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Abstract. Flexible Architecture for Multiple Environments (FAME) is Bull ar-
chitecture for large symmetrical multiprocessors based on Intel’s Itanium® 2 
family, which is used in Bull NovaScale® servers series. A key point in the de-
velopment of this distributed shared memory architecture is the definition of its 
cache coherence protocol. This paper reports experiences and results of inte-
grating formal verification of FAME cache coherence protocol, on 4 successive 
versions of this architecture. The goal is to find protocol definition bugs (not 
implementation) in the early phases of the design, focusing on: cache coher-
ency, data integrity and deadlock-freeness properties. We have performed mod-
eling and verification using Murϕ tool and language, because of its easiness of 
use and its efficient state reduction techniques. The analysis of the results 
shows that this approach is cost-effective, and in spite of the state explosion 
problem, it has helped us in finding hard-to-simulate protocol bugs, before the 
implementation is far ahead. 

1 Introduction 

Design and verification of complex systems are an outstanding application domain of 
formal methods. Cache coherence protocol of symmetric multiprocessor (SMP) over a 
distributed architecture is indeed a very complex system, where concurrency of trans-
actions issued by different agents and the resulting conflicts are very difficult to mas-
ter and verify without the help of rigorous analysis. Such help is provided by formal 
methods that allow to describe behaviors in a precise unambiguous language and to 
automatically prove properties of these descriptions. 

Flexible Architecture for Multiple Environments (FAME) is Bull architecture to 
design large SMPs that can include up to 32 processors [4]. It is based on Intel Ita-
nium®2 family and commercialized in the Bull NovaScale® server series [1]. This 
non-uniform access memory (NUMA) distributed shared memory multiprocessor is 
organized in modules managed by a key component, the FAME Scalability Switch 
(FSS). A FAME machine is obtained by connecting up to 4 modules, through an in-
terconnection network that links the FSSs (Fig. 1 shows the module structure). 

From the very beginning of this project we have applied formal protocol verifica-
tion to the cache coherence protocol of 4 successive versions of this architecture. 
(Formal verification results of the first version are partially mentioned in [15].) 
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Fig. 1. FAME module architecture. Each module contains processor nodes and IO nodes that 
are connected by a switch called FAME Scalability Switch (FSS). Here a module contains 2 
processor nodes and two IO nodes, a processor node contains four processors and a memory 
subsystem.  

Our goal is to apply formal verification as a design aid [3], in order to find protocol 
definition bugs (not implementation) in the early phases of its specification and to in-
crease confidence in its correctness. Protocol specification verification differs from 
other formal verification activities that address hardware implementation correctness. 
like formal verification of properties of the register-transfer level (RTL) descriptions, 
or equivalence checking between RTL and gate levels. Starting from a reference 
specification we build an abstracted, simplified and downsized model of the protocol 
and check that it verifies some properties. As we will see, this approach is cost-
effective and allows finding hard-to-simulate protocol bugs before the implementation 
is far ahead, in spite of state explosion problem. 

Among all requirements that must be implemented by FSS, we focus on the essen-
tial function of keeping memory coherent, which is ensured by the cache coherence 
protocol. Thus, formal modeling and verification address this protocol, focusing on 
coherence handling aspects, abstracting anything else, like routing, networking and 
resource management. 

In order to show the complexity of the problem addressed, Section 2 gives an over-
view of a distributed cache coherence protocol like FAME’s one, highlighting the 
main issues (conflict handling, race conditions and data integrity) and defining the 
properties we aim to check. Based on these properties, Section 3 states and informally 
justifies the protocol abstractions done in the modeling process: event aggregations 
and resource simplifications. Then in Section 4, we summarize the features of Murϕ 
language and tool, which have made us choose it to model and verify our cache co-
herence protocol: amenity of the language, shortest explicit error traces, efficient state 
reduction techniques (symmetry and hash compaction) and asynchronous semantics. 
In Section 5, we analyze the results obtained in the modeling and verification of the 
four versions, from two viewpoints: the incremental modeling and verification proc-
ess, and the cost-benefit figures. Finally we draw our conclusions from this experi-
ence, summing up the benefits of this approach. 
 



  

2 FAME Cache Coherence Protocols Issues 

In order to give insights of the complexity of the addressed problem, we describe the 
features of cache coherence protocols in distributed shared-memory architecture [7]. 
We give some information on FAME protocol specifically, without disclosing the de-
tails of this proprietary protocol. 

