
Localizing Program Errors for Cimple Debugging?

Samik Basu1, Diptikalyan Saha2, and Scott A. Smolka2

1 Department of Computer Science, Iowa State University, Ames, IA 50014
E-mail:sbasu@cs.iastate.edu
2 Department of Computer Science

State University of New York at Stony Brook, Stony Brook, NY 11794
E-mail:fdsaha,sas g@cs.sunysb.edu

Abstract. We present automated techniques for the explanation of
counter-examples, where a counter-example should be understood as a sequence
of program statements. Our approach is based on variable dependency analy-
sis and is applicable to programs written inCimple , an expressive subset of
the C programming language. Central to our approach is the derivation of a
focus-statement sequence (FSS) from a given counter-example: a subsequence
of the counter-example containing only those program statements that directly
or indirectly affect the variable valuation leading to the program error behind
the counter-example. We develop a ranking procedure for FSSs where FSSs of
higher rank are conceptually easier to understand and correct than those of lower
rank. We also analyze constraints over uninitialized variables in order to local-
ize program errors to specific program segments; this often allows the user to
subsequently take appropriate debugging measures. We have implemented our
techniques in theFocusCheck model checker, which efficiently checks for as-
sertion violations inCimple programs on a per-procedure basis. The practical
utility of our approach is illustrated by its successful application to a fast, linear-
time median identification algorithm commonly used in statistical analysis and in
the Resolution Advisory module of the Traffic Collision Avoidance System.

1 Introduction

Model checking [22, 7] has recently made significant inroads in the domain of soft-
ware verification [12, 18, 3, 11, 16, 4]. In this setting, model checking typically follows
a three-step iterative process of abstraction, verification and refinement [24, 2, 17, 6].
First, given a systemS, a finite-state abstractionS0 of S is generated. Then,S0 is
verified with respect to the given property and a counter-example (sequence of pro-
gram statements) is generated should a violation occur. Finally,S0 is refined in case
the counter-example is spurious (infeasible inS). The three steps are iterated until a
feasible counter-example is identified or the abstract system satisfies the property.

In the event a feasible counter-example is generated, the user is left with the task
of identifying the cause of the counter-example and taking appropriate corrective or
debugging measures. However, the complex behavior of software systems, owing to
the presence of complicated data and control structures, makes the process of decoding
counter-examples extremely tedious, if not impossible.

? Research supported in part by ONR grant N000140110967

1: int gotlock, lock;
2: bool error = false;
3: int main()f
4: lock = 0;
5: if (*) f
6: while (*) f
7: if (*) f
8: getlock();
9: gotlock++;
10: bigProcedure();g
11: if (gotlock == 1)
12: rellock();gg

13:void getlock()f
14: if (lock == 0)
15: lock++;
16: elseerror = true;g

17:void rellock()f
18: if (lock == 1)
19: lock–;
20: elseerror = true;g

21:void bigProcedure()f
22: : : : g

FSS1 Assumptions:gotlock == 1

4: lock=0
5:
6:
11: gotlock==1:true

12:
18: lock==1:false
20: error=true

FSS2 Assumptions:gotlock != 0

4: lock=0
5:
6:
7:
8:
14: lock==0:true
15: lock++

9: gotlock++;
11: gotlock==1:false
6:
7:
8:
14: lock==0:false
16: error=true

(a) (b)

Fig. 1.Simple locking program from [17].

To address this state of affairs, we present two automated techniques for effective
error-reporting. The first of these is aimed at ranking counter-examples such that those
counter-examples of higher rank are easier to understand and debug than those of lower
rank. The second is a technique for localizing errors in programs to specific program
regions, again allowing for effective identification and correction of program errors.

Our approach is based on variable dependency analysis and is applicable to pro-
grams written inCimple , an expressive subset of the C programming language. Cen-
tral to our approach is the notion of afocus-statement sequence(FSS), introduced by
us in [5]. A FSS is a subsequence of a counter-example containing only those program
statements that directly or indirectly affect the variable valuation leading to the program
error behind the counter-example. As discussed further in Section 2, our FSS technique
can thus be seen as an application of program slicing. Besides making counter-examples
easier to understand by eliminating unnecessary details, FSSs can also be used to effi-
ciently determine the feasibility of counter-examples, as the feasibility of the sequence
of operations in an FSS implies the existence of a feasible counter-example.

Being based on variable dependency analysis, our approach also successfully iden-
tifies the constraints orassumptionsover uninitialized or input variables necessary for
the feasibility of a FSS. Such information can be used to understand program be-
havior in the context of different variable initializations. We have also developed the
FocusCheck model checker forCimple . It identifies all feasible counter-examples in
a givenCimple program and presents these to the user in a precise and informative
manner in terms of their FSSs and assumption sets.

Consider first our technique for ranking counter-examples. The basic idea behind
this technique is torank FSSs in terms of their length and the number of variables in
their assumption sets. In [10], Engler and Ashcraft alluded to the importance of ranking
counter-examples for easy inspection of deadlock errors in multi-threaded programs. In
a similar vein, we order FSSs such that those of higher rank correspond to errors that
are conceptually easier to understand and debug than those of lower rank.

