
Integrating Formal Verification with Murϕ
of Distributed Cache Coherence Protocols in

FAME Multiprocessor System Design

Ghassan Chehaibar

BULL, Platforms Hardware R&D, Rue Jean Jaurès, F-78340 Les Clayes Sous Bois, France
ghassan.chehaibar@bull.net

Abstract. Flexible Architecture for Multiple Environments (FAME) is Bull ar-
chitecture for large symmetrical multiprocessors based on Intel’s Itanium® 2
family, which is used in Bull NovaScale® servers series. A key point in the de-
velopment of this distributed shared memory architecture is the definition of its
cache coherence protocol. This paper reports experiences and results of inte-
grating formal verification of FAME cache coherence protocol, on 4 successive
versions of this architecture. The goal is to find protocol definition bugs (not
implementation) in the early phases of the design, focusing on: cache coher-
ency, data integrity and deadlock-freeness properties. We have performed mod-
eling and verification using Murϕ tool and language, because of its easiness of
use and its efficient state reduction techniques. The analysis of the results
shows that this approach is cost-effective, and in spite of the state explosion
problem, it has helped us in finding hard-to-simulate protocol bugs, before the
implementation is far ahead.

1 Introduction

Design and verification of complex systems are an outstanding application domain of
formal methods. Cache coherence protocol of symmetric multiprocessor (SMP) over a
distributed architecture is indeed a very complex system, where concurrency of trans-
actions issued by different agents and the resulting conflicts are very difficult to mas-
ter and verify without the help of rigorous analysis. Such help is provided by formal
methods that allow to describe behaviors in a precise unambiguous language and to
automatically prove properties of these descriptions.

Flexible Architecture for Multiple Environments (FAME) is Bull architecture to
design large SMPs that can include up to 32 processors [4]. It is based on Intel Ita-
nium®2 family and commercialized in the Bull NovaScale® server series [1]. This
non-uniform access memory (NUMA) distributed shared memory multiprocessor is
organized in modules managed by a key component, the FAME Scalability Switch
(FSS). A FAME machine is obtained by connecting up to 4 modules, through an in-
terconnection network that links the FSSs (Fig. 1 shows the module structure).

From the very beginning of this project we have applied formal protocol verifica-
tion to the cache coherence protocol of 4 successive versions of this architecture.
(Formal verification results of the first version are partially mentioned in [15].)

Module

FSS

Processor
Memory Processor node

IO node

Interconnection network

Node controller

U
p to 4 m

odules

Fig. 1. FAME module architecture. Each module contains processor nodes and IO nodes that
are connected by a switch called FAME Scalability Switch (FSS). Here a module contains 2
processor nodes and two IO nodes, a processor node contains four processors and a memory
subsystem.

Our goal is to apply formal verification as a design aid [3], in order to find protocol
definition bugs (not implementation) in the early phases of its specification and to in-
crease confidence in its correctness. Protocol specification verification differs from
other formal verification activities that address hardware implementation correctness.
like formal verification of properties of the register-transfer level (RTL) descriptions,
or equivalence checking between RTL and gate levels. Starting from a reference
specification we build an abstracted, simplified and downsized model of the protocol
and check that it verifies some properties. As we will see, this approach is cost-
effective and allows finding hard-to-simulate protocol bugs before the implementation
is far ahead, in spite of state explosion problem.

Among all requirements that must be implemented by FSS, we focus on the essen-
tial function of keeping memory coherent, which is ensured by the cache coherence
protocol. Thus, formal modeling and verification address this protocol, focusing on
coherence handling aspects, abstracting anything else, like routing, networking and
resource management.

In order to show the complexity of the problem addressed, Section 2 gives an over-
view of a distributed cache coherence protocol like FAME’s one, highlighting the
main issues (conflict handling, race conditions and data integrity) and defining the
properties we aim to check. Based on these properties, Section 3 states and informally
justifies the protocol abstractions done in the modeling process: event aggregations
and resource simplifications. Then in Section 4, we summarize the features of Murϕ
language and tool, which have made us choose it to model and verify our cache co-
herence protocol: amenity of the language, shortest explicit error traces, efficient state
reduction techniques (symmetry and hash compaction) and asynchronous semantics.
In Section 5, we analyze the results obtained in the modeling and verification of the
four versions, from two viewpoints: the incremental modeling and verification proc-
ess, and the cost-benefit figures. Finally we draw our conclusions from this experi-
ence, summing up the benefits of this approach.

2 FAME Cache Coherence Protocols Issues

In order to give insights of the complexity of the addressed problem, we describe the
features of cache coherence protocols in distributed shared-memory architecture [7].
We give some information on FAME protocol specifically, without disclosing the de-
tails of this proprietary protocol.