2.1 Distributed Cache Coherence Protocol 

A private cache is associated to a processor in order to reduce the effects of mem-
ory access latency and contention. In shared-memory multiprocessor, a memory loca-
tion can be present in several caches, thus introducing a consistency problem. A cache 
coherence protocol ensures that memory is kept coherent, that is, any change made to 
a memory location is made visible to all other processors. A common solution is to 
associate to each cache line (transfer unit between memory and caches) a state and as-
sociated access rights. When a processor initiates an access compatible with the line 
state, it is performed in the cache (it is a hit); otherwise it issues a transaction on the 
bus (it is a miss). 

In writeback caching policy, all processor loads and stores are performed in the 
cache: thus even when a processor needs to write a location, first it fetches in its cache 
the memory line that contains this location, invalidating all the other caches (read 
with invalidation request). Replacement occurs when a processor needs to put a new 
line in its cache, and all the entries that it can fit in (depending on the organization of 
the cache) contain valid lines: then a replacement algorithm selects a line to be 
evicted from the cache: if it is not modified, this can be done silently; otherwise, a 
memory update request is sent to memory.  

FAME protocol is based on the classical 4-state protocol called MESI [12] (acro-
nym formed by the state initials): M (modified line, this cache owns the only valid 
copy of the system, and any access by its processor is a hit; this cache is responsible 
of providing data to other caches), E (exclusive, this cache is the only one to hold a 
copy, but it is the same as in memory; any access is a hit and a store will change it to 
M), S (shared line, it can be present in other caches, and data value is the same as in 
memory; a load causes a hit, but a store causes a miss), I (invalid line: not present or 
present but stale; any access is a miss). (Sometimes, M state is called dirty in the lit-
erature). 

A cache coherence protocol defines the rules of handling the requests issued on a 
miss: how to get information on all cache states, cache state transition rules, where 
and how to send requests, where to find data, collision handling (concurrent requests 
to the same line). There are two basic kinds of protocols: snoopy-based and directory-
based protocols. 

In a snoopy-based protocol, any request is snooped by all processors and memory, 
and their responses are also snooped in a synchronous way: thus memory and cache 
controllers have all needed information in a synchronous way and can take appropri-
ate actions. This protocol is suitable for a bus-based architecture and does not scale to 
distributed systems. 



  

 In a directory-based protocol, the original idea is a directory that indicates for any 
line contained in a processor cache, its state and the list of caches that contain it. In 
distributed shared-memory architecture, where there is a virtual unique global mem-
ory address space but memory is physically distributed, each memory piece has its as-
sociated directory. Then on a miss, a request to a line mapped in a memory slice 
(called the home memory of the line) is sent to its attached directory, which forwards 
request to the concerned caches, instead of the bus-broadcast scheme in snoopy-based 
case. Actually these directories can be distributed in various ways including grouping 
some of them in one directory or defining directory hierarchy. 

As in caches, there are also replacements in directories: when a an entry holding 
the state of a line has to be evicted out of the directory, then the directory sends in-
validation requests to all the caches that hold a copy of this line. 

Often in actual implementation of distributed shared memory architecture, both 
kinds of cache coherence protocol are combined. In FAME, within a processor node, 
there is a bus-based snoopy-protocol that interacts with a directory based protocol at 
the module level. All directories are grouped in FSS. 

2.2 Cache Coherence Correctness Properties 

A cache coherence protocol aims to keep memory coherent not to implement some 
memory consistency model, like sequential or processor or weak or release consis-
tency. Any memory model assumes basic memory coherency that is: all writes to the 
same memory location are seen in the same order by all processors [6] (otherwise, you 
cannot even implement a lock; notice the difference with sequential consistency for 
instance, where the set of accesses to all memory locations is seen in the same order 
by all processors). 
 

Therefore, the properties to verify are: 

1. Cache and directory state coherency, following the definition of the MESI states: 
for instance, when a line is E/M in some cache, it is I elsewhere. Since directories 
contain information about caches, there are inclusion relations between cache state 
and directories. When there is directory hierarchy, there are inclusion relations be-
tween directories. 

2. Data integrity: a processor does not read stale data and no data modification is lost. 
This requirement is not implied by cache state coherency. For instance, as said 
above, a memory update is performed when a cache evicts a line in M state. After 
the eviction all caches are I (so the states are coherent), but there is an ongoing 
memory update. If a read request issued by a processor can get to memory before 
the update (race condition between read and write), it will get stale data. 

3. Deadlock-freeness: actually, a lot of deadlock and starvation issues are related to 
resource management and so are implementation-dependent. Still, at the protocol 
level, we have an abstract view of outstanding resources that are used to handle 
coherency like directories and buffers that track request progression. Besides, 
deadlock issues rise in coherence conflict resolution policies, where a colliding re-
quest can be held-off or retried. 