Figure 1(a) presents a simple locking program correct behavior of which requires
strict alternation between invocations ofgetlock() andrellock() ; a violation oc-
curs if error=true in any execution sequence of the program. The conditional con-
struct if(*) is semantically equivalent to non-deterministic choice, required for rep-
resenting conditional expressions whose variables are abstracted away to obtain fi-

2

1: int main()f
2: int x, y, z; bool error=false;
3: int min=x, max=x;
4: if (max< y) max=y;
5: if (max< z) max=z;
6: if (min> y) max=y; /
7: if (min> z) min=z;
8: if !(min�x ^ min�y ^ min�z^

max�x ^ max�y ^ max�z^)
9: error=true;g

FSS1
Assumptions:
x>y, x�z
3: min=x
6: min>y:true
6: max=y
7: min>z:false
8:
9:

Error:
max=y, min=x

FSS2
Assumptions:
x>y, x>z, z>y
3: min=x
6: min>y:true
6: max=y
7: min>z:true
7: min=z
8:
9:

Error:
max=y, min=z

FSS3
Assumptions:
x>y, x>z, z�y
3: min=x
6: min>y:true
6: max=y
7: min>z:true
7: min=z;
8:
9:

Error:
max=y

(a) (b)

Fig. 2.MinMax example from [13].

nite data domain program. TheFocusCheck model checker identifies two counter-
examples in terms of their FSSs and assumption sets (Figure 1(b)). The FSSs returned
by FocusCheck are significantly smaller than the counter-examples from which they
are derived as it discards program segments (e.g. the statements ofbigProcedure())
that do not affect the valuationerror=true . Variable dependency analysis tells us that
in this case, the focus statements are those involving variablesgotlock , lock and
error . For each FSS returned byFocusCheck , the line numbers of the program state-
ments in the FSS are given; the program statement itself is also given if it represents an
operation on a variable of interest; e.g., statementlock=0 at line 4 of FSS1.

Our ranking procedure identifies the shorter of the two FSSs—FSS1 comprising
seven program statements, four of which are operations on the variables of interest—
as the higher-ranked FSS. This directs the user to inspect FSS1 before FSS2. The user
is also provided with the corresponding assumption set which reveals that the program
behaves incorrectly ifgotlock is initialized to 1; i.e., the error manifests when the con-
dition at line 11 evaluates to true. Corrective measures therefore involve the appropriate
initialization of gotlock (negate the assumption) in one of the statements leading to
the statement at line 11. Ranking FSSs and their assumption sets narrows down the erro-
neous region in the program under investigation, and assist the user in taking corrective
measure by inserting the assignmentgotlock=0 after line 5 or line 6.

Consider next our technique for localizing errors to specific program regions. This
technique is based on the observation that in many practical scenarios, a single error
in a program can lead to multiple counter-examples, owing to the program’s branching
behavior. Given a set of FSS, we generate areduced set of focus-statement sequences
by discarding the differences and analyzing the commonalities among the FSSs.

To illustrate our technique for localizing errors in programs, consider theCimple

program of Figure 2(a). The program is intended to compute the minimum and maxi-
mum of three integer variables but contains an obvious typo at line 6 (marked in the fig-
ure): the assignmentmax=y should instead bemin=y . The error condition is satisfied if
the minimum or the maximum is set to an incorrect value.FocusCheck produces three
FSSs corresponding to the three possible erroneous program behaviors (Figure 2(b)).

Our technique for localizing program errors is based on the elimination of a con-
straint and its negation, should they appear in two different assumption sets; it is easily
shown that such a pair of constraints is irrelevant to the cause of the error. In the ex-
ample, our technique first eliminates the constraintsz>y andz�y from the assumption

3

Ea
sy

 v
ie

w
in

g

NEST

Ranked FSS
 & Assumptions

All Focus Statement
Sequences & Assumptions

All Counter−Example Sequences

Fig. 3.Viewing counter-examples at different levels of detail.

sets of FSS2 and FSS3, respectively. FSS3 is then discarded, being now identical to
FSS2 in terms of its assumption set and line numbers. FSS1 and FSS2 containx�z

andx>z , and we delete these constraints from their respective assumption sets. The
remaining constraint in the assumption sets of FSS1 and FSS2 is x>y . We projectx>y

on both the FSSs and identify the if-block at line 6 as the region containing the error.
An important aspect of our technique for generating FSSs is that it proceeds in a

modular fashion, handling each procedure in the program independently of the others.
Specifically, our technique seeks to minimize the overhead of analyzing a procedure if
it has been invoked from multiple call sites and each of these call sites are present in
the counter-example sequence. Central to our technique is the summarization of each
procedure with respect to the valuation of global variables.

Our techniques for ranking FSSs and for localizing program errors allow the user
to view counter-examples at different levels of granularity and detail (Figure 3). At the
lowest level, the user is presented with the entire counter-example sequence. At the
intermediate levels, the user sees the FSS of the counter-examples, ordered in terms
of their relative complexity. At the highest level, reduced sets of focus statements are
identified on the basis of the constraints in their assumption sets. As one moves to higher
levels, information is organized and/or minimized without compromising its usefulness.

Contributions and organization of the paper. In summary, the main contributions of
the paper may be seen as follows:

1. We present a hierarchy of automated techniques aimed at allowing users to effec-
tively ascertain the root cause of a program error. To the best of our knowledge, this
is the first effort to organize error explanation at different levels of granularity.

2. Focus-statement sequences, introduced in [5] and reviewed in Section 2, use vari-
able dependency analysis to make counter-examples much easier to comprehend by
discarding unnecessary details. We introduce in Section 3.1 a procedure for ranking
FSSs such that FSSs higher in the ranking correspond to errors that are conceptually
easier to understand and debug than those lower in the ranking.

3. Our technique for generating a reduced set of FSS from a given set of FSSs and
their assumptions proceeds by discarding the differences and analyzing the com-
monalities among the given FSSs (Section 3.2). It can significantly aid the user in
localizing the region within a program containing the error under investigation.

4. We have implemented our error-localization technique in theFocusCheck model
checker. At its core, the model checker performs reachability analysis of programs
to generate all possible feasible counter-examples in terms of their FSSs (Sec-
tion 4). Reachability analysis is performed in a modular fashion by summarizing
the effects of a given procedure independently of all other procedures (Section 3.3).

