have to be activated due to self-calls. Note again
that reentrancy is not restricted to single objects, but can be handled for groups
of objects.

A JCoBox® program exactly behaves like a corresponding sequential Java
program if no additional features of JCoBox® are used and the only cobox is
the initial Main cobox. This means that this cobox contains all objects that are
created. As in sequential Java only synchronous method calls can be used, these
calls are translated into asynchronous method calls with an immediate get. All
these calls are self-calls, which means that tasks are created and executed in a
stack-like way, simulating the call-stack of sequential Java.

5 Conclusions

We presented coboxes as a data-centric concurrency mechanism for object-orient-
ed programs. CoBoxes hierarchically structure the object-heap into concurrently

running multi-object components. CoBoxes may run completely parallel. Access
to nested coboxes is controlled by the parent cobox. A cobox can have multi-
ple boundary objects allowing the implementation of complex components with
multiple entry objects. A cobox can have multiple tasks, which are scheduled
cooperatively and only interleave at explicit release points. This guarantees that
each task has exclusive access to the state of its cobox until it explicitly sus-
pends itself. CoBoxes communicate via asynchronous method calls with futures,
which allows modeling of synchronous method invocations as a special case. Our
concurrency concept generalizes the active object model to hierarchically struc-
tured, parallel running groups of objects. It guarantees the absence of data-races
and simplifies maintaining invariants ranging over groups of objects. We show
how to use coboxes to write concurrent object-oriented programs and present a
formal semantics for a Java-like core language with coboxes.

Current Limitations. The presented work is the first step towards generaliz-
ing the active object model to dynamically instantiable components supporting
multiple internal and multiple boundary objects as well as component nesting.
In the following we discuss current shortcomings and limitations.

In the given semantics, scheduling of incoming messages is nondeterministic.
In practice, one could implement a default FIFO behavior, or allow the program-
mer to specify the scheduling algorithm [7, 9, 10]. Join patterns [17, 4, 18] could
also be introduced as a scheduling and synchronization mechanism for incoming
messages. Regarding coordination of tasks, in the presented model, tasks are
activated nondeterministically when they are ready. A more fine-grained control
is desirable, especially when waiting for conditions to become true. Concepts
that can be used to achieve this are for example: guards [26], events [19], and
condition variables [27].

A limitation of our current model is that objects and nested coboxes can
only be created in the current cobox. We adopted this restriction to focus on
the essential cobox concepts. More flexibility would be desirable, in particular
the possibility to create objects or nested coboxes in other coboxes. One way to
do this is to extend the new expression by an argument where the new object
should be created.

Future Work. One of our future goals is to use the cobox model for distributed
object-oriented programming such that each remote site corresponds to a cobox.
In such scenarios, but also larger local systems, it is desirable to distinguish
between value objects and objects passed by reference. Value objects are passed
by creating a deep copy in the receiving cobox. This way the number of non-local
messages can be drastically reduced. From a conceptual point of view, objects
would be distinguished whether they represent data or not, like it is done in the
Java RMI mechanism and other approaches [7, 3].

Acknowledgments. We thank Ina Schaefer and the anonymous reviewers for
their helpful comments.

References

1]

Agha, G.: Actors: a model of concurrent computation in distributed systems. MIT
Press, Cambridge, MA, USA (1986)

Aldrich, J., Chambers, C.: Ownership domains: Separating aliasing policy from
mechanism. In Odersky, M., ed.: ECOOP 2004. Volume 3086 of LNCS., Springer
(2004) 1-25

Bacon, D.F., Strom, R.E., Tarafdar, A.: Guava: a dialect of java without data
races. In: OOPSLA 2000, ACM Press (2000) 382-400

Benton, N., Cardelli, L., Fournet, C.: Modern concurrency abstractions for C#.
In Magnusson, B., ed.: ECOOP 2002. Volume 2374 of LNCS., Springer (2002)
415-440

Boyapati, C., Lee, R., Rinard, M.: Ownership types for safe programming: Pre-
venting data races and deadlocks. In: OOPSLA 2002, ACM Press (November
2002) 211-230

Boyapati, C., Liskov, B., Shrira, L.: Ownership types for object encapsulation.
In: POPL ’03, ACM Press (2003) 213-223

Caromel, D.: Towards a method of object-oriented concurrent programming.
Comm. ACM 36(9) (1993) 90-102

Caromel, D., Henrio, L., Serpette, B.P.: Asynchronous and deterministic objects.
In: POPL ’04, ACM Press (2004) 123-134

Caromel, D., Mateu, L., Eric Tanter: Sequential object monitors. In Odersky, M.,
ed.: ECOOP 2004. Volume 3086 of LNCS., Springer (2004) 316-340

Caromel, D., Mateu, L., Pothier, G., Eric Tanter: Parallel object monitors. Con-
currency and Computation: Practice and Experience (2007) To appear.