  

2.3 Cache Coherence Issues 

The main behavior issues of a cache coherence protocol, which we derive from the 
properties to verify, can be summarized as follows: 

1. Basic transaction handling. What are the transactions of the protocol, how is 
memory updated, where to find up-to-date data? As hinted above, there are several 
types of transactions: read, read with invalidation, invalidation, memory update, 
etc., and each type has a particular cache and directory state transition rule. In 
FAME we have up to 10 transaction types. 

2. Conflict resolution rules, which should ensure coherence without deadlock. A key 
issue of distributed directory-based cache coherence protocols is conflict resolu-
tion. Two concurrent requests issued by two processors are said to be in conflict 
(or to collide) if they are to the same address. In a snoopy-based protocol, the bus 
grant serializes accesses in an atomic way thus resolving conflicts: request emis-
sion is serialized; requests and responses are snooped synchronously by all the 
caches. But in distributed protocols, requests are issued concurrently, there are 
multiple conflict points (where conflicting requests meet) and various race condi-
tions arise between requests or between requests and responses. For instance in 
FAME, within a module, a processor node can send requests to FSS and vice-
versa, and there are requests between FSSs of different modules: then conflict 
points are in processor nodes and in FSS (where there are several types of conflicts 
depending on the request source). Thus, two concurrent conflicting requests that 
are issued by nodes in different modules can collide in either requesting node or in 
either FSS of both modules. Conflict resolution is complicated by race conditions: 
request and response channels are independent, so a request can overtake a re-
sponse and vice-versa. For instance, if a node controller sends a request Rq1 to 
FSS, then FSS sends its corresponding response Rs1 followed by a request Rq2: 
the node controller may receive Rq2 before Rs1, without knowing whether its re-
quest has been acknowledged or not. There are similar race conditions in transfers 
between modules. 

3. Directory replacement handling, in relation with conflicts and deadlocks. For in-
stance, if a request on address A is received by a directory and it needs to cause a 
replacement in order to complete, if B is the line that is chosen to be evicted (and 
so invalidated) it may run into a coherence conflict with a pending request to B. 
Thus, the replacement triggering creates a connection between two requests on dif-
ferent addresses through resource (directory) and coherence conflict, which may 
cause deadlocks. 

3 Protocol Behavior and Property Modeling 

We aim to build a reduced model at the “right” abstraction level, trying to find a 
compromise between what is tractable and what is needed to verify cache coherence 
properties. The behavior details which are not related to the cache coherence protocol 
issues and properties brought out above are dropped. 



  

3.1 Behavior Modeling 

There are mainly two kinds of simplifications that are combined in modeling: 

1. Aggregating a sequence of events in one atomic event. This means that the inter-
mediate states between the aggregated events are not observable and some order-
ings are not possible in the model. 

2. Reducing the resources of the system. This involves reducing the elements of the 
system: determining the number of processors, nodes, modules, memory addresses, 
choosing which tables or queues are to be modeled, and what information they 
contain is needed to model the behavior we want to verify. 

Event Collapsing 
As said above, the main issue of a cache coherence protocol is conflict resolution, and 
conflicts results from the concurrent behavior of the different agents of the protocol 
and race conditions between request/response transfers. So the abstraction, particu-
larly the event collapsing one, should capture this concurrency, so that all kinds of 
conflict be possible in the model. 

This is the general event aggregation scheme: a transaction goes through different 
phases incurring treatment in each agent (processor, node controller, FSS) and trans-
fers between agents. We consider that there are three “treatment centers”: the proces-
sor bus including the caches within the node, the node controller, and FSS. We can 
collapse several steps as long as there is no more than one transfer involved between 
these centers. There are 3 kinds of transfers: between the processor caches and the 
node controller, between the node controller and the FSS buffers and between two 
FSS buffers. A typical case is collapsing emission or reception of a transaction with 
its handling. An agent receives a transaction, then handles it (performing some treat-
ment), then sends a result. We can collapse receiving the transaction and handling it 
in one event, or handling the transaction and sending the result. If we collapse the 
three events we could miss conflicts between several transactions received, or we 
miss some orderings like: a transaction T1 is received before T2, but the results of T2 
is sent before that of T1. 

Thus, considering that transfers between the agents are atomic and point-to-point, 
discarding the interconnection network and routing functions, does not miss the re-
quests and responses concurrency from the coherence protocol viewpoint. This as-
sumes we use a formalism based on asynchronous interleaving semantics. 

So, in our models, events will be either internal events to caches or FSSs, or re-
quest/responses transfers with the associated treatment at the reception point. 

Resource Reduction  
The objects that are modeled are: caches (state and data), memory, node controller 
and FSS directories. Within nodes and modules, we represent the buffers that keep 
track of requests, sometimes collapsing several buffers in one. 