2.1 Distributed Cache Coherence Protocol

A private cache is associated to a processor in order to reduce the effects of mem-
ory access latency and contention. In shared-memory multiprocessor, a memory loca-
tion can be present in several caches, thus introducing a consistency problem. A cache
coherence protocol ensures that memory is kept coherent, that is, any change made to
a memory location is made visible to all other processors. A common solution is to
associate to each cache line (transfer unit between memory and caches) a state and as-
sociated access rights. When a processor initiates an access compatible with the line
state, it is performed in the cache (it is a hit); otherwise it issues a transaction on the
bus (it is a miss).

In writeback caching policy, all processor loads and stores are performed in the
cache: thus even when a processor needs to write a location, first it fetches in its cache
the memory line that contains this location, invalidating all the other caches (read
with invalidation request). Replacement occurs when a processor needs to put a new
line in its cache, and all the entries that it can fit in (depending on the organization of
the cache) contain valid lines: then a replacement algorithm selects a line to be
evicted from the cache: if it is not modified, this can be done silently; otherwise, a
memory update request is sent to memory.

FAME protocol is based on the classical 4-state protocol called MESI [12] (acro-
nym formed by the state initials): M (modified line, this cache owns the only valid
copy of the system, and any access by its processor is a hit; this cache is responsible
of providing data to other caches), E (exclusive, this cache is the only one to hold a
copy, but it is the same as in memory; any access is a hit and a store will change it to
M), S (shared line, it can be present in other caches, and data value is the same as in
memory; a load causes a hit, but a store causes a miss), I (invalid line: not present or
present but stale; any access is a miss). (Sometimes, M state is called dirty in the lit-
erature).

A cache coherence protocol defines the rules of handling the requests issued on a
miss: how to get information on all cache states, cache state transition rules, where
and how to send requests, where to find data, collision handling (concurrent requests
to the same line). There are two basic kinds of protocols: snoopy-based and directory-
based protocols.

In a snoopy-based protocol, any request is snooped by all processors and memory,
and their responses are also snooped in a synchronous way: thus memory and cache
controllers have all needed information in a synchronous way and can take appropri-
ate actions. This protocol is suitable for a bus-based architecture and does not scale to
distributed systems.

 In a directory-based protocol, the original idea is a directory that indicates for any
line contained in a processor cache, its state and the list of caches that contain it. In
distributed shared-memory architecture, where there is a virtual unique global mem-
ory address space but memory is physically distributed, each memory piece has its as-
sociated directory. Then on a miss, a request to a line mapped in a memory slice
(called the home memory of the line) is sent to its attached directory, which forwards
request to the concerned caches, instead of the bus-broadcast scheme in snoopy-based
case. Actually these directories can be distributed in various ways including grouping
some of them in one directory or defining directory hierarchy.

As in caches, there are also replacements in directories: when a an entry holding
the state of a line has to be evicted out of the directory, then the directory sends in-
validation requests to all the caches that hold a copy of this line.

Often in actual implementation of distributed shared memory architecture, both
kinds of cache coherence protocol are combined. In FAME, within a processor node,
there is a bus-based snoopy-protocol that interacts with a directory based protocol at
the module level. All directories are grouped in FSS.

2.2 Cache Coherence Correctness Properties

A cache coherence protocol aims to keep memory coherent not to implement some
memory consistency model, like sequential or processor or weak or release consis-
tency. Any memory model assumes basic memory coherency that is: all writes to the
same memory location are seen in the same order by all processors [6] (otherwise, you
cannot even implement a lock; notice the difference with sequential consistency for
instance, where the set of accesses to all memory locations is seen in the same order
by all processors).

Therefore, the properties to verify are:

1. Cache and directory state coherency, following the definition of the MESI states:
for instance, when a line is E/M in some cache, it is I elsewhere. Since directories
contain information about caches, there are inclusion relations between cache state
and directories. When there is directory hierarchy, there are inclusion relations be-
tween directories.

2. Data integrity: a processor does not read stale data and no data modification is lost.
This requirement is not implied by cache state coherency. For instance, as said
above, a memory update is performed when a cache evicts a line in M state. After
the eviction all caches are I (so the states are coherent), but there is an ongoing
memory update. If a read request issued by a processor can get to memory before
the update (race condition between read and write), it will get stale data.

3. Deadlock-freeness: actually, a lot of deadlock and starvation issues are related to
resource management and so are implementation-dependent. Still, at the protocol
level, we have an abstract view of outstanding resources that are used to handle
coherency like directories and buffers that track request progression. Besides,
deadlock issues rise in coherence conflict resolution policies, where a colliding re-
quest can be held-off or retried.

2.3 Cache Coherence Issues

The main behavior issues of a cache coherence protocol, which we derive from the
properties to verify, can be summarized as follows:

1. Basic transaction handling. What are the transactions of the protocol, how is
memory updated, where to find up-to-date data? As hinted above, there are several
types of transactions: read, read with invalidation, invalidation, memory update,
etc., and each type has a particular cache and directory state transition rule. In
FAME we have up to 10 transaction types.