4

(a)

1: int gotlock, lock;
2: void main()f
3: int old, new;
4: lock = 0;
5: if (*) f
6: while (*) f
7: gotlock = 0;
8: if (*) f
9: getlock();
10: gotlock = gotlock + 1;
11: g
12: if (gotlock == 1)
13: rellock();
14: g
15: g

16: lock = 0;
17: bigProcedure();
18: while (new!=old)f
19: getlock();
20: new = old;
21: if (*) f
22: rellock();
23: new = new + 1;
24: g
25: g
26: rellock();
27: return ;
28:g

29:void getlock()f
30: bool error = false;
31: if (lock == 0)
32: lock = 1;
33: elseerror = true;
34: return ;
35:g

36:void rellock()f
37: bool error = false;
38: if (lock == 1)
39: lock = 0;
40: elseerror = true;
41: return ;
42:g

43:void bigProcedure()f: : :g

(b)

Error Condition Counter-Example Focus-Statement Sequence

error = true

in rellock()

h4, 5, 6, 7, 8, 9, 30, 31, 32, 34, 10, 12, 13, 37, 38,

39, 41, 16, 17,: : :, 18, 26, 37, 38, 40i
h16, 18, 26, 38, 40i

error = true

in getlock()

h4, 5, 6, 7, 8, 9, 30, 31, 32, 34, 10, 12, 13, 37, 38, 39, 41,

16, 17,: : :, 18, 19, 30, 31, 32, 34, 20, 21, 18, 19, 30, 31, 33i
h16, 18, 19, 31, 32,

34, 20, 18, 19, 31, 33i

Fig. 4. (a) The locking example (expanded version). (b) Counter-Examples and FSS.

5. We demonstrate the effectiveness of our technique by analyzing the resolution ad-
visory module (RA) of the traffic collision avoidance system (TCAS) (Section 5).

2 Preliminaries

In this section, we provide a brief overview of our technique for extracting focus-
statement sequences from counter-examples [5]. Given a program and a correctness
assertion, acounter-exampleis a sequence of statements executed by the program lead-
ing to a violation of the assertion. Afocus-statement sequence(FSS) is a subsequence
of a counter-example such that each statement in the subsequence directly or indirectly
affects the variable valuations responsible for the assertion violation in the program.

Focus-statement sequences: slicing counter-examples.Our technique for identifying
FSSs, which are semantically dependent, possibly noncontiguous, program segments, is
based onprogram slicing[9, 19]. Counter-examples are generated during model check-
ing via reachability analysis from the start state of the program to a state violating the
correctness condition. Reachability analysis is also used to record the dynamic control
and data dependencies at each statement. Note that the last statement of a counter-
example is responsible for the violation of correctness condition. A statement in a
counter-example is classified as focus statement if it directly or indirectly affects the last
statement in the counter-example. That is, a FSS is obtained from a counter-example
sequenceS by slicingS, using the last statement inS as the slicing criterion.

Definition 1 (Focus Statement).Given a counter-example sequenceS = hs1; s2; : : : ; sni
wheresi denotes thei-th program statement along with its line number andsn is the

5

last statement in the counter-example,sj is said to be a focus statement if any one of
the following holds:

1. sj is in the slice ofS w.r.t. slicing criterionsn;
2. sj is a call or return statement with at least one focus statement in the body of the

called procedure.

Our slicing method for extracting FSSs from counter-examples works as follows.
We perform backward exploration from the last statementsn of a counter-example se-
quenceS. A set Error is maintained during the analysis, containing the line num-
bers of the statements and variables that affectsn. Error is generated from the sets
control (si) anddata (si) for each statementsi in S, representing control and data de-
pendencies atsi, respectively. Statementsi is control-dependent on those conditional
statements whose line numbers are present incontrol (si), while si depends on the
variables indata (si).

For the first of the two counter-example sequences given in Figure 4(b), the set
Error is initialized tof38g, as the last statement at line 40 of the counter-example
hascontrol (40) = f38g. As backward analysis proceeds, the statement at line 38
is encountered withError = f38g; therefore, the statement at line 38 is classified as
a focus statement andError is updated by removing38 and introducing the variable
lock (lock 2 data (38)). The next statement reached in the backward exploration is
the one at line 37 (error=true). However, the variableerror 62 Error . Therefore
the statement at line 37 is not a focus statement and theError set is unaltered. Back-
ward exploration terminates if setError is empty or all the statements in the counter-
example have been analyzed. The focus-statement sequences identified in this manner
are given in Figure 4(b) alongside their corresponding counter-example sequences.

Feasibility of counter-example sequences.The behavior of a program typically de-
pends upon the valuation of variables that are inputs to the program. If an input variable
has an infinite domain, say the integers, reachability analysis is typically performed by
leaving the operations on these variables uninterpreted. For example, the operations at
lines 18, 20 and 23 in Figure 4(a) are uninterpreted and forward reachability is per-
formed by considering all possible (boolean) valuations of the conditional expression
at line 18. This approach leads the model checker to consider both branches of the con-
ditional expression, whereas in reality only one of the branches is feasible. This results
in infeasible counter-examples in the output of the model checker. Typically, feasibility
analysis involves considering each counter-example to determine whether all the oper-
ations in the counter-example are consistent in the original source program. In contrast,
we reduce the overheads of feasibility analysis by reducing (a) number of counter-
examples to be checked and (b) number of operations to be checked for consistency.

These reductions are achieved by observing that given an FSSF comprising a fea-
sible sequence of operations, there exists at least one feasible counter-exampleC with
F as its subsequence. To check the feasibility of a counter-example, we therefore check
the feasibility of the sequences of operations in the counter-example’s FSS. Note that
the length of a FSS is often less than that of the corresponding counter-example making
feasibility checking of the former more efficient than the latter. Furthermore, if multi-

6

ple counter-examples correspond to the same FSS, proving/disproving feasibility of all
these counter-examples is performed by checking for feasibility of a single FSS.