Concerning, the number of memory line addresses, since the aim of a cache coher-
ence protocol is memory coherency and not some consistency model, it is enough to 
perform verification with only one address [8]. This remains true for directory re-
placements, if they are modeled as non-deterministic events, as long as only coher-



  

ence aspects are considered. However, we aim to capture some deadlock issues re-
lated to the resources present in the model, and as pointed above, coherence and re-
source conflict meet in directory replacements. Therefore, we set the number of ad-
dresses to 2 when we want to take replacements into account; otherwise we set it to 1. 
An additional reason, for using 2 addresses in replacements, is to model conflict rules 
specified by the protocol as they are without introducing modeling bias. (In our mod-
els, when there are 2 addresses they are mapped to the same home memory). 

Beside varying the number of addresses, in order to perform incremental verifica-
tion and be able to vary the configuration of the model in facing state explosion, we 
need facilities to set these parameters (a home node or module, is the one that con-
tains the home memory): 

• Number of processor nodes in a module, number of caches per node. 
• Number of memory line addresses in the system. 
• Sizes of the different buffers. 
• Number of active nodes in home/non-home module: so that we can set a model 

where one node is active in home module and 2 nodes in non-home module, for in-
stance. 

• Option to prevent nodes in home or non-home module from issuing requests. 
• For each kind of transaction, a switch to enable it or not (as said above, there is up 

to 10 kinds of transactions in FAME). 

Caches, controllers, FSSs, modules, addresses, buffer index are all symmetrical 
types. Even if some node is home and the others not, we define the fact of being home 
as a boolean attached to a node, then this boolean can be set non-deterministically at 
the initial state. Then, in order to take advantage of these symmetries that allow 
reducing the state space, we need a tool that implements symmetry reduction tech-
niques. 

3.2 Property Modeling 

Cache Coherence Properties 
Cache coherence properties are typically state invariants. The fact that there may be 
transient states where a directory is not accessible and coherence is not maintained is 
included in the property. Such transient state could be, for instance, that a transaction 
is ongoing in some buffer. Then the cache coherence property is: we are in a transient 
state OR the coherence relation is true. An example of coherence relation: if one di-
rectory state is E, then all other directories states are I. 

Valid Data Properties 
In order to verify that a processor does not get stale data and that no data modifica-
tions are lost, we use a data model (borrowed from [13]) that avoids manipulating 
data values. 

Data are modeled with two values: valid and invalid. When a processor writes a 
line, this copy takes the value “valid” and all other copies of the same address in the 
system become “invalid”. These copies are in memory, caches, and buffers that keep 



  

track of requests and hold responses. This implies the ability to manipulate global 
variables. Then, to verify data integrity, we add these state invariants: 

• If a cache is not I, it contains valid data. 
• When there are no modified data in a cache, data in memory are valid. 

Deadlock-Freeness 
The actual deadlock-freeness property one expects from a real system is: “a transac-
tion will always inevitably complete (within a bounded time)”. But since we deal with 
abstract models that do not describe arbitration and starvation prevention mecha-
nisms, and we use asynchronous modeling where it is possible to indefinitely delay 
the firing of a transition, the general property we would like to verify is: “always, 
whatever the point it has reached, a request can be completed”. The different cases of 
request non-termination are: it has gone into a livelock, or it is stopped somewhere. 

4 Murϕ Language and Tool 

Choosing a notation and its associated tool depends on the goal and the application 
domain. A comprehensive survey on verification methods for cache coherence proto-
cols is given in [14]. Since we deal with complex specification of cache coherence 
protocol in distributed shared-memory architectures, and we focus on mastering the 
specification and finding bugs rather quickly, methods based on explicit state enu-
meration are more suitable: because, verification is fully automatic, and error traces 
can be minimal and explicit, giving a scenario showing the error origin. Efficient state 
reduction techniques are indispensable to take into account the minimal concurrency 
we need to verify conflict issues. These considerations have led us to choose to use 
the Murϕ language and tool developed by the Hardware Verification Group of Stan-
ford University [9]. 

Amenity of the Language and Specification Style 
Murϕ provides familiar data structures and programming constructs. For instance, 
there are types such as record and arrays that can be indexed over an enumerated type, 
imperative programming constructs such as if-then-else, switch, for, while… Besides, 
it is possible in Murϕ to define constants that are parameters of the system: number of 
addresses, of processors, etc… So, we can change the configuration of the model by 
changing these constants and recompiling. 

Building a model consists in defining a collection of global variables, which repre-
sent the system resources states and a collection of transitions rules. Each rule has an 
enabling condition, which is a boolean expression on the state variables, and an ac-
tion, which is a sequence of statements that modify the values of the state variables, 
generating a new state: rule condition  action_statements endrule. A rule is sym-
bolically defined with parameters: it represents a set of instantiated rules. In a rule we 
can access any global variable. 