2. Conflict resolution rules, which should ensure coherence without deadlock. A key
issue of distributed directory-based cache coherence protocols is conflict resolu-
tion. Two concurrent requests issued by two processors are said to be in conflict
(or to collide) if they are to the same address. In a snoopy-based protocol, the bus
grant serializes accesses in an atomic way thus resolving conflicts: request emis-
sion is serialized; requests and responses are snooped synchronously by all the
caches. But in distributed protocols, requests are issued concurrently, there are
multiple conflict points (where conflicting requests meet) and various race condi-
tions arise between requests or between requests and responses. For instance in
FAME, within a module, a processor node can send requests to FSS and vice-
versa, and there are requests between FSSs of different modules: then conflict
points are in processor nodes and in FSS (where there are several types of conflicts
depending on the request source). Thus, two concurrent conflicting requests that
are issued by nodes in different modules can collide in either requesting node or in
either FSS of both modules. Conflict resolution is complicated by race conditions:
request and response channels are independent, so a request can overtake a re-
sponse and vice-versa. For instance, if a node controller sends a request Rq1 to
FSS, then FSS sends its corresponding response Rs1 followed by a request Rq2:
the node controller may receive Rq2 before Rs1, without knowing whether its re-
quest has been acknowledged or not. There are similar race conditions in transfers
between modules.

3. Directory replacement handling, in relation with conflicts and deadlocks. For in-
stance, if a request on address A is received by a directory and it needs to cause a
replacement in order to complete, if B is the line that is chosen to be evicted (and
so invalidated) it may run into a coherence conflict with a pending request to B.
Thus, the replacement triggering creates a connection between two requests on dif-
ferent addresses through resource (directory) and coherence conflict, which may
cause deadlocks.

3 Protocol Behavior and Property Modeling

We aim to build a reduced model at the “right” abstraction level, trying to find a
compromise between what is tractable and what is needed to verify cache coherence
properties. The behavior details which are not related to the cache coherence protocol
issues and properties brought out above are dropped.

3.1 Behavior Modeling

There are mainly two kinds of simplifications that are combined in modeling:

1. Aggregating a sequence of events in one atomic event. This means that the inter-
mediate states between the aggregated events are not observable and some order-
ings are not possible in the model.

2. Reducing the resources of the system. This involves reducing the elements of the
system: determining the number of processors, nodes, modules, memory addresses,
choosing which tables or queues are to be modeled, and what information they
contain is needed to model the behavior we want to verify.

Event Collapsing
As said above, the main issue of a cache coherence protocol is conflict resolution, and
conflicts results from the concurrent behavior of the different agents of the protocol
and race conditions between request/response transfers. So the abstraction, particu-
larly the event collapsing one, should capture this concurrency, so that all kinds of
conflict be possible in the model.

This is the general event aggregation scheme: a transaction goes through different
phases incurring treatment in each agent (processor, node controller, FSS) and trans-
fers between agents. We consider that there are three “treatment centers”: the proces-
sor bus including the caches within the node, the node controller, and FSS. We can
collapse several steps as long as there is no more than one transfer involved between
these centers. There are 3 kinds of transfers: between the processor caches and the
node controller, between the node controller and the FSS buffers and between two
FSS buffers. A typical case is collapsing emission or reception of a transaction with
its handling. An agent receives a transaction, then handles it (performing some treat-
ment), then sends a result. We can collapse receiving the transaction and handling it
in one event, or handling the transaction and sending the result. If we collapse the
three events we could miss conflicts between several transactions received, or we
miss some orderings like: a transaction T1 is received before T2, but the results of T2
is sent before that of T1.

Thus, considering that transfers between the agents are atomic and point-to-point,
discarding the interconnection network and routing functions, does not miss the re-
quests and responses concurrency from the coherence protocol viewpoint. This as-
sumes we use a formalism based on asynchronous interleaving semantics.

So, in our models, events will be either internal events to caches or FSSs, or re-
quest/responses transfers with the associated treatment at the reception point.

Resource Reduction
The objects that are modeled are: caches (state and data), memory, node controller
and FSS directories. Within nodes and modules, we represent the buffers that keep
track of requests, sometimes collapsing several buffers in one.

Concerning, the number of memory line addresses, since the aim of a cache coher-
ence protocol is memory coherency and not some consistency model, it is enough to
perform verification with only one address [8]. This remains true for directory re-
placements, if they are modeled as non-deterministic events, as long as only coher-

ence aspects are considered. However, we aim to capture some deadlock issues re-
lated to the resources present in the model, and as pointed above, coherence and re-
source conflict meet in directory replacements. Therefore, we set the number of ad-
dresses to 2 when we want to take replacements into account; otherwise we set it to 1.
An additional reason, for using 2 addresses in replacements, is to model conflict rules
specified by the protocol as they are without introducing modeling bias. (In our mod-
els, when there are 2 addresses they are mapped to the same home memory).

