
Formal Verification of a Practical Lock-Free Queue
Algorithm

Simon Doherty1, Lindsay Groves1, Victor Luchangco2, and Mark Moir2

1 School of Mathematical and Computing Sciences,
Victoria University of Wellington, New Zealand

2 Sun Microsystems Laboratories, 1 Network Drive,
Burlington, MA 01803, USA

Abstract. We describe a semi-automated verification of a slightly optimised ver-
sion of Michael and Scott’s lock-free FIFO queue implementation. We verify the
algorithm with a simulation proof consisting of two stages: a forward simula-
tion from an automaton modelling the algorithm to an intermediate automaton,
and a backward simulation from the intermediate automaton to an automaton that
models the behaviour of a FIFO queue. These automata are encoded in the input
language of the PVS proof system, and the properties needed to show that the
algorithm implements the specification are proved using PVS’s theorem prover.

1 Introduction

Performance and software engineering problems resulting from the use of locks have
motivated researchers to develop lock-free algorithms to implement concurrent data
structures. However, these algorithms are significantly more complicated than lock-
based algorithms, and thus require careful proofs to ensure their correctness. Such
proofs typically involve long and tedious case analyses, with few interesting cases.
Thus, it is desirable to have a tool that generates and checks all the cases, requiring
human guidance only in the few interesting cases.

In this paper, we discuss the verification of a lock-free queue algorithm based on the
practical and widely used algorithm of Michael and Scott [1]. which to our knowledge
has not been formally verified before. We prove that the algorithm is linearisable [2],
using a simulation proof, which involves constructing a special kind of relation, called
a simulation, between the states of two automata modelling the algorithm and its spec-
ification. We use the PVS verification system [3] to check the proof.

Our verification has three principal points of interest: First, unlike many practical
algorithms, which can be verified using only a forward simulation, this algorithm also
requires a backward simulation, which is trickier to verify. Second, the way in which
we model a dynamic heap, and use an existentially quantified function to relate objects
in the heap with abstract data, avoids many difficulties associated with reasoning about
dynamic data structures. Third, we developed various techniques to help PVS automat-
ically dispose of most of the cases in the simulation proofs. Using these techniques, we
encountered few cases in which we needed to provide guidance to the prover.

We present the queue algorithm in Sect. 2. In Sect. 3, we introduce I/O automata
and show how to model the queue specification and implementation. Sect. 4 describes
our verification. Sect. 5 discusses our experience using PVS. We conclude in Sect. 6.



(b)?(a) ?

TailHead Tail Head

a b c

Fig. 1. Basic queue representation

structure pointer t {ptr: pointer to node t, ver: unsigned integer}
structure node t {value: data type, next: pointer t}
structure queue t {Head : pointer t, Tail : pointer t}

INITIALISE(Q: pointer to queue t)
node = new node(); node→next.ptr = null;
Q→Head = Q→Tail = [node, 0];

Fig. 2. Global declarations and initialisation

2 The Queue Implementation

Our algorithm implements a queue as a linked list of nodes, each having a value and
a next field, along with Head and Tail pointers. Head points to the first node in the
list, which is a dummy node; the remaining nodes contain the values in the queue. In
quiescent states (i.e., when no operation is in progress), Tail points to the last node in
the list. Fig. 1 shows an empty queue and a queue containing values a, b and c. The
declarations and initialisation are shown in Fig. 2. Pseudocode for the ENQUEUE and
DEQUEUE operations is given in Fig. 3.

Shared locations containing pointers (i.e., Head, Tail and next) are updated using
compare-and-swap (CAS) operations.3 CAS takes the address of a memory location, an
“expected” value, and a “new” value. If the location contains the expected value, the
CAS succeeds, atomically storing the new value into the location and returning true.
Otherwise, the CAS fails, returning false and leaving the memory unchanged.

These shared locations also contain a version number, which is incremented atomi-
cally every time the location is written.4 Thus, if such a location contains the same value
at two different times, then the location had that value during the entire interval.

A process p executing an ENQUEUE operation acquires and initialises a new node
(E1–E3), and appends the new node to the list by repeatedly determining the last node
in the list, i.e., the node whose next.ptr field is null (E5–E8, E13), and attempting to
make its next.ptr field point to the new node (E9). Then p attempts to make Tail point
to this node (E17).5 Between p appending its new node and Tail being updated, Tail
lags behind the last node in the list (see Fig. 4).