If the global variable concept does not seem suitable to an architecture reference 
specification, it is an important mean of abstraction and state reduction in a model in-



  

tended to verify the main points of a protocol. We use this global variable access fea-
ture in the verification of valid data property (Section 3.2): if caches, node controllers 
and modules were modeled as processes with local variables that are not accessible 
globally, we would not be able to simply model this property. 

State Reduction Techniques 
Murϕ provides several state reduction techniques: 

The undefine statement allows to give a nil value to a variable thus identifying 
irrelevant values at some point. This reduces the number of states since it avoids hav-
ing two states that differ in non-relevant parts. In one of our verification tasks, forget-
ting to undefine a variable at some point has multiplied the state count by 10. 

The symmetry reduction [11]: a special type constructor, scalarset, can be used 
to define a set of symmetrical identifiers (so it is user-provided symmetries). For in-
stance, we declare the types of processor identifiers as scalarset. Then, in the 
state enumeration process, if a state can be obtained from another one by permuting 
the values of scalarset types, then both states are considered equal. As the com-
plexity of trying all possible permutations may become exponential, there are options 
to limit the number of permutation trial or to use fast heuristic normalization algo-
rithms. 

Bit-compaction consists in compacting the state descriptor into a bit-string without 
loss of information. This reduces the state space but increases computing time. Gen-
erally, this reduction is not enough for complex configurations and we rather use the 
hash-compaction option detailed in the next point. 

Probabilistic verification or hash compaction: instead of storing the whole state 
descriptor, a hash compacted descriptor is stored (typically on 40 bits). Thus, different 
states could be considered equal. In the verification status, the verifier prints the prob-
abilities of having missed one state or one error [16]. 

Asynchronous Behavior 
The Murϕ language is asynchronous without a clock and without event duration. Its 
fundamental semantics is that of a transition system: there are events (transitions) that 
can occur when some enabling condition is true, and one event occurs at a time (no 
simultaneous events). The occurring of an event leads the system from a state to an-
other one. This is insufficient if we want to describe and analyze the low-level design 
of a hardware piece (RTL level). But it is necessary abstraction means to describe sys-
tem level protocol transactions, where we need an abstract way to describe all possi-
ble interleavings of events due to variable delays and different paths without describ-
ing the implementation details. 

Verification and Error Diagnosis 
The semantic of the model is the reachability graph of the transition system. A state is 
an assignment of the global variables. A rule is an atomic event. The graph is pro-
duced by an explicit state enumeration: beginning with an initial state, all the enabled 
rules in this state are executed yielding the successors states of the initial one. And 
this process continues with the generated new states, etc. 



  

The properties to verify are expressed as boolean expressions and incorporated in 
the model: 

• State invariants: boolean expression on global variables that should be satisfied by 
all the reachable states. 

• “Assert” instructions: boolean expressions that should be true in some point during 
the execution of a rule. 

Murϕ compiler transforms a model into a C++ program, the verifier that explores 
the state graph. When an error is found, the verifier halts and prints an error trace. 
There are 4 kinds of errors: 

• A reachable state that violates an invariant. 
• An assert instruction result is false during the execution of a rule. 
• An undefined variable is accessed during the execution of a rule: this could indi-

cate an uncovered case in the protocol definition. 
• A deadlock is reached: a state that has no successors (no rule is enabled). 

Since we always use breadth-first search option, the error trace is a minimal one, 
producing a scenario leading from the initial state to the state exhibiting the problem. 
So, errors can be found quickly without the need to totally explore the state graph: 
this moderates state explosion problem consequences on finding errors. 

Murϕ Choice Motivation Discussion 
Among all Murϕ advantages listed above, the determining choice factors are symme-
try and hash-compaction reductions, which have allowed us to verify fairly huge 
models (see Section 5.1, particularly Table 2 and its comment). Then the drawback is 
that liveness property verification is not supported with symmetry reduction. 

In [5], a similar protocol to ours is model-checked using Cospan, SPIN and Murϕ: 
the results demonstrate also the benefits to exploiting symmetries with Murϕ.  

However, even if we cannot verify deadlock-freeness properties like “always a 
transaction can complete” (Section 3.2), we can verify that there is no total system 
deadlock (a state where no event can occur). This is a sub-case of the liveness prop-
erty we aim to, but benefits outweigh this disadvantage since we mainly focus on co-
herence properties and at least sink states can be detected (the limited resources of the 
model often make a blocked request result into a total deadlock). 