Referring back to our example of Figure 4, the second FSS is infeasible due to the
infeasibility of the operation at line 20 followed by the operation at line 18. The first
FSS, however, is feasible. FSSs can therefore be used to both shorten counter-examples
by eliminating unnecessary details and to effectively discard infeasible execution se-
quences.

3 Debugging Cimple Programs

3.1 Ranking the Counter-Examples

In many practical settings, a single error can force a program to behave erroneously
in multiple ways leading to the generation of multiple counter-example sequences. For
example, a single error in each of the programs of Figures 1 and 2 (missing initializa-
tion and incorrect assignment, respectively) generates more than one counter-example.
While it is difficult, if not impossible, to localize the cause of multiple counter-examples
to one single parameter in a program, it is possible develop techniques that will effec-
tively guide the users toward making the correct choice in debugging programs. Rank-
ing counter-examples on the basis of focus-statement sequences and their assumption
sets is a methodology where error traces are sorted in terms of their complexity.

Definition 2 (Rank). Given two FSSsF1 andF2, F1 is said to be of higher rank than
F2, denoted byF1 � F2, if:

1. the length ofF1 is less than that ofF2 or
2. the length ofF1 is equal to the length ofF2 and the number of variables in the

assumptions ofF1 is less than number of variables in the assumptions ofF2.

Definition 2 defines a partial order over FSSs. Higher ranked FSSs are more likely to be
easier to parse and understand than the lower ranked ones. The rationale for selecting
the two ranking criteria is based on the following observations. A user can potentially
parse a smaller sequence of focus statements than a longer one. If two FSSs involve
an identical number of statements, the one which requires assumptions over a fewer
number of variables for its feasibility is potentially simpler to understand than the one
requiring constraints over more variables. The involvement of a fewer number of vari-
ables in an assumption set means that a fewer number of program variables are affected
by the assumptions and, therefore, the user will be required to concentrate on a fewer
number of operations on variables in order to track down the error.

3.2 Localizing Program Errors using Assumption Sets

In this section, we provide a methodology to further minimize the sequence of state-
ments in each FSS that the user is required to inspect in order to find the potential cause
of an error. Our objective is to localize the program error to a specific segment of an
FSS. We show that in certain scenarios, our technique can identify the exact program

7

Input: A setS of FSSsF1; F2; : : : ; Fn and their corresponding assumption setsA1; A2; : : : ; An.
Output: Reduce(S).

1. Initially Reduce(S) = S. Repeat Steps 2 and 3 till no change in Reduce(S).
2. If there exits a constraintc in a uniqueAi and its negation:c in a uniqueAj , i 6= j, then

deletec fromAi and:c fromAj . Iterate this step until no suchc is found.
(reduction by eliminating complementary assumptions)

3. If there exist in Reduce(S) identical FSSsFi andFj with identical assumption setsAi and
Aj , i 6= j, remove any one of these FSS-assumption set pairs from Reduce(S).
(reduction by eliminating identical FSS-assumption pairs)

4. Project eachAi in Reduce(S) to its corresponding FSSFi as follows.
5. Start with statementsk, k = 1, the first statement inFi and repeat the following cases.

(a) sk is a conditional statement with conditional expressionc:
i. if c =2 Ai or :c =2 Ai then mark all focus statements in the block containingsk

and go to step 4
ii. elsek++

(b) sk is an assignment statementx = y (call statements are considered as assignments of
actual parameters to the corresponding formal parameters)

i. if 9c 2 Ai involving y then add the new constraint overx in Ai by replicating
constraints overy and replacingy by x in the replication.k++

ii. if 9c 2 Ai involving x then deletec fromAi. k++
(c) If sk is the last statement ofFi, mark the entireFi; go to step 4.

Fig. 5. Algorithm Reduce.

statement that is the cause of the error, and provide useful feedback to the user about a
possible remedy.

Our approach is based on algorithm Reduce given in Figure 5; it performs a reduc-
tion on a given set of FSS-assumption set pairs followed by a projection of the resulting
assumption sets to their corresponding FSSs.

Definition 3 (Reduced Set of Focus Statement Sequences).A set of focus-statement
sequencesfF1; F2; : : : ; Fng, where eachFi is paired with assumption setAi, is said to
bereducedif the following conditions hold:

1. If c is a constraint inAi, then:c is either not present in anyAj or is present in at
least twoAj (j 6= i) (reduction of assumptions).

2. 8i; j(i 6= j)) (Fi 6= Fj _Ai 6= Aj) (reduction of FSSs).
3. A sequence of statementshsi1 ; si2 ; : : : ; sini is markedin each FSSFi such that the

outer-most conditional expression1 over input variables inFi cannot be evaluated
using the constraints present inAi (Neighborhood of Error Statements).

Eliminating complementary assumptions.Recall that assumption sets represent the
constraints on uninitialized or input variables necessary for the feasibility of a counter-
example sequence. Specifically, assumptions represent the constraints necessary to val-
idate the conditional expressions present in the counter-example. Our technique for

1 A conditional expression is outer-most in an FSS if it appears in the first conditional statement
in the FSS

8

eliminating complementary assumptions from a set of FSSs is based on the following
observation:

If a constraintc and its negation:c appear inexactly twodistinct assumption sets,
thenc and:c are most likely generated from the same conditional statement which
has exactly one FSS for each of its branches.

There are three possible ways in which the above observation holds:
(a) Error statement followed by a conditional. Consider first the case where an error
in a program is caused by an incorrect assignment that is followed by a conditional
block. If the assignment affects statements in both branches of the conditional block
and if these statements affect the assertion violation, then two FSSs are generated. Each
FSS is accompanied by an assumption set containing the constraint required to obtain
the appropriate valuation of the conditional expression; i.e., a constraint and its negation
appear in two different assumption sets.
(b) Error in a conditional expression. An error caused by an incorrect conditional
expression also produces at least two FSSs. This is due to the fact that both branches
in the conditional lead to the assertion violation. Thus, each branch leads to the gener-
ation of an FSS along with an assumption set containing the constraint required for the
corresponding valuation of the conditional expression.
(c) Errors in both branches of a conditional block. This case corresponds to the
situation where there are errors in both branches of a conditional block.