We cannot determine the last node in the list by just reading Tail, because another
enqueuing process q may cause Tail to lag. Since p cannot wait for q to update Tail, p

3 The one exception is in the initialisation of a new node (line E3), where a store is sufficient
because no other process can access a node while it is being initialised.

4 In this paper, we treat version numbers as unbounded naturals, so they never “wrap around”.
This simplification is reasonable as long as enough bits are used for the version number [4].

5 The CAS at E17 can be deleted without affecting the correctness of the algorithm. However,
without this CAS, Tail would not point to the last node of the list in all quiescent states.



ENQUEUE(Q: pointer to queue t,
value: data type)

E1: node = new node()
E2: node→value= value
E3: node→next.ptr = null
E4: loop
E5: tail = Q→Tail
E6: next = tail.ptr→next
E7: if tail == Q→Tail
E8: if next.ptr == null
E9: if CAS(&tail.ptr→next, next,

[node, next.ver+1])
E10: break
E11: endif
E12: else
E13: CAS(&Q→Tail, tail,

[next.ptr, tail.ver+1])
E14: endif
E15: endif
E16:endloop
E17:CAS(&Q→Tail, tail,

[node, tail.ver+1])

DEQUEUE(Q: pointer to queue t,
pvalue: pointer to data type): boolean

D1: loop
D2: head = Q→Head
D3: next = head→next
D4: if head == Q→Head
D5: if next.ptr == null
D6: return false
D7: else
D8: *pvalue = next.ptr→value
D9: if CAS(&Q→Head, head,

[next.ptr, head.ver+1])
D10: tail = Q→Tail ;
D11: if (head.ptr == tail.ptr)
D12: CAS(&Q→Tail, tail,

[next.ptr, tail.ver+1]);
endif
break

D13: endif
D14: endif
D15: endif
D16: endloop
D17: free node(head.ptr)
D18: return true

Fig. 3. Queue operations

(a) (b)? ? ?

Tail

a b c

Head Tail Head

Fig. 4. Queue representation variations

attempts to “help” q by doing the update (E13). Thus, Tail can lag behind the end of
the list by at most one node.

Also, another process may change Tail after p reads it at E5, but before p derefer-
ences (its local copy of) the pointer at E6. To ensure that the value read at E6 is valid,
p checks at E7 that Tail has not changed since p executed E5. If the test at E8 shows
that the node accessed at E6 had no successor at that time, then we know that the node
was the last node in the list at that time. Similarly, a successful CAS at E9 guarantees
that the next field of that node is unchanged in the interval between p’s executions of
E6 and E9.

A process p executing a DEQUEUE operation checks whether the dummy node has
a successor (D2–D5). If not, then the queue was empty when p executed D3, so the
operation returns false (D6). As in the ENQUEUE operation, Head is read twice to
ensure that the node accessed at D3 was the dummy node at that time.

If the dummy node has a successor, then p reads the value in the successor node
(D8), expecting that this node is the first non-dummy node in the list. Then p attempts



to swing Head to point to the node whose value p read at D8 (D9). If the attempt
succeeds, that node is the new dummy node; its value is removed from the queue by the
successful CAS. If the attempt fails, p retries the operation from the beginning.

Once p has successfully executed the CAS at D9, it remains to allow the old dummy
node to be reused. This node cannot be freed to the system because another process may
be about to access it; instead, it is placed on a freelist, using the free node operation
(D17). The new node operation (E1) returns a node from the freelist, if one is available;
otherwise, it allocates and returns a new node.

Before passing the old dummy node to free node, a dequeuing process checks for
the special case shown in Fig. 4(b), where the Head and Tail have “crossed”, because
Tail points to the old dummy node (D10-D11). In this case, it attempts to update Tail
(D12) before putting the old dummy node on the freelist.

Our algorithm differs from Michael and Scott’s [1] in that we test whether Tail
points to the dummy node only after Head has been updated, so a dequeuing process
reads Tail only once. The DEQUEUE in [1] performs this test before checking whether
the next pointer in the dummy node is null, so it reads Tail every time a dequeuing pro-
cess loops. Under high load, when operations retry frequently, this change will reduce
the number of accesses to shared memory.

3 Modelling the Queue Specification and Implementation

This section briefly introduces the input/output automaton (IOA) formalism [5], and
shows how we use IOAs to model the queue specification and implementation.