(In a previous experiment, we had other property constraints and it was suitable to 
use LOTOS [2].) 

5 Verification and Modeling Outcome 

We have applied protocol formal verification to four versions of the FAME cache co-
herence protocol, which we call: FV1 to FV4. In FV1, modeling started at the very 
beginning of the cache protocol definition when it was still early thoughts, and went 
along its specification process. FV2 was a major revision, impacting transaction and 
conflict handling: in this case, formal modeling and verification started when the pro-



  

tocol definition was fairly mature but not finalized yet. FV3 has kept basic transaction 
handling but introduced a significant modification in conflict handling. FV4 had no 
significant impact on coherence protocol, but the evolutions were related to routing 
and system scaling: new protocol cases were added by this change but the transaction 
and conflict handling is the same. 

In order to assess this experience, we examine two aspects: the modeling and veri-
fication process and the cost-benefit analysis. 

5.1 Incremental Modeling and Verification 

FAME Murϕ models conform to the principles stated in Section 3. The global vari-
ables are: modules, each module contains FSS and processor nodes, FSS contains di-
rectories and buffers for ongoing transactions. A processor node contains memory, 
caches and input/output buffers of node controller. The cache states, data values, re-
quest and responses types are defined as enumerated types. The structures are defined 
as records and arrays. Identifiers of caches, nodes, addresses, and buffer index are de-
fined as scalarset (symmetrical types). Replacements in caches are non-
deterministic, but directory replacements occur only when needed and in models with 
2 memory line addresses. 

The model can be parameterized in order to define the configuration to be verified: 
the parameters are those listed in Section 3.1. There are 13 rules corresponding to: in-
ternal processor events, bus events within a processor node, transfers within a module, 
internal FSS events and transfers between two modules. The properties of interest 
(data integrity and cache coherence) are modeled as described in Section 3.2: there 
are 5 state invariants about directory coherence. 

The process interleaves modeling and verification. From the protocol definition 
specification, we build a first incomplete model and run verification. If an error is 
found, it can be a modeling bug or a protocol bug. So we are concurrently debugging 
our model and verifying the protocol definition. Then we make corrections or add 
new features to the model. Even if we know that a configuration is tractable by the 
verification tool, we should begin verification with the smallest model and increase 
sizes of the different parameters in stages: because the same error is longer to detect 
on a larger configuration than on a smaller one. 

 
Table 1 shows for each protocol major revision (FV1 to FV4), the number of Murϕ 

model versions and the corresponding number of lines of code (LOC). For each case, 
there is a new model version at three points: model bug detection, protocol bug detec-
tion or new feature introduction in the incremental modeling process. So it is related 
to modeling effort and to issue finding. This explains why there are so many versions 
in FV1, where modeling started on early protocol definition and a lot of issues were 
detected, and why so few ones in FV4, where there are no protocol significant modi-
fications and no error detected (see next subsection). The model sizes are similar and 
tantamount to a few thousands lines. 



  

Table 1. Incremental modeling effort 

Case Model versions count LOC (smallest  biggest)
FV 1 41 920  3820
FV 2 36 1700  2750
FV 3 15 2643  3266
FV 4 4 3322  3459

 
Table 2 shows the largest graphs that could be reached by the verification without 

state explosion. For each case we give the figures for the largest configuration with 1 
memory address (so without directory replacement) in the model and the largest one 
with 2 addresses (with directory replacement). In FV1 case, we were using a machine 
with a 256MB memory, so it was not possible to go very far, while in the other ex-
periments, the machines used had 1 GB of memory. Therefore FV1 largest graphs are 
not comparable to the other graphs and are not reported here.  

The features of the verifications shown in Table 2 are: FV2a: 1 module, 4 proces-
sor nodes, 1 cache per node, 1 address, 6 transaction types. FV2b: 1 module, 3 proc-
essor nodes, 1 cache per node, 2 addresses, 5 transaction types. FV3a: 2 modules, 2 
nodes/module but only 3 modules active in the system, 1 cache/node, 1 address, 7 
kinds of transactions. FV3b: 2 modules, 1 node/module, 1 cache/node, 2 addresses, 7 
kinds of transactions. FV4a: 3 modules, 1 node/module, 1 cache/node, 1 address, 7 
kinds of transactions. FV4b: 3 modules, 1 node/module, 1 cache/node, 2 addresses, 4 
kinds of transactions. Even when there are 2 addresses, a node can have at most one 
pending request. FSS buffer sizes are set, so that it can receives all node requests con-
currently. Obviously, increasing the number of request sources (caches, nodes) has 
more impact than increasing the number of transaction types or addresses, since it in-
creases concurrency in the system. 