In all of the above cases, the pair under consideration (a constraintc and its nega-
tion :c appearing in two different assumption sets) can be safely classified as uninter-
esting constraints. The reason for this is that negating the conditional expression in the
program that generatedc and:c followed by reachability analysis of error state will
generate the same set of FSSs. In case the pair of constraints is generated from two
different conditional statements our method will localize the bug in an ancestor block
of the block containing the error. This imprecision can be removed by associating pro-
gram location with each assumption and eliminating complementary assumptions only
if they are generated at the same program location.

Another important feature of the constraint pair is that they must appear in exactly
two assumption sets. The requirement of exactly two instead of at least two assumption
sets has its root in the following observation. Suppose there are two assumption sets
containing constraintc and a single assumption set containing:c; i.e., there are two
FSSs corresponding to constraintc and one FSS corresponding to:c. In this case, it
is most likely there are errors present in both branches of a conditional block with
conditional expressionc (or:c) (see item(c) above). Further, as there are multiple FSSs
corresponding toc, the error is present in a block nested in the then-branch or else-
branch of the conditional. Our aim is to localize the error in the block nested inside the
conditional statement. As such we do not discard the constraintsc and:c.

Removal of a constraint and its negation from two assumption sets might make
these FSSs and their corresponding assumption sets identical; one of of these FSSs can
be safely removed from further consideration. Reduction is therefore achieved in two
different dimensions: the size of assumption sets and the number of FSSs. Steps 1–3 of
algorithm Reduce (Figure 5) encode the reduction steps described in this section. The

9

else

if (c)

else

if (c)

else

if (c)

(a) (b) (c)

Fig. 6.NESTs are the focus statements in the outer and inner blocks for different bug positions.

following section describes our technique for identifying erroneous program segments
in each of the remaining FSSs.

Projecting assumptions to focus-Statement sequences.Our technique is based on
projecting the assumptions (left after discarding complementary constraints) on the cor-
responding FSS. We refer to the resulting subsequence as the Neighborhood of Error
STatements (NEST), the region in the FSS where the user must apply corrective mea-
sures to remedy the corresponding counter-example (steps 5(a), (b) and (c) in Figure 5).

Projection proceeds by forward analysis of the FSS. Each statement may or may
not update the assumption set depending on whether or not it affects the constraints
in the assumption set. Each statement is interpreted under the assumption set obtained
after analyzing the statement preceding it in the FSS. The first statement is interpreted
using the reduced assumption set of the FSS obtained by discarding complementary
constraints in the assumption sets.

The terminating condition (5(a)i in Figure 5) implies that we have identified the
outermost conditional statement whose condition has generated unimportant constraints
(discarded in the previous steps of the algorithm). Next, we mark the NEST as all of
the focus statements that belong to the same block2 as the conditional statement (error
localization). Note that the size of the NEST can be significantly smaller than the actual
program block in which it belongs as only the statements responsible for the assertion
violation (i.e., the subsequence of the FSS) are included in the NEST.

The NEST presents to the user a region which encompasses the error statement(s)
present in the program (See figure 6). In the worst case (e.g., only one FSS is generated
due to the program error), the NEST encompasses the entire FSS, while in the best case,
NEST identifies the exact statement which, if altered, will remove the program error.

Analyzing the median identification program.We illustrate the effectiveness of algo-
rithm Reduce using the program given in Figure 7. This program sorts five integersa1,
a2, a3, a4, anda5, in only five comparisons given the partial ordera1>a2, a3 >a4,

a1>a3. The output of the program is a sorted list of output variableso1, o2, o3, o4, o5

in descending order. The program is based on the algorithm for finding the median of a
list of numbers in linear time [8].

The program proceeds by considering inequalities between pairs of inputs. Consider
first the two cases whena3>a5 [lines 9-40] anda3�a5 [lines 41-61]. In the former
case, ifa4>a5 is satisfied, the program proceeds to identify the correct position for
a2 in the ordered lista3>a4>a5 [lines 12-24]. A similar technique is used fora4�a5

when the ordering isa3>a5>a4 [lines 26-38]. In the latter case, i.e., whena3�a5, the
conditiona2>a3 is used to find the correct position ofa5 with respect to the ordering

2 A block refers to all of the statements which are in the same or nested static scope.

10

1: int main()f
2: int a1,a2,a3,a4,a5;
3: int o1,o2,o3,o4,o5;
4: int error=0;
5: // input a1, a2, a3, a4, a5
6: if (!((a1>a2)&&(a3>a4)

&&(a1>a3)))f
7: exit(0);
8: g
9: if (a3> a5)f
10: o1=a1;
11: if (a4> a5)
12: if (a2> a4)f
13: o4=a4,o5=a5;
14: if (a2> a3)
15: o2=a2,o3=a3;
16: else
17: o2=a3,o3=a2;
18: gelsef
19: o2=a3,o3=a4;
20: if (a2> a5)
21: o4=a2,o5=a5;

22: else
23: o4=a5,o5=a2;
24: g
25: else /* line 11 */
26: if (a2> a5)f
27: o4=a5,o5=a4;
28: if (a2> a3)
29: o2=a2,o3=a3;
30: else
31: o2=a3,o3=a2;
32: gelsef
33: o2=a3,o3=a5;
34: if (a2> a4)
35: o4=a2,o5=a4;
36: else
37: o4=a4,o5=a2;
38: g
39: g
40: else
41: if (a2> a3)f
42: o4=a3,o5=a4;
43: if (a5> a2)f
44: o3=a2;