An input/output automaton is a labelled transition system, along with a signature
partitioning its actions into external and internal actions. Formally, an IOA consists of:
a set states(A) of states; a nonempty set start(A) ⊆ states(A) of start states; a set acts(A)
of actions; a signature, sig(A) = (external(A), internal(A)), which partitions acts(A);
and a transition relation, trans(A) ⊆ states(A) × acts(A) × states(A).6

We describe the states by a collection of state variables, and the transition relation
by specifying a precondition and effect for each action. A precondition is a predicate
on states, and an effect is a set of assignments showing only those state variables that
change, to be performed as a single atomic action. For states s and s′ and action a with
precondition prea and effect effa, the transition (s, a, s′) is in trans(A), written s

a
−→ s′,

if and only if prea holds in s (the pre-state) and s′ (the post-state) is the result of applying
effa to s. We say that an action a is enabled in s if prea holds in s. These descriptions
are parameterised by process and sometimes by other values, so they actually describe
sets of transitions.

A (finite) execution fragment of A is a sequence of alternating states and actions of
A, π = s0, a1, s1, . . . sn, such that (sk−1, ak, sk) ∈ trans(A) for k ∈ [1, n]. An execution
is an execution fragment with s0 ∈ start(A).7 A trace is the sequence of external actions
in some execution. We say that two executions (not necessarily of the same automaton)

6 The definition in [5] includes additional structure to support fairness and composition, which
we do not require for this work.

7 The full theory of I/O automata also allows infinite executions, which are necessary to reason
about liveness, which we do not consider in this paper.



enq invp(v):
pre: pcp = idle
eff: pcp := enq(v)

do enqp:
pre: pcp = enq(v)
eff: pcp := enq resp

Q := enq(Q, v)

enq resp:
pre: pcp = enq resp
eff: pcp := idle

deq invp:
pre: pcp = idle
eff: pcp := deq

do deqp:
pre: pcp = deq
eff: pcp := deq resp(deq(Q).v)

Q := deq(Q).q

deq respp(r):
pre: pcp = deq resp(r)
eff: pcp := idle

Fig. 5. Abstract transitions for process p; v may be any value, and r may be any value or null

are equivalent if they have the same trace, and we write traces(A) for the set of all
traces of A. We also write trace(α) to denote the sequence of external actions in a
sequence α ∈ acts(A)∗, where acts(A)∗ is the set of finite sequences over acts(A). For
α ∈ acts(A)∗, we write s

α

−→ s′ to mean that there is an execution fragment beginning
with s, ending with s′, and containing exactly the actions of α.

I/O automata can be use to model both specifications and implementations; in both
cases, the set of traces represents the possible external behaviours of the automaton. For
an “abstract” automaton A, modelling a specification, and a “concrete” automaton C,
modelling an implementation, we say that C implements A if traces(C) ⊆ traces(A),
that is, if all behaviours of the implementation are allowed by the specification.

3.1 The Abstract Automaton

The standard correctness condition for shared data structures is linearisability [2], which
requires that every operation appears to take effect atomically at some point between
its invocation and its response; this point is called the operation’s linearisation point.
We specify the acceptable behaviours for a set of concurrent processes operating on a
shared queue, by defining an abstract automaton AbsAut which generates their lineariz-
able traces. The transition relation for AbsAut is defined in Fig. 5.

AbsAut has external actions enq invp(v) and deq invp, representing operation invo-
cations, and enq respp, representing the response from an ENQUEUE, for all processes
p and values v. For simplicity, we assume that queue values are pointers, and model
DEQUEUE as always returning a pointer, which is null when the queue is empty. Thus,
AbsAut has external actions deq respp(r), where p is any process and r is any value (i.e.,
non-null pointer) or null. AbsAut also has internal actions do enqp and do deqp, for all
processes p, representing the operations’ linearisation points.

Each process p has a “program counter” pcp that controls the order in which actions
can occur by determining which actions are enabled, and sometimes also encodes the
value being enqueued or dequeued. For example, when p is not in the midst of any
operation, pcp = idle, so enq invp(v) and deq invp are both enabled; if an enq invp(v)
action occurs, pcp is set to enq(v), so then only do enqp is enabled.