Beside varying the number of addresses, in order to perform incremental verifica-
tion and be able to vary the configuration of the model in facing state explosion, we
need facilities to set these parameters (a home node or module, is the one that con-
tains the home memory):

• Number of processor nodes in a module, number of caches per node.
• Number of memory line addresses in the system.
• Sizes of the different buffers.
• Number of active nodes in home/non-home module: so that we can set a model

where one node is active in home module and 2 nodes in non-home module, for in-
stance.

• Option to prevent nodes in home or non-home module from issuing requests.
• For each kind of transaction, a switch to enable it or not (as said above, there is up

to 10 kinds of transactions in FAME).

Caches, controllers, FSSs, modules, addresses, buffer index are all symmetrical
types. Even if some node is home and the others not, we define the fact of being home
as a boolean attached to a node, then this boolean can be set non-deterministically at
the initial state. Then, in order to take advantage of these symmetries that allow
reducing the state space, we need a tool that implements symmetry reduction tech-
niques.

3.2 Property Modeling

Cache Coherence Properties
Cache coherence properties are typically state invariants. The fact that there may be
transient states where a directory is not accessible and coherence is not maintained is
included in the property. Such transient state could be, for instance, that a transaction
is ongoing in some buffer. Then the cache coherence property is: we are in a transient
state OR the coherence relation is true. An example of coherence relation: if one di-
rectory state is E, then all other directories states are I.

Valid Data Properties
In order to verify that a processor does not get stale data and that no data modifica-
tions are lost, we use a data model (borrowed from [13]) that avoids manipulating
data values.

Data are modeled with two values: valid and invalid. When a processor writes a
line, this copy takes the value “valid” and all other copies of the same address in the
system become “invalid”. These copies are in memory, caches, and buffers that keep

track of requests and hold responses. This implies the ability to manipulate global
variables. Then, to verify data integrity, we add these state invariants:

• If a cache is not I, it contains valid data.
• When there are no modified data in a cache, data in memory are valid.

Deadlock-Freeness
The actual deadlock-freeness property one expects from a real system is: “a transac-
tion will always inevitably complete (within a bounded time)”. But since we deal with
abstract models that do not describe arbitration and starvation prevention mecha-
nisms, and we use asynchronous modeling where it is possible to indefinitely delay
the firing of a transition, the general property we would like to verify is: “always,
whatever the point it has reached, a request can be completed”. The different cases of
request non-termination are: it has gone into a livelock, or it is stopped somewhere.

4 Murϕ Language and Tool

Choosing a notation and its associated tool depends on the goal and the application
domain. A comprehensive survey on verification methods for cache coherence proto-
cols is given in [14]. Since we deal with complex specification of cache coherence
protocol in distributed shared-memory architectures, and we focus on mastering the
specification and finding bugs rather quickly, methods based on explicit state enu-
meration are more suitable: because, verification is fully automatic, and error traces
can be minimal and explicit, giving a scenario showing the error origin. Efficient state
reduction techniques are indispensable to take into account the minimal concurrency
we need to verify conflict issues. These considerations have led us to choose to use
the Murϕ language and tool developed by the Hardware Verification Group of Stan-
ford University [9].

Amenity of the Language and Specification Style
Murϕ provides familiar data structures and programming constructs. For instance,
there are types such as record and arrays that can be indexed over an enumerated type,
imperative programming constructs such as if-then-else, switch, for, while… Besides,
it is possible in Murϕ to define constants that are parameters of the system: number of
addresses, of processors, etc… So, we can change the configuration of the model by
changing these constants and recompiling.

Building a model consists in defining a collection of global variables, which repre-
sent the system resources states and a collection of transitions rules. Each rule has an
enabling condition, which is a boolean expression on the state variables, and an ac-
tion, which is a sequence of statements that modify the values of the state variables,
generating a new state: rule condition action_statements endrule. A rule is sym-
bolically defined with parameters: it represents a set of instantiated rules. In a rule we
can access any global variable.

If the global variable concept does not seem suitable to an architecture reference
specification, it is an important mean of abstraction and state reduction in a model in-

tended to verify the main points of a protocol. We use this global variable access fea-
ture in the verification of valid data property (Section 3.2): if caches, node controllers
and modules were modeled as processes with local variables that are not accessible
globally, we would not be able to simply model this property.

State Reduction Techniques
Murϕ provides several state reduction techniques:

The undefine statement allows to give a nil value to a variable thus identifying
irrelevant values at some point. This reduces the number of states since it avoids hav-
ing two states that differ in non-relevant parts. In one of our verification tasks, forget-
ting to undefine a variable at some point has multiplied the state count by 10.

The symmetry reduction [11]: a special type constructor, scalarset, can be used
to define a set of symmetrical identifiers (so it is user-provided symmetries). For in-
stance, we declare the types of processor identifiers as scalarset. Then, in the
state enumeration process, if a state can be obtained from another one by permuting
the values of scalarset types, then both states are considered equal. As the com-
plexity of trying all possible permutations may become exponential, there are options
to limit the number of permutation trial or to use fast heuristic normalization algo-
rithms.