Table 2. Largest graphs. All this information is provided by  Murϕ. The “States” column gives 
the number of states explored. “Rules”: number of rules fired. Bounds of omission probabilities 
induced by hash compaction: P1 is probability of ”even one omitted state”; P2 of “even one 
undetected error”. P<=0.000000 does not mean P=0, but that the bound of P, when rounded to 6 
digits, gives 0. Diameter is the one of the reachability graph. CPU time is expressed in days 

Case States Rules Probabilities bounds Diameter CPU (d) 
FV 2a 54,842,173 316,784,167 P1<=0.000024 

P2<=0.000000 
114  3.1  

FV 2b 59,069,095  367,365,869 P1<=0.000029 
P2<=0.000000 

91 1.5 

FV 3a 12,732,647  55,006,883 P1<=0.000001 
P2<=0.000000 

76 0.4 

FV 3b 53,908,283 319,449,256 P1<=0.000013 
P2<=0.000000 

91 1.5 

FV 4a 23,203,144 100,615,496 P1<=0.000006 
P2<=0.000000 

82 2.3 

FV 4b 48,418,599 301,928,790 P1<=0.000025 
P2<=0.000000 

89 7.5 

 



  

Notice that these are the states explored taken into account symmetries, so they are 
not all the states of the underlying graph explored. The graph diameter is a hint about 
the longest transaction path. The CPU time may be different even for similar counts 
of states for the same model, because with different parameters configurations, the 
non-compacted state sizes are different. Generally, enough early in the process, we 
have to use Murϕ hash compaction to avoid state explosion and so perform probabil-
istic verification (actually we combine bit-compaction and hash compaction). 

These reduction techniques (symmetry and hash compaction) are indispensable to 
extend the limit where state explosion occurs and has allowed us to obtain the results 
we analyze in next subsection. 

5.2 Cost-Benefit Analysis 

Since our goal is to find protocol definition issues, the benefits can be measured by 
the number of issues raised by modeling/verification activity. The cost is measured by 
the number of person.week needed to perform this task (actually the work was 
achieved by one person, the author). A protocol issue can be found either by the veri-
fier or as a result of the modeling and abstraction activity. Modeling induces a thor-
ough analysis of the protocol definition that can lead to finding issues, helping in 
clarifying, completing and mastering its specification. 

When we run verification, there are 3 possible outcomes: 

• It is complete with no error found: then we go into another modeling/verifying 
cycle by adding features to the model or rerun the same model by changing the 
configuration parameters. 

• An error is found and a trace error is produced: then we check whether it is a 
protocol error or a model error. In order to get shortest error traces, we always 
use breadth-first search. 

• The graph exploration cannot be complete due to memory lack (state explosion): 
then we use probabilistic verification, we try other configurations by tuning the 
model parameters, or we give up if we have already tried this. 

We classify the issues following 2 criteria, its category and finding origin [10]: 

1. Category of the issue: there are three kinds of issues: 
• Uncovered or undefined case: the specification does not define the behavior of 

the protocol in this case.  
• Ambiguous specification: several interpretations of the specification are possi-

ble. One of these leads to an error. 
• Behavioral error: the behavior defined by the protocol specification leads to an 

error like reading stale data, coherency paradox or deadlock. 
2. Origin of the issue detection: an issue can be found: by modeling (during the man-

ual analysis of the protocol in order to model it); or by verification (by running the 
verification). 

Table 3 shows cost, issue count (with their classification), along with the total CPU 
time consumed. This last figure is given as a hint and is not a rigorous comparison 
factor, because we have not used the same machines with the same processors in all 



  

cases. In FV1, we used 1 machine with small memory size (256 MB); in the other 
cases we had several machines with 1 GB of memory: we were able to launch up to 3 
verifications in parallel. The usage distribution of this CPU time is more meaningful 
and is given by Table 4. 

Table 3. Cost-benefits analysis. The categorization of issues read: A=Ambiguity, 
U=Uncovered, E=Error (coherence paradox or deadlock). Finding origin is M=Modeling or 
V=Verification. So EM means an error found by modeling. 

Case Cost (p.w) CPU (days) Benefits (protocol issues raised) 
FV 1 33 13 24 issues 

(1 AM, 9 UM, 2 EM, 1 AV, 4 UV, 7 EV) 
FV 2 17 42 15 issues 

(5 AM, 3 UM, 4 EM, 3 EV) 
FV 3 7 13 9 issues 

(1 AM, 1 UM, 2 UV, 5 EV) 
FV 4 6 46 No issue raised 

 
FV1 is the most costly one and also the one that raised the biggest number of is-

sues, half of them by modeling. This is due to the following reasons: it is our first ex-
perience with Murϕ and the modeling-verification process started at the very begin-
ning of the protocol definition, when it was still early thoughts. This explains the 
preponderance of ambiguity and uncovered case issues. Half of the CPU time is 
wasted on verifications that did not complete, because of the small memory size. 