AbsAut has a global variable Q, which holds the abstract queue. The abstract queue
is modelled as a function seq from naturals to values, along with Head and Tail coun-
ters that delimit the range corresponding to queue elements. The queue consists of
seq(Head + 1) through seq(Tail), inclusive; it is empty if Head = Tail. The effects of



do enqp and do deqp actions are defined in terms of functions enq and deq: enq(Q, v)
returns the queue obtained by incrementing Q.Tail and placing v at the new Tail index.
When Q is not empty, deq(Q) returns a pair (deq(Q).q, deq(Q).v) consisting of the
queue obtained by incrementing Q.Head and the element at the new Head index. When
Q is empty, deq(Q) = (Q, null).

Each process repeatedly performs either an ENQUEUE or DEQUEUE operation, and
each such operation consists of an invocation, a single internal action that atomically
updates the abstract queue, and a response. Thus, the trace of any execution of AbsAut
is consistent with a set of processes operating on a linearisable queue.

3.2 The Concrete Automaton

The concrete automaton ConcAut models the queue implementation described in Sect. 2.
ConcAut has the same external actions as AbsAut, and has one internal action for each
line of code shown in Fig. 3 that contains a read or a write, and two internal actions for
each line of code containing a conditional or a CAS. For example, action e 1p models a
process p executing line E1 of ENQUEUE, and d 4 yesp and d 4 nop model p executing
D4 when the condition evaluates to true and false, respectively.

Each process p has a “program counter” pcp, ranging over a type that contains one
value for each line of code containing a read, write, conditional or CAS, and special
values idle, enq resp and deq resp that play the same roles as in AbsAut.

We model a heap in which every object is a node with two fields value and next, each
of which contains a pointer/version-number pair, whose components are denoted by
pair.ptr and pair.ver. We write P for the set of pointers,H for the set of heaps, andF for
the set of field names (either value or next). A heap h ∈ H is a pair (h.eval, h.unalloc):
the function h.eval:P × F → P × N takes a pointer to a node and a field, and returns
the pointer value and version number associated with that field of that node in h; and
h.unalloc is the set of pointers that are not allocated in h. Generalising this model to
allow multiple object types is straightforward, but this simple model suffices for our
purposes.

ConcAut has variables h ∈ H, Head, Tail ∈ P × N, and freelist ⊆ P , which
model the heap, Head, Tail and the freelist. For each process p, there are variables
headp, tailp, nextp ∈ P × N, and nodep ∈ P , which model the local variables in the
code, and a local variable resultp ∈ P to hold the value that p returns from DEQUEUE.

An assignment pt→fd := (pt′, i), which updates field fd in the node pointed to by
pt, is modelled using a function update:H×P ×F ×P × N → H defined by:8

update(h, pt, fd, pt′, i) = (h.eval ⊕ {(pt, fd) 7→ (pt′, i)}, h.unalloc)

Allocation of a new node is modelled with the function new:H → H×P satisfying
the following properties:9

8 f ⊕ {x 7→ y} yields a function f ′ such that f ′(x) = y and f ′(z) = f (z), for z 6= x.
9 Michael and Scott do not specify what happens if ENQUEUE is unable to allocate a new node.

In our model, if new returns a null pointer, ConcAut loops until space becomes available. A
practical implementation would trap this error.



e 3p:
pre: pcp = e 3
eff: nodep→next.ptr := null

pcp := e 5

e 9 yesp:
pre: pcp = e 9 ∧ nextp = tailp.ptr→next
eff: tailp.ptr→next := (nodep, nextp.ver + 1)

pcp := e 17

d 2p:
pre: pcp = d 2
eff: headp := Head

pcp := d 3

e 9 nop:
pre: pcp = e 9 ∧ nextp 6= tailp.ptr→next
eff: pcp := e 5

Fig. 6. Part of the transition relation of ConcAut

new(h) = (h′, null) ⇒ h.unalloc = ∅ ∧ h′ = h

new(h) = (h′, p) ∧ p 6= null ⇒
p ∈ h.unalloc ∧ h′.eval = h.eval ∧ h′.unalloc = h.unalloc \ {p}

The preconditions and effects of some representative actions of the concrete au-
tomaton are shown in Fig. 6. Transitions for the other actions are defined similarly.

In subsequent sections, we write pt
cs
→fd for cs.h.eval(pt, fd), and cs.free?(pt) for

pt ∈ cs.unalloc ∪ cs.freelist, where cs is a state of ConcAut.