Bit-compaction consists in compacting the state descriptor into a bit-string without
loss of information. This reduces the state space but increases computing time. Gen-
erally, this reduction is not enough for complex configurations and we rather use the
hash-compaction option detailed in the next point.

Probabilistic verification or hash compaction: instead of storing the whole state
descriptor, a hash compacted descriptor is stored (typically on 40 bits). Thus, different
states could be considered equal. In the verification status, the verifier prints the prob-
abilities of having missed one state or one error [16].

Asynchronous Behavior
The Murϕ language is asynchronous without a clock and without event duration. Its
fundamental semantics is that of a transition system: there are events (transitions) that
can occur when some enabling condition is true, and one event occurs at a time (no
simultaneous events). The occurring of an event leads the system from a state to an-
other one. This is insufficient if we want to describe and analyze the low-level design
of a hardware piece (RTL level). But it is necessary abstraction means to describe sys-
tem level protocol transactions, where we need an abstract way to describe all possi-
ble interleavings of events due to variable delays and different paths without describ-
ing the implementation details.

Verification and Error Diagnosis
The semantic of the model is the reachability graph of the transition system. A state is
an assignment of the global variables. A rule is an atomic event. The graph is pro-
duced by an explicit state enumeration: beginning with an initial state, all the enabled
rules in this state are executed yielding the successors states of the initial one. And
this process continues with the generated new states, etc.

The properties to verify are expressed as boolean expressions and incorporated in
the model:

• State invariants: boolean expression on global variables that should be satisfied by
all the reachable states.

• “Assert” instructions: boolean expressions that should be true in some point during
the execution of a rule.

Murϕ compiler transforms a model into a C++ program, the verifier that explores
the state graph. When an error is found, the verifier halts and prints an error trace.
There are 4 kinds of errors:

• A reachable state that violates an invariant.
• An assert instruction result is false during the execution of a rule.
• An undefined variable is accessed during the execution of a rule: this could indi-

cate an uncovered case in the protocol definition.
• A deadlock is reached: a state that has no successors (no rule is enabled).

Since we always use breadth-first search option, the error trace is a minimal one,
producing a scenario leading from the initial state to the state exhibiting the problem.
So, errors can be found quickly without the need to totally explore the state graph:
this moderates state explosion problem consequences on finding errors.

Murϕ Choice Motivation Discussion
Among all Murϕ advantages listed above, the determining choice factors are symme-
try and hash-compaction reductions, which have allowed us to verify fairly huge
models (see Section 5.1, particularly Table 2 and its comment). Then the drawback is
that liveness property verification is not supported with symmetry reduction.

In [5], a similar protocol to ours is model-checked using Cospan, SPIN and Murϕ:
the results demonstrate also the benefits to exploiting symmetries with Murϕ.

However, even if we cannot verify deadlock-freeness properties like “always a
transaction can complete” (Section 3.2), we can verify that there is no total system
deadlock (a state where no event can occur). This is a sub-case of the liveness prop-
erty we aim to, but benefits outweigh this disadvantage since we mainly focus on co-
herence properties and at least sink states can be detected (the limited resources of the
model often make a blocked request result into a total deadlock).

(In a previous experiment, we had other property constraints and it was suitable to
use LOTOS [2].)

5 Verification and Modeling Outcome

We have applied protocol formal verification to four versions of the FAME cache co-
herence protocol, which we call: FV1 to FV4. In FV1, modeling started at the very
beginning of the cache protocol definition when it was still early thoughts, and went
along its specification process. FV2 was a major revision, impacting transaction and
conflict handling: in this case, formal modeling and verification started when the pro-

tocol definition was fairly mature but not finalized yet. FV3 has kept basic transaction
handling but introduced a significant modification in conflict handling. FV4 had no
significant impact on coherence protocol, but the evolutions were related to routing
and system scaling: new protocol cases were added by this change but the transaction
and conflict handling is the same.

In order to assess this experience, we examine two aspects: the modeling and veri-
fication process and the cost-benefit analysis.

5.1 Incremental Modeling and Verification

FAME Murϕ models conform to the principles stated in Section 3. The global vari-
ables are: modules, each module contains FSS and processor nodes, FSS contains di-
rectories and buffers for ongoing transactions. A processor node contains memory,
caches and input/output buffers of node controller. The cache states, data values, re-
quest and responses types are defined as enumerated types. The structures are defined
as records and arrays. Identifiers of caches, nodes, addresses, and buffer index are de-
fined as scalarset (symmetrical types). Replacements in caches are non-
deterministic, but directory replacements occur only when needed and in models with
2 memory line addresses.

The model can be parameterized in order to define the configuration to be verified:
the parameters are those listed in Section 3.1. There are 13 rules corresponding to: in-
ternal processor events, bus events within a processor node, transfers within a module,
internal FSS events and transfers between two modules. The properties of interest
(data integrity and cache coherence) are modeled as described in Section 3.2: there
are 5 state invariants about directory coherence.