In FV2 case, the protocol definition was mature enough (but not finalized) when 
the formal modeling started. We were already familiar with Murϕ and a small part of 
the first model could be reused, so productivity increases and benefits are still impor-
tant. Most of the issues are raised by modeling and are either uncovered or ambiguity 
issues. Since in this case we had up to 3 machines with more memory, we have tried 
to make use of it, and verify large configurations (with all kinds of transaction, for in-
stance) which ended with state explosion: this explains the important CPU time con-
sumed. 

In FV3, the protocol is a fairly important extension of FV2 but with the basic trans-
action handling remaining the same (conflict handling is modified and directories dis-
tribution is modified). The productivity is further increased, there are more errors 
found by verification than by modeling. In this case, based on previous experience, 
we have found the configuration sizes that are manageable without state explosion. 
So, we have not tried to check larger ones, but instead, we have tried several combi-
nations of up to 3 nodes in the system distributed over 2 modules. This explains that 
in this case the verification that ended with state explosion are not dominant. 

The last case FV4 is a non-significant extension of FV3 from protocol viewpoint: 
the important modifications are at the routing level and increasing the number of sup-
ported modules, while we focus on cache coherence protocol. So, to follow this archi-
tecture extension, we tried to verify larger model configurations (up to 3 modules) to 
check new concurrency cases: this naturally increased again the effort spent on 
launching verifications that ended with state explosion. However, significant configu-



  

rations were successfully verified and, as expected, no new issue was detected, in-
creasing confidence in the protocol definition correctness. 

Table 4. CPU time distribution. % of CPU time consumed in verifications that detected proto-
col issues, model bugs, were error-free (terminated with “no error” message), ran out of mem-
ory. These are rounded figures: 0% = 0, ~0% = a non-null negligible percentage 

Case Protocol Issues Model bugs Error-free State explosion 
FV 1 ~0% 3% 46% 51% 
FV 2 ~0% 1% 30% 69% 
FV 3 7% 7% 71% 15% 
FV 4 0% 1% 38% 61% 

 
Protocol issues found by verification are usually detected very quickly, since gen-

erally it happens on the first models and state graph exploration stops as soon as it de-
tects an error. The time range for finding an error is between less than 1 minute and a 
few hours. The time consumed on debugging is not very significant either.  

Finally, this approach was very fruitful and cost-effective, since it helped finding 
hard-to-simulate bugs, generally involving tricky conflict cases, in the early develop-
ment stages. Moreover, these are protocol specification errors, not implementation er-
rors, which are much more costly to detect in later development stages. 

6 Conclusion 

A distributed directory-based cache coherence protocol is a complex system to de-
sign, where the conflict resolution rules are a key issue, difficult to apprehend, be-
cause of concurrency and race conditions. Therefore, it is an outstanding domain of 
application of formal techniques, which provide rigorous analysis and verification 
methods. We have applied formal verification to FAME cache coherence protocol, 
aiming at finding protocol errors with abstracted simplified models. 

Actually, even abstracted and simplified models of such a protocol, which focus on 
these coherence aspects, produce huge state spaces. Due to the Murϕ reduction tech-
niques (symmetry, hash-compaction), specification style and explicit state enumera-
tion technique, this obstacle is overcome: the errors found by verification are detected 
very quickly at the beginning of the incremental modeling-verification process and 
are not impacted by state explosion that comes later. Error traces are minimal and ex-
hibit a scenario explaining the error origin. 

The experiments show that verifying an abstracted model is sufficient to find im-
portant protocol bugs: these are most of the time very hard-to-simulate errors that in-
volve intricate conflict situations. 

Besides, even if state-of-the-art tools were able to handle larger models, we think 
that building a complete protocol model instead of an abstracted protocol model 
would not be cost-effective in the beginning of the life-cycle of the development.  

A simplified abstracted model is easier to build than a complete model and allows 
mastering more quickly the protocol specification complexity: then in the early phases 



  

of the development process, it helps in finding issues and improves the understanding 
of the system, as it is shown by the issues found by modeling, which are most of the 
time protocol specification “holes”.  

The method of protocol verification aimed at finding bugs and increasing confi-
dence in protocol specification correctness proved to be an efficient protocol design 
aid. The benefits of this approach are to detect protocol specification errors not im-
plementation ones, and to do it in the early development phases. Since the first ex-
periment on FAME, it was considered fruitful and it was carried on to next versions; 
now it is a well-established practice in our protocol development process. 
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