4 Verification

To verify our queue implementation, we use a simulation proof [6], which shows how
to construct, from any execution of the concrete automaton, an equivalent execution of
the abstract automaton, proving that ConcAut implements AbsAut.

Simulation proofs can often be done using a forward simulation (see Fig. 7), in
which the abstract execution is constructed by starting at the beginning of the concrete
execution and working forwards. However, forward simulation is not sufficient to prove
that ConcAut implements AbsAut. The only point during a DEQUEUE operation at which
the queue is guaranteed to be empty is when the operation executes D3, loading null into
next. A forward simulation would need to determine at this point whether the operation
will return null. This is not possible, however, since the operation will retry if Head is
changed between the operation’s execution of D2 and D4. Therefore, we need to use
a backward simulation (see Fig. 8), showing how to construct an abstract execution by
working from the last step of a concrete execution back to the beginning.

Since only this one aspect requires backward simulation, we define an intermedi-
ate automaton IntAut, which captures the behaviour of the implementation that defies
forward simulation, namely the handling of DEQUEUE on an empty queue, and is oth-
erwise identical to AbsAut. We then prove a backward simulation from IntAut to AbsAut
(see Sect. 4.2), and a forward simulation from ConcAut to IntAut (see Sect. 4.3).

4.1 The Intermediate Automaton

The intermediate automaton IntAut is identical to the abstract automaton, except that
in IntAut, a process executing a DEQUEUE operation may “observe” whether or not



(∀ cs0 • (∃ as0 • R(cs, as))) (1)

(∀ cs, cs′

, as, a •

R(cs, as) ∧ cs
a

−→ cs′ ⇒
(∃ as′

, b •

R(cs′

, as′) ∧ as
b

−→ as′ ∧
trace(a) = trace(b))) (2)

Fig. 7. A relation R ⊆ states(C)× states(A) is
a forward simulation from C to A if C and A
have the same external actions and these con-
ditions hold, where cs0: start(C), as0: start(A)
cs, cs′: states(C), as, as′: states(A), a: acts(C),
b: acts(C)

(∀ cs • (∃ as • R(cs, as))) (3)

(∀ cs0: start(C), as • R(cs, as) ⇒

as ∈ start(A)) (4)

(∀ cs, cs′

, as′

, a •

R(cs′

, as′) ∧ cs
a

−→ cs′ ⇒

(∃ as, b •

(cs, as) ∧ as
b

−→ as′ ∧

trace(a) = trace(b))) (5)

Fig. 8. A relation R ⊆ states(C)× states(A) is
a forward simulation from C to A if C and A
have the same external actions and these con-
ditions hold

the queue is empty at any time before it decides what value to return. In addition to
the queue and counter variables that are in AbsAut, each state of IntAut has a variable
empty okp, to record whether p has observed an empty queue during the current DE-
QUEUE operation.

IntAut has the same external actions as AbsAut, and the same internal action do enqp;
the only difference for these transitions is that deq invp sets empty okp to false. IntAut
has a new internal action observe emptyp that sets empty okp to record whether or not
the queue Q is empty, which p may perform whenever its program counter value is
deq. Also, in place of the do deqp action in AbsAut, IntAut has two actions, deq emptyp
and deq nonemptyp, allowing these cases to be treated separately. The deq nonemptyp
action is the same as the abstract automaton’s do deqp action except that its precondi-
tion additionally requires that the queue is nonempty. The deq emptyp action simply
changes p’s program counter from deq to deq resp(null). The precondition for this ac-
tion requires that empty okp is true, indicating that p has observed that the queue was
empty at some point during its execution; the DEQUEUE operation is linearised to one
such point.

Splitting DEQUEUE operations that return null into one or more observations that
the queue is empty, followed by a decision to return null based on the knowledge that
we have observed the queue to be empty at some point during the operation, makes it
possible to prove a forward simulation from the concrete automaton to the intermediate
one, as we show in Sect. 4.3.

It is easy to see that IntAut captures the behaviour of a set of processes accessing a
linearisable FIFO queue; we describe a formal proof in the following section.