The process interleaves modeling and verification. From the protocol definition
specification, we build a first incomplete model and run verification. If an error is
found, it can be a modeling bug or a protocol bug. So we are concurrently debugging
our model and verifying the protocol definition. Then we make corrections or add
new features to the model. Even if we know that a configuration is tractable by the
verification tool, we should begin verification with the smallest model and increase
sizes of the different parameters in stages: because the same error is longer to detect
on a larger configuration than on a smaller one.

Table 1 shows for each protocol major revision (FV1 to FV4), the number of Murϕ

model versions and the corresponding number of lines of code (LOC). For each case,
there is a new model version at three points: model bug detection, protocol bug detec-
tion or new feature introduction in the incremental modeling process. So it is related
to modeling effort and to issue finding. This explains why there are so many versions
in FV1, where modeling started on early protocol definition and a lot of issues were
detected, and why so few ones in FV4, where there are no protocol significant modi-
fications and no error detected (see next subsection). The model sizes are similar and
tantamount to a few thousands lines.

Table 1. Incremental modeling effort

Case Model versions count LOC (smallest biggest)
FV 1 41 920 3820
FV 2 36 1700 2750
FV 3 15 2643 3266
FV 4 4 3322 3459

Table 2 shows the largest graphs that could be reached by the verification without

state explosion. For each case we give the figures for the largest configuration with 1
memory address (so without directory replacement) in the model and the largest one
with 2 addresses (with directory replacement). In FV1 case, we were using a machine
with a 256MB memory, so it was not possible to go very far, while in the other ex-
periments, the machines used had 1 GB of memory. Therefore FV1 largest graphs are
not comparable to the other graphs and are not reported here.

The features of the verifications shown in Table 2 are: FV2a: 1 module, 4 proces-
sor nodes, 1 cache per node, 1 address, 6 transaction types. FV2b: 1 module, 3 proc-
essor nodes, 1 cache per node, 2 addresses, 5 transaction types. FV3a: 2 modules, 2
nodes/module but only 3 modules active in the system, 1 cache/node, 1 address, 7
kinds of transactions. FV3b: 2 modules, 1 node/module, 1 cache/node, 2 addresses, 7
kinds of transactions. FV4a: 3 modules, 1 node/module, 1 cache/node, 1 address, 7
kinds of transactions. FV4b: 3 modules, 1 node/module, 1 cache/node, 2 addresses, 4
kinds of transactions. Even when there are 2 addresses, a node can have at most one
pending request. FSS buffer sizes are set, so that it can receives all node requests con-
currently. Obviously, increasing the number of request sources (caches, nodes) has
more impact than increasing the number of transaction types or addresses, since it in-
creases concurrency in the system.

Table 2. Largest graphs. All this information is provided by Murϕ. The “States” column gives
the number of states explored. “Rules”: number of rules fired. Bounds of omission probabilities
induced by hash compaction: P1 is probability of ”even one omitted state”; P2 of “even one
undetected error”. P<=0.000000 does not mean P=0, but that the bound of P, when rounded to 6
digits, gives 0. Diameter is the one of the reachability graph. CPU time is expressed in days

Case States Rules Probabilities bounds Diameter CPU (d)
FV 2a 54,842,173 316,784,167 P1<=0.000024

P2<=0.000000
114 3.1

FV 2b 59,069,095 367,365,869 P1<=0.000029
P2<=0.000000

91 1.5

FV 3a 12,732,647 55,006,883 P1<=0.000001
P2<=0.000000

76 0.4

FV 3b 53,908,283 319,449,256 P1<=0.000013
P2<=0.000000

91 1.5

FV 4a 23,203,144 100,615,496 P1<=0.000006
P2<=0.000000

82 2.3

FV 4b 48,418,599 301,928,790 P1<=0.000025
P2<=0.000000

89 7.5

Notice that these are the states explored taken into account symmetries, so they are
not all the states of the underlying graph explored. The graph diameter is a hint about
the longest transaction path. The CPU time may be different even for similar counts
of states for the same model, because with different parameters configurations, the
non-compacted state sizes are different. Generally, enough early in the process, we
have to use Murϕ hash compaction to avoid state explosion and so perform probabil-
istic verification (actually we combine bit-compaction and hash compaction).

These reduction techniques (symmetry and hash compaction) are indispensable to
extend the limit where state explosion occurs and has allowed us to obtain the results
we analyze in next subsection.

5.2 Cost-Benefit Analysis

Since our goal is to find protocol definition issues, the benefits can be measured by
the number of issues raised by modeling/verification activity. The cost is measured by
the number of person.week needed to perform this task (actually the work was
achieved by one person, the author). A protocol issue can be found either by the veri-
fier or as a result of the modeling and abstraction activity. Modeling induces a thor-
ough analysis of the protocol definition that can lead to finding issues, helping in
clarifying, completing and mastering its specification.

When we run verification, there are 3 possible outcomes:

• It is complete with no error found: then we go into another modeling/verifying
cycle by adding features to the model or rerun the same model by changing the
configuration parameters.