Clarke, D., Potter, J., Noble, J.: Ownership types for flexible alias protection. In:
OOPSLA 98, ACM Press (1998) 48-64

de Boer, F.S., Clarke, D., Johnsen, E.B.: A complete guide to the future. In:
ESOP 2007. Volume 4421 of LNCS. (March 2007) 316-330

Dietl, W., Miiller, P.: Universes: Lightweight ownership for JML. Journal of
Object Technology 4(8) (2005) 5-32

Felleisen, M., Hieb, R.: The revised report on the syntactic theories of sequential
control and state. Theorectical Computer Science 103(2) (1992) 235-271
Flanagan, C., Freund, S.N., Lifshin, M.: Type inference for atomicity. In: TLDI
’05, ACM Press (2005) 47-58

Flatt, M., Krishnamurthi, S., Felleisen, M.: A programmer’s reduction semantics
for classes and mixins. Formal Syntax and Semantics of Java 1523 (1999) 241-269
Fournet, C., Gonthier, G.: The reflexive CHAM and the join-calculus. In:
POPL 96, ACM Press (1996) 372-385

Haller, P., Cutsem, T.V.: Implementing joins using extensible pattern matching.
Technical Report LAMP-REPORT-2007-004, EPFL (August 2007)

Hansen, P.B.: Structured multiprogramming. Comm. ACM 15(7) (1972) 574-578
Hansen, P.B.: 7.2 Class Concept. In: Operation System Principles. Prentice Hall
(1973) 226-232

Harris, T., Fraser, K.: Language support for lightweight transactions. In Crocker,
R., Jr., G.L.S., eds.: OOPSLA 2003, ACM Press (2003) 388-402

Haustein, M., Lohr, K.P.: Jac: declarative Java concurrency. Concurrency and
Computation: Practice and Experience 18(5) (2006) 519-546

Herlihy, M., Moss, J.E.B.: Transactional memory: Architectural support for lock-
free data structures. In: Proc. Int. Symp. on Computer Architecture. (1993)

[24]

[25]
[26]
27]
28]
[29]

[30]

31]

32]

[33]

[34]
[35]

[36]

[37]

[38]
39]

[40]

[41]

Herlihy, M., Luchangco, V., Moir, M.: A flexible framework for implementing
software transactional memory. In Tarr, P.L., Cook, W.R., eds.: OOPSLA 2006,
ACM Press (2006) 253-262

Hindman, B., Grossman, D.: Atomicity via source-to-source translation. In: MSPC
’06, ACM Press (2006) 82-91

Hoare, C.A.R.: Towards a theory of parallel programming. In: Operating System
Techniques, Academic Press (1972) 61-71

Hoare, C.A.R.: Monitors: An operating system structuring concept. Comm. ACM
17(10) (1974) 549-577

Hogg, J., Lea, D., Wills, A., de Champeaux, D., Holt, R.: The Geneva convention
on the treatment of object aliasing. SIGPLAN OOPS Messenger 3(2) (1992) 11-16
Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight Java: A minimal core calculus
for Java and GJ. TOPLAS 23(3) (2001) 396-450

Jacobs, B., Piessens, F., Leino, K.R.M., Schulte, W.: Safe concurrency for aggre-
gate objects with invariants. In Aichernig, B.K., Beckert, B., eds.: SEFM, IEEE
Computer Society (2005) 137-147

Jacobs, B., Smans, J., Piessens, F., Schulte, W.: A statically verifiable program-
ming model for concurrent object-oriented programs. In Liu, Z., He, J., eds.:
ICFEM. Volume 4260 of LNCS., Springer (2006) 420-439

Johnsen, E.B., Owe, O.: An asynchronous communication model for distributed
concurrent objects. Software and Systems Modeling 6(1) (2007) 35-58
Lieberman, H.: Concurrent object-oriented programming in Act 1. In Yonezawa,
A., Tokoro, M., eds.: Object-Oriented Concurrent Programming, MIT Press (1987)
9-36

Lu, Y., Potter, J.: On ownership and accessibility. In Thomas, D., ed.: ECOOP
2006. Volume 4067 of LNCS., Springer (2006) 99-123

Lu, Y., Potter, J., Xue, J.: Validity invariants and effects. In Ernst, E., ed.:
ECOOP 2007. Volume 4609 of LNCS., Springer (2007) 202-226

Miiller, P., Poetzsch-Heffter, A.: A type system for controlling representation
exposure in Java. In Drossopoulou, S., Eisenbach, S., Jacobs, B., Leavens, G.T.,
Miiller, P., Poetzsch-Heffter, A., eds.: Formal Techniques for Java Programs, Tech-
nical Report 269-5, Fernuniversitidt Hagen (2000)

Poetzsch-Heffter, A., Schéfer, J.: A representation-independent behavioral seman-
tics for object-oriented components. In Bonsangue, M.M., Johnsen, E.B., eds.:
FMOODS 2007. Volume 4468 of LNCS., Springer (2007) 157-173

Schéfer, J., Poetzsch-Heffter, A.: A parameterized type system for simple loose
ownership domains. Journal of Object Technology 5(6) (2007) 71-100

Shavit, N., Touitou, D.: Software transactional memory. In: PODC. (1995) 204—
213

Smaragdakis, Y., Kay, A., Behrends, R., Young, M.: Transactions with isolation
and cooperation. In Gabriel, R.P., Bacon, D.F., Lopes, C.V., Steele Jr., G.L., eds.:
OOPSLA 2007, ACM Press (2007) 191-210

Vaziri, M., Tip, F., Dolby, J.: Associating synchronization constraints with data
in an object-oriented language. In: POPL ’06, ACM Press (2006) 334-345