45: if (a5> a1)
46: o1=a5,o2=a1;
47: else
48: o1=a1,o2=a5;
49: gelse
50: o1=a1,o2=a2,o3=a5;
51: gelsef
52: o3=a3;
53: if (a1> a5)
54: o1=a1,o2=a5;
55: else
56: o1=a5,o2=a1;
57: if (a2> a4)
58: o4=a2,o5=a4;
59: else
60: o4=a4,o5=a2;
61: g
62: if((o1<o2)jj(o2<o3)jj

(o3<o4)jj(o4<o5))f
63: error=1;
64: g

Fig. 7.Sorting five partially ordered numbers.

a1,a2,a3 [lines 42-50]; on the other hand,a2�a3 implies that the sorted ordering is
a1, a5, a3, a2, a4 [lines 52-61].

Consider now an error in the program caused by an artificially injected incorrect
conditional expression at line 14:a2 < a3 instead ofa2 > a3. In this case we will
get two FSSs,F1 = h4; 6; 9; 10; 11; 12; 13; 14; 15; 62; 63i with assumption setA1=
fa1 > a2; a3 > a4; a1 > a3; a3 > a5; a4 > a5; a2 > a4; a2 > a3g and
F2 = h4; 6; 9; 10; 11; 12; 13; 14; 17; 62; 63i with assumption setA2= fa1 > a2; a3 >
a4; a1 > a3; a3 > a5; a4 > a5; a2 > a4; a2 � a3g. Step 2 of algorithm Reduce will
delete the constraintsa2 > a3; a2 � a3 from assumption setsA1 andA2, respectively.
In steps 4 and 5 of the algorithm we project the modified setA1 onF1 and modified set
A2 onF2. NEST is identified ash13; 14; 15i for F1 andh13; 14; 17i for F2.

Introducing another bug at line 48 by copying line 46 to line 48 will generate three
FSSs, two of which are the same asF1 andF2 described above. The third FSSF3
comprises (h4; 6; 9; 40; 41; 42; 43; 44; 45; 48; 62; 63i) and its corresponding assumption
setA3 is fa3 � a5; a2 > a3; a5; > a2; a5 � a1g. In this case, step 2 of our algorithm
will not delete the constrainta3 > a5 and a3 � a5 from any assumption sets as
a3 > a5 exists both inA1 andA2. This will led us to identify NESTsh3; 14; 15i and
h13; 14; 17i as in the previous case. This justifies the deletion of a constraint and its
negation only if they exist in exactly two distinct FSSs. In the present case, there exists
only one FSS (F3) that goes through the else-block of the condition at line 9. We cannot
localize the error forF3 since step 5 of algorithm Reduce is iteratively executed until
we reach the last statement inF3 and as such the entireF3 is marked as a NEST.

3.3 Detecting Focus-Statement Sequence Modularly via Summarization

Model checking involves finding whether an error state in the system is reachable from
its start state. Efficient reachability analysis [11, 21] of programs with recursions em-
ploys summarization of procedures with respect to the valuation of global variables.

11

Intuitively, summarization represents the effect of a procedure and involves computing
the relation between variable valuations at its start and exit points. The main advantage
of this technique is modularity and efficiency; each procedure is analyzed in isolation
and their summaries are used for forward reachability analysis. Observe that program
behavior is classified using three types of transitions:

Statement Transition Stack depth Global variable valuations
return: s; g �! �; g0 decreases by 1 g andg0 respectively before and after executings
call: s; g �! s1; g1 : s2; g2 increases by 1 g; g1; g2 at call statements of callee,

start statements1 of the called procedure and
return locations2 of the callee respectively

other: s; g �! s0; g0 no change g andg0 respectively before and after executings

Based on the above observations, the effect of a procedure on the global variables is
the least fixed point of relationfsum (g; s; g0), wheres is the start state of the procedure
andg andg0 are the valuations of global variables at the entry and exit point of the
procedure, respectively. It can be shown that the procedure withm transitions can be
summarized in timeO(m� g3) [11].

fsum (g; s; g0) (s; g �! �; g0

fsum (g; s; g0) (s; g �! s1; g1 : s2; g2 ^ fsum (g1; s1; g2) ^ fsum (g2; s2; g0)
fsum (g; s; g0) (s; g �! s1; g1 ^ fsum (g1; s1; g0)

To find a sequence of statements leading to violating state ourFocusCheck model
checker performs forward reachability analysis from the start state of the program. Each
call site in the program is interpreted in terms of the effect of the called procedure on the
global variables. In other words, if there are multiple calls (sayk) to the same procedure,
the called procedure is analyzedonceto compute thefsum relation instead of analyzing
it k times. Summarization, therefore, makes a significant contribution to the efficiency
of model checker.
Summarizing effects of procedures using backward reachability.Focus statements
are identified by backward reachability analysis of counter-examples (Section 2). The
technique involves dynamically computing a setError consisting of variables whose
valuations directly or indirectly affect the variable valuation that caused assertion vi-
olation. As in forward reachability analysis, backward reachability is also performed
efficiently using summarization of procedures. Given the setError and the valuations
of global variables at the exit point of a procedure, summarization involves computing
the Error set, the valuation of global variables at the start location of the procedure,
and the sequences of focus statements. The summary of a procedure computed via back-
ward analysis is defined by the least model of thebsum(g; e; fss ; s; g0; e0; fss 0) rela-
tion, where (a)s is the start location of the procedure, (b)g0; e0; fss 0 are the valuation
of the global variables, theError set, and the sequence of focus statements at the exit
point of the procedure and (c)g; e; fss are the valuation of global variables, theError

set, and sequence of focus statements at the entry point.