• An error is found and a trace error is produced: then we check whether it is a
protocol error or a model error. In order to get shortest error traces, we always
use breadth-first search.

• The graph exploration cannot be complete due to memory lack (state explosion):
then we use probabilistic verification, we try other configurations by tuning the
model parameters, or we give up if we have already tried this.

We classify the issues following 2 criteria, its category and finding origin [10]:

1. Category of the issue: there are three kinds of issues:
• Uncovered or undefined case: the specification does not define the behavior of

the protocol in this case.
• Ambiguous specification: several interpretations of the specification are possi-

ble. One of these leads to an error.
• Behavioral error: the behavior defined by the protocol specification leads to an

error like reading stale data, coherency paradox or deadlock.
2. Origin of the issue detection: an issue can be found: by modeling (during the man-

ual analysis of the protocol in order to model it); or by verification (by running the
verification).

Table 3 shows cost, issue count (with their classification), along with the total CPU
time consumed. This last figure is given as a hint and is not a rigorous comparison
factor, because we have not used the same machines with the same processors in all

cases. In FV1, we used 1 machine with small memory size (256 MB); in the other
cases we had several machines with 1 GB of memory: we were able to launch up to 3
verifications in parallel. The usage distribution of this CPU time is more meaningful
and is given by Table 4.

Table 3. Cost-benefits analysis. The categorization of issues read: A=Ambiguity,
U=Uncovered, E=Error (coherence paradox or deadlock). Finding origin is M=Modeling or
V=Verification. So EM means an error found by modeling.

Case Cost (p.w) CPU (days) Benefits (protocol issues raised)
FV 1 33 13 24 issues

(1 AM, 9 UM, 2 EM, 1 AV, 4 UV, 7 EV)
FV 2 17 42 15 issues

(5 AM, 3 UM, 4 EM, 3 EV)
FV 3 7 13 9 issues

(1 AM, 1 UM, 2 UV, 5 EV)
FV 4 6 46 No issue raised

FV1 is the most costly one and also the one that raised the biggest number of is-

sues, half of them by modeling. This is due to the following reasons: it is our first ex-
perience with Murϕ and the modeling-verification process started at the very begin-
ning of the protocol definition, when it was still early thoughts. This explains the
preponderance of ambiguity and uncovered case issues. Half of the CPU time is
wasted on verifications that did not complete, because of the small memory size.

In FV2 case, the protocol definition was mature enough (but not finalized) when
the formal modeling started. We were already familiar with Murϕ and a small part of
the first model could be reused, so productivity increases and benefits are still impor-
tant. Most of the issues are raised by modeling and are either uncovered or ambiguity
issues. Since in this case we had up to 3 machines with more memory, we have tried
to make use of it, and verify large configurations (with all kinds of transaction, for in-
stance) which ended with state explosion: this explains the important CPU time con-
sumed.

In FV3, the protocol is a fairly important extension of FV2 but with the basic trans-
action handling remaining the same (conflict handling is modified and directories dis-
tribution is modified). The productivity is further increased, there are more errors
found by verification than by modeling. In this case, based on previous experience,
we have found the configuration sizes that are manageable without state explosion.
So, we have not tried to check larger ones, but instead, we have tried several combi-
nations of up to 3 nodes in the system distributed over 2 modules. This explains that
in this case the verification that ended with state explosion are not dominant.

The last case FV4 is a non-significant extension of FV3 from protocol viewpoint:
the important modifications are at the routing level and increasing the number of sup-
ported modules, while we focus on cache coherence protocol. So, to follow this archi-
tecture extension, we tried to verify larger model configurations (up to 3 modules) to
check new concurrency cases: this naturally increased again the effort spent on
launching verifications that ended with state explosion. However, significant configu-

rations were successfully verified and, as expected, no new issue was detected, in-
creasing confidence in the protocol definition correctness.

Table 4. CPU time distribution. % of CPU time consumed in verifications that detected proto-
col issues, model bugs, were error-free (terminated with “no error” message), ran out of mem-
ory. These are rounded figures: 0% = 0, ~0% = a non-null negligible percentage

Case Protocol Issues Model bugs Error-free State explosion
FV 1 ~0% 3% 46% 51%
FV 2 ~0% 1% 30% 69%
FV 3 7% 7% 71% 15%
FV 4 0% 1% 38% 61%

Protocol issues found by verification are usually detected very quickly, since gen-

erally it happens on the first models and state graph exploration stops as soon as it de-
tects an error. The time range for finding an error is between less than 1 minute and a
few hours. The time consumed on debugging is not very significant either.

Finally, this approach was very fruitful and cost-effective, since it helped finding
hard-to-simulate bugs, generally involving tricky conflict cases, in the early develop-
ment stages. Moreover, these are protocol specification errors, not implementation er-
rors, which are much more costly to detect in later development stages.