4.2 Backward Simulation Proof

In this section we define a relation BSR (see Fig. 9), and show that it is a backward
simulation from IntAut to AbsAut. Given states as of AbsAut and is of IntAut, the third



BSR(as, is)
def
= basic ok(as, is) ∧ dequeuer ok(as, is) ∧ is.Q = as.Q

basic ok(is, as)
def
=

∀ p • is.pcp 6= deq ⇒ is.pcp = as.pcp

dequeuer ok(as, is)
def
=

∀ p • is.pcp = deq ⇒ (as.pcp = deq ∨ (as.pcp = deq resp(null) ∧ is.empty okp))

Fig. 9. The backward simulation relation BSR

conjunct of BSR requires that the queues represented by the two states are the same.
The first two conjuncts require that each process is roughly speaking “at the same stage”
of the same operation in both states, or is not executing any operation in either state.
For example, if p is idle in is (i.e., is.pcp = idle) then p is also idle in as. The first
conjunct (basic ok) covers the simple cases; the second conjunct (dequeuer ok) covers
the only interesting case, in which a process can be at slightly different stages in the two
automata because DEQUEUE operations can take two or more steps. Specifically, if in is,
p has invoked DEQUEUE but has not yet executed either deq emptyp or deq nonemptyp
(i.e., is.pcp = deq), then in as, either pcp is also deq, or pcp = deq resp(null), indicating
that p has already executed deq emptyp. In the latter case, is.empty okp must also be
true, showing that p has observed that the queue was empty at some point during its
DEQUEUE operation.

Conditions (3) and (4) of Fig. 8 are trivial, because related states of AbsAut and
IntAut are almost identical. Condition (5) requires that, for every transition is

a
−→ is′ of

IntAut, if BSR(is′, as′) holds, then there is some abstract state as and some sequence b
of abstract actions, containing exactly the same external actions as a, such that executing
each action b, starting from as, takes the abstract automaton into state as′.

To aid in the automation of our proof, we define a function that calculates as given
is, is′, as′ and a. Similarly, we define a step-correspondence function [7], that deter-
mines the action sequence to choose for the abstract automaton given an action of the
intermediate automaton (in our proof, this sequence always consists of either zero or
one action). Specifying these functions allows us to avoid manually instantiating the
existentially quantified abstract state and abstract action required by the proof obliga-
tion: instead we simply use the two functions to calculate them directly.

These functions are defined as follows. For every intermediate action a except
observe empty, deq empty and deq nonempty, we choose the same action a for AbsAut;
for deq nonempty, we choose do deq; and for deq empty, we choose the empty ac-
tion sequence. Recall that a DEQUEUE operation on an empty queue is linearised to
a point at which it executes observe empty, and not when it executes deq empty. We
reflect this choice of linearisation point by choosing do deq for exactly one execution
of observe empty within that operation.

Given the abstract action chosen for a particular intermediate transition, it is gener-
ally easy to construct a pre-state as from the post-state as′. In many cases, we simply
replace the program counter of the process p whose action is being executed in the in-
termediate transition with the value required by the precondition of the abstract action.
The only nontrivial case arises for the do enq action, because to construct the program



counter before the action, we must determine what value the ENQUEUE operation is
enqueuing. This is achieved by taking the value from the queue position that is updated
by the do enq action.

Having chosen an abstract action b, it is usually straightforward to prove as
b

−→ as′,
since the construction of as ensures that the precondition for b holds and applying the
effect of b to as yields as′. It is slightly trickier in one case, where the intermediate tran-
sition is an observe empty action. Not every execution of observe empty corresponds
to a linearisation point for a DEQUEUE operation that returns null (IntAut can execute
observe empty multiple times within a single DEQUEUE operation, while in AbsAut
there is exactly one do deq action per DEQUEUE operation). Therefore, for each DE-
QUEUE operation that returns null, we must choose do deq for exactly one occurrence
of observe empty, and choose the empty action sequence for the others.

We can only linearise a DEQUEUE operation by process p to an execution of the
observe emptyp action if the DEQUEUE operation returns null. This is true if pcp in
as′ is deq resp(null), in which case we can infer that empty okp in is′ is true, from
the dequeuer ok conjunct of BSR. Because observe emptyp sets empty okp to true if
and only if the queue is empty in state is, and does not modify the queue, it follows
that the queue is empty in state is′, and therefore by BSR, the queue is empty in state
as′. Therefore, we can construct the state as with an empty queue, which is needed

to show that as
do deqp
−→ as′ is a transition of the abstract automaton. Thus, we show

that we can choose do deqp when a is observe emptyp and as′.pcp is deq resp(null).
In all other cases, we choose the empty sequence for the abstract automaton when a is
observe emptyp. It is easy to see that BSR(is, as′) holds in these cases because the only
possible difference between states is and is′ is that empty okp is true; the value of this
variable affects the truth of BSR(is, as′) only if pcp in as′ is deq resp(null).