bsum(g; e; fss ; s; g0; e0; fss’) (s; g �! �; g0 ^ update (e; fss ; s; e0; fss’)
bsum(g; e; fss ; s; g0; e0; fss’) (s; g �! s1; g1 : s2; g2 ^ bsum(g2; e2; fss 2; s2; g0; e0; fss’) ^

bsum(g1; e1; fss 1; s1; g2; e2; fss 2) ^ update (e; fss ; s; e1; fss 1)
bsum(g; e; fss ; s; g0; e0; fss’) (s; g �! s1; g1 ^ bsum(g1; e1; fss 1; s1; g0; e0; fss’) ^

update (e; fss ; s; e0; fss’)

update (e; fss ; s; e0; fss 0) checks whether the statements affects theError set (e0).
fss 0 is the FSS identified up to the point statements is visited in backward reachability

12

Reachability Analyzer

Forward
Analyzer

Summarization

Analyzer
Backward

CLP(R)

Projection

Rank

END

Program Variables
Important

Input Cimple

Error Conditions

Program

Important Variables
Constraints on

Ordered Focus
Statement Sequences

Neighborhood of
Error Statements

Focus Statements
Assumptions

main

initialize

altSepTest

ALIM inhibitBiasedClimb

nonCrossingBiasedDescend

nonCrossingBiasedClimb

ownAboveThreatownBelowThreat

(a) (b)

Fig. 8. (a) Architecture of theFocusCheck model checker. (b) Call graph for RA module.

analysis. In the events is classified as a focus statement,fss is generated by pre-
pendings to fss 0 while e0 is appropriately updated toe.

The distinguishing feature betweenfsum andbsum relations, used for summarizing
procedures during forward and backward reachability analysis respectively, is the order
in which the transition between statements appearing in the execution sequence is an-
alyzed. Consider the second rule in the definition of the relationsfsum andbsum, the
case wheres corresponds to a call statement. Thefsum relation proceeds by computing
the fsum of the called procedure followed by thefsum of the callee starting from the
return location. On the other hand,bsum first computes thebsum of the callee starting
from the return location followed by thebsum of the called procedure.

However, the common aspect offsum andbsum is that summarization makes for-
ward and backward analysis of program traces efficient. Both relations once computed
for each procedure are used multiple times if the same procedure is invoked multiple
times in a program with the same input/output parameters (global valuations,Error

sets, focus statements). To illustrate the impact of thebsum relation in finding FSSs,
consider the following example. Assume procedureQ is invokedk times in the error
trace in procedureP , andQ hasm different paths from its start to exit point. Further
assume thatQ does not affect the counter-example sequence and as such does not con-
tribute to setError . That is, statements inQ do not appear in the FSS. Naive backward
reachability analysis from the error state will analyzeQ by inlining the procedure at its
call sites; i.e., them different paths inQ will be analyzedk times. On the other hand,
summarization will analyze them different paths inQ only once and use the summary
result at each of the call sites.

4 Tool Description

In this section, we describe the salient features of ourFocusCheck model checker
FocusCheck , in which we have implemented the techniques described in this paper.

Input language description. TheFocusCheck model checker takes as input programs
written in Cimple , an expressive subset of C. The basic building blocks ofCimple are
integer, boolean and array data types, and assignment, conditional (if , while state-
ments), call and return statements. Due to the absence of pointers and address reference
mechanisms, array of sizen is treated asn different variables identified by the name of
the array appended to the index value of the element; e.g. the third element in an array

13

Error Conditions Assumptions
Simple

Reachability
(sec)

Reachability by
Summarizing

(sec)

altSep=UPWARD RA
otherTrackedAlt >ownTrackedAlt

upSeparation >downSeparation
downSeparation <positiveRAAltThresh

8.76 4.23

altSep=DOWNWARDRA
ownTrackedAlt >otherTrackedAlt

upSeparation �downSeparation
upSeparation �positiveRAAltThresh

7.44 3.98

Fig. 9.Results of model checking the RA module.

arr is identified by the variablearr3 . Calls to procedure are treated as call-by-value
and returns from procedure are explicitly handled by assigning the return value to a
pre-specified global variable.

Reachability analyzer. The input to the reachability analyzer is aCimple program and
one or more error conditions. Forward reachability searches for all counter-examples in
the program, and records the control and data dependencies at each statement present
in the search path. Backward reachability analysis of counter-examples identifies the
FSSs using dependency information. Operations of FSSs are checked for feasibility
using CLP(R), a built-in constraint solver in the XSB tabled logic-programming en-
vironment [26]. The primary advantage of using logic programming to implement the
reachability analyzer includes the direct implementation of least fixed-point summa-
rization relationsfsum andbsum. The output of the reachability analyzer is a set of
focus-statement sequences along with their assumption sets.

Components for post-processing FSSs.Ranker orders FSS-assumption pairs and
presents the ordered list to the user (Section 3.1). The user can also provide a subset of
input variables that s/he considers as important and Projector identifies the constraints
over these variables from the assumptions of each FSS. Finally, the Error Neighbor-
hood Detector (END) employs the technique described in Section 3.2 to localize errors
to specific segments in each FSS.

5 Verification of the TCAS Resolution Advisory Module

TheTraffic Alert and Collision Avoidance System(TCAS) [23] issues commercial air-
line pilots traffic advisories when one or more aircrafts comes in close proximity (airspace)
of the controlled aircraft. We concentrate here on the Resolution Advisory (RA) mod-
ule of TCAS which is used to identify the safest maneuver for the controlled aircraft
in the context of various parameters: relative position of the intruder aircraft, motion
trajectory, minimum protected zone for the controlled aircraft, etc. The RA module sets
a variablealtsep to UPWARDRAor DOWNWARDRAdepending on whether the preferred
safety action of the controlled aircraft is to move to a higher or lower altitude.