6 Conclusion

A distributed directory-based cache coherence protocol is a complex system to de-
sign, where the conflict resolution rules are a key issue, difficult to apprehend, be-
cause of concurrency and race conditions. Therefore, it is an outstanding domain of
application of formal techniques, which provide rigorous analysis and verification
methods. We have applied formal verification to FAME cache coherence protocol,
aiming at finding protocol errors with abstracted simplified models.

Actually, even abstracted and simplified models of such a protocol, which focus on
these coherence aspects, produce huge state spaces. Due to the Murϕ reduction tech-
niques (symmetry, hash-compaction), specification style and explicit state enumera-
tion technique, this obstacle is overcome: the errors found by verification are detected
very quickly at the beginning of the incremental modeling-verification process and
are not impacted by state explosion that comes later. Error traces are minimal and ex-
hibit a scenario explaining the error origin.

The experiments show that verifying an abstracted model is sufficient to find im-
portant protocol bugs: these are most of the time very hard-to-simulate errors that in-
volve intricate conflict situations.

Besides, even if state-of-the-art tools were able to handle larger models, we think
that building a complete protocol model instead of an abstracted protocol model
would not be cost-effective in the beginning of the life-cycle of the development.

A simplified abstracted model is easier to build than a complete model and allows
mastering more quickly the protocol specification complexity: then in the early phases

of the development process, it helps in finding issues and improves the understanding
of the system, as it is shown by the issues found by modeling, which are most of the
time protocol specification “holes”.

The method of protocol verification aimed at finding bugs and increasing confi-
dence in protocol specification correctness proved to be an efficient protocol design
aid. The benefits of this approach are to detect protocol specification errors not im-
plementation ones, and to do it in the early development phases. Since the first ex-
periment on FAME, it was considered fruitful and it was carried on to next versions;
now it is a well-established practice in our protocol development process.

References

1. Bull NovaScale® servers. //www.bull.com/novascale/index.html
2. Chehaibar, G., Garavel, H., Mounier, L., Tawbi, N., Zulian, F.: Specification and Verifica-

tion of the PowerScale Bus Arbitration Protocol: An Industrial Experiment with LOTOS. In
Proc. of FORTE/PSTV'96 (1996) 435-450

3. Dill, D.L., Drexler, A.J., Hu, A.J., Yang, C.H.: Protocol Verification as a Hardware Design
Aid. IEEE International Conference on Computer Design: VLSI in Computers and Proces-
sors, IEEE Computer Society (1992) 522-525

4. FAME Architecture, Statement of Direction www.bull.com/download/whitepapers/fame.pdf
5. Fisler, K., Girault, C.: Modelling and Model Checking a Distributed Shared Memory Con-

sistency Protocol. Proc. 18th International Conference on Applications and Theory of Petri
Nets, LNCS 1420, Springer Verlag (1998) pp 84-103

6. Gharachorloo, K., Lenoski, D., Laudon, J., Gibbons, P., Gupta, A., Hennessy, J.: Memory
Consistency and Event Ordering in Scalable Shared-Memory Multiprocessors. In Proc. of
the 17th Annual International Symposium on Computer Architecture (1990) 15-26

7. Hennessy, J., Heinrich, M., Gupta, A.: Cache-Coherent Distributed Shared Memory: Per-
spectives on Its Development and Future Challenges. In Proc. of the IEEE 87(3) (1999) 418-
429 (Special issue on Distributed Shared Memory)

8. McMillan, K.L., Schwalbe, J.: Formal Verification of the Gigamax Cache Consistency Pro-
tocol. Proc. ISSM Int’l Conf. Parallel and Distributed Computing (1991)

9. Murϕ description language and verifier: http://sprout.stanford.edu/dill/murphi.html
10.NASA Formal Methods Guidebook. Formal Methods, Specification and Verification

Guidebook for Software and Computer Systems. Volume I: Planning and Technology Inser-
tion. Release 2.0, [NASA/TP-98-208193] (1998) 88 pages.

11. Norris Ip, C., Dill, D.L.: Better Verification through Symmetry. Formal Methods in System
Design, Volume 9, Numbers 1/2 (1996) 41-75

12. Paramarcos, M., Patel, J.: A Low-Overhead Coherence Solution for Multiprocessors with
Private Cache Memories. Proc. of 11th Int’l Symp. Computer Architecture, (1984) 348-354

13. Pong, F., Dubois, M.: A New Approach for the Verification of Cache Coherence Protocols.
IEEE Transactions on Parallel and Distributed Systems, 6(8) (1995) 773-787

14. Pong, F., Dubois, M.: Verification Techniques for Cache Coherence Protocols. ACM Com-
puting Surveys, Vol.29, 1, (1997) 82-126

15. Roucairol, G.: Using Formal Verification Methods in an Industrial Environment for a Dec-
ade, Conclusions and Perspectives. Keynote at FLOC99, Trento (1999)

16. Stern, U., Dill, D.L: A New Scheme for Memory-Efficient Probabilistic Verification. In
Proc. of FORTE/PSTV'96, (1996) 333-348