We analyzed the RA module (174 lines of C source code3 [15]) using ourFocusCheck

model checker, using different valuations ofaltsep as error conditions. The objective
was to identify various preconditions on input variables necessary for specific valuation

3 Implementation of RA module only uses the C language constructs that can be handled by
FocusCheck model checker and as such we are not required to perform any abstraction or
transformation of the source code.

14

of altsep . The assumptions generated exactly match the preconditions and prove the
correct behavior of the RA module (Table 9). Another important aspect of the RA mod-
ule is its control structure (Figure 8(b)): a number of procedures are invoked multiple
times from different procedures. Timing results reveal that reachability analysis using
summarization outperforms naive reachability analysis based on inlining.

6 Related Work

A number of techniques have recently been proposed to provide users with minimal in-
formation required to explain counter-examples resulting from model checking. In [25],
the authors introduce the notion ofneighborhood of counter-exampleswhich can be
used to understand the cause of counter-examples. A different approach based on game-
theoretic techniques is put forth in [20] where counter-examples are augmented into
free segments(choices) andfated segments(unavoidable). Errors are most likely to be
removed by careful selection of free segments.

In [1], errors in programs are localized by identifying the diverging point between a
counter-example and apositiveexample; a positive example is a sequence of statements
in programs that does not lead to a violation of the property of interest. A similar ap-
proach is presented in [14] where errors are localized to program statements absent in all
positive examples and present in all counter-examples leading to the same error condi-
tion. Based on the idea of detecting the divergence as the cause of the counter-example,
[13] has developed a technique that uses a distance matrix and constraint manipulations
to pin-point the variable operations that led to the divergence. The technique, however,
is applied to one counter-example in the program. In contrast, we present a hierarchy of
error explanations by analyzing multiple counter-examples.

7 Conclusion

We have presented a methodology for helping users locate and debug program errors.
The essence of our approach is to present the user with an ordered set of focus-statement
sequences, obtained by variable dependency analysis of all counter-examples present in
a program written in theCimple programming language.

As future work, we intend to enrich theCimple language with pointer constructs
and dynamic memory allocation, and concomitantly apply subset-based, interprocedu-
ral, flow-sensitive pointer-analysis techniques. TheFocusCheck model checker will
be appropriately enhanced to handle these new constructs. We would also like to apply
our approach to large code bases in order to understand various scalability issues. One
approach we plan to pursue utilizes partial code coverage. Finally, extending our tech-
niques to concurrent programs in order to verify temporal safety and liveness properties
is another avenue of future research.

References

1. T. Ball, M. Naik, and S.K. Rajamani. From symptom to cause: Localizing error in coun-
terexample traces. InProceedings of POPL, 2003.

15

2. T. Ball, A. Podelski, and S.K. Rajamani. Relative completeness of abstraction refinement for
software model checking. InProceedings of TACAS, 2002.

3. T. Ball and S.K. Rajamani. Bebop: A symbolic model checker for boolean programs. In
Proceedings of SPIN Workshop, 2000.

4. T. Ball and S.K. Rajamani. Slam, 2003.http://research.microsoft.com/slam .
5. S. Basu, D. Saha, and S. A. Smolka. Getting to the root of the problem: Focus statements for

the analysis of counter-examples. Technical report, SUNYSB, 2004.
6. BLAST. Berkeley lazy abstraction software verification tool, 2003.

http://www-cad.eecs.berkeley.edu/ �rupak/blast/ .
7. E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-state concurrent

systems using temporal logic specifications.ACM TOPLAS, 8(2), 1986.
8. T.H. Corman, C.E. Leiserson, , and R.L. Rivest.Introduction to Algorithm. MIT Press, 1990.
9. M. B. Dwyer and J. Hatcliff. Slicing software for model construction. InPartial Evaluation

and Semantic-Based Program Manipulation, 1999.
10. D. Engler and K. Ashcraft. RacerX: Effective, static detection of race conditions and dead-

locks. InProceedings of SOSP, 2003.
11. J. Esparza and S. Schwoon. A BDD-based model checker for recursive programs. InPro-

ceedings of CAV, 2001.
12. P. Godefroid. Model checking for programming languages using verisoft. InProceedings of

POPL, 1997.
13. A. Groce. Error explanation with distance metrics. InProceedings of TACAS, 2004.
14. A. Groce and W. Visser. What went wrong: Explaining counterexamples. InProceedings of

SPIN Workshop on Model Checking of Software, 2003.
15. Aristotle Research Group. Program analysis based software engineering, 2003.

http://www.cc.gatech.edu/aristotle/ .
16. J. Hatcliff and M. Dwyer. Using the bandera tool set to model-check properties of concurrent

Java software.LNCS, 2154:39–??, 2001.
17. T.A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. InProceedings of

POPL, 2002.
18. G.J. Holzmann and M.H. Smith. Software model checking: Extracting verification models

from source code. InProceedings of FORTE, 1999.
19. S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence graphs. In

Proceedings of PLDI, 1988.
20. H. Jin, K. Ravi, and F. Somenzi. Fate and free will in error traces. InProceedings of TACAS,

2002.
21. MOPED. A model checker for pushdown systems, 2003.

http://www.fmi.uni-stuttgart.de/szs/tools/moped/ .
22. J.P. Queille and J. Sifakis. Specification and verification of concurrent systems in Cesar. In

Proceedings of the ISP, 1982.
23. RTCA. Minimum operational performance stardards for traffic alert and collision aviodance

system (TCAS) airborne equipment consolidated edition, 1990.
24. A. Rybalchenko.A Model Checker based on Abstraction Refinement. PhD thesis, Universitt

des Saarlandes, 2002.
25. N. Sharygina and D. Peled. A combined testing and verification approach for software reli-

ability. In Proceedings of FME, 2001.
26. The XSB logic programming system, 2003.http://xsb.sourceforge.net .

16