4.3 Forward Simulation Proof

In this section we describe a relation FSR, which is a forward simulation from ConcAut
to IntAut. Because the concrete and intermediate automata are very different, the sim-
ulation relation and the proof are both substantially more complicated than the relation
and proof described in Sect. 4.2. We do not have space here to describe the whole sim-
ulation relation or the whole proof; instead we present a detailed overview of the most
interesting parts.

The forward simulation relation over intermediate state is and concrete state cs is

FSR(cs, is)
def
= ∃ f : rel(is, cs, f )

where f is a function from naturals to pointers called the representation function; we
explain the purpose of f below. Fig. 10 defines rel. Fig. 11 defines obj ok, and Fig. 12
defines some of the other predicates used in defining rel.

The most important part of rel is the predicate obj ok, which expresses the re-
lationship between the concrete data structure, represented by nodes and pointers in
ConcAut, and the queue variable of IntAut. To express this relationship, obj ok uses
the representation function f as follows. Recall that a state is of IntAut contains a



rel(is, cs, f )
def
= enqueue ok(is, cs, f ) ∧ dequeue ok(is, cs, f ) ∧ obj ok(is, cs, f ) ∧

nds ok(is, cs, f ) ∧ distinctness ok(is, cs, f ) ∧ procs ok(is, cs, f ) ∧
injective ok(is, cs, f ) ∧ access safety ok(is, cs, f )

Fig. 10. The rel predicate

obj ok(is, cs, f )
def
=

f (is.Q.Head) = cs.Head.ptr ∧ (1)

f (is.Q.Tail)
cs
→next.ptr = null ∧ (2)

(f (is.Q.Tail) = cs.Tail.ptr ∨ (3a)

(f (is.Q.Tail) = cs.Tail.ptr
cs
→next.ptr ∧ ¬cs.free(cs.Tail.ptr) ∧

cs.Tail.ptr 6= null)) ∧ (3b)
∀ i: N • is.Q.Head ≤ i ≤ is.Q.Tail ⇒

(i 6= is.Q.Tail ⇒ (f (i)
cs
→next).ptr = f (i + 1)) ∧ (4a)

is.Q.seq(i) = (f (i)
cs
→val).ptr ∧ (4b)

¬cs.free(f (i)) ∧ (4c)
f (i) 6= null (4d)

Fig. 11. The obj ok predicate

queue variable Q, represented by a sequence and Head and Tail variables indicating
which indexes are relevant in the current queue state. If obj ok(is, cs, f ) holds, then f
indicates which node corresponds to each relevant position in is.Q.seq; i.e., for each
i ∈ [is.Q.Head + 1 · · · is.Q.Tail], f (i) is the queue node in cs containing the value
is.Q.seq[i], and f (is.Q.Head) indicates which queue node in cs is the dummy node
pointed to by cs.Head.ptr. The latter is stated by Conjunct (1) of obj ok. Conjunct (2)
states that the last node in the queue has a null next pointer. Conjunct (3) captures the
fact that Tail can “lag” behind the real tail of the queue: either Tail is accurate (3a),
or Tail.ptr points to the next-to-last node in the queue, and several other properties that
help the proof to go through hold (3b). Conjunct (4) expresses the properties of the
nodes in the concrete queue: the pointer value of the next field of each node points
to the node corresponding to the next index (4a); the value in each relevant node is
the value in the corresponding position in is.Q.seq (4b); none of the relevant nodes is
unallocated or in the freelist (4c); and none of the relevant nodes is null (4d).

Predicates enqueue ok and dequeue ok (Fig. 12) play the same role as basic ok
and dequeuer ok in the backward simulation. The other predicates capture properties
needed to support the proof of the other properties. nds ok(is, cs, f ) expresses proper-
ties of a node as it gets initialised (Fig. 12). The distinctness ok predicate expresses
that various values are distinct, for example, that nodes being initialised by two differ-
ent processes are different. The procs ok predicate expresses several properties about
the private variables of processes. Some of its subpredicates are shown in Fig. 12. For
example, procs ok 15 says that if a process p is executing ENQUEUE and pcp is e 9,
then the pointer component of next p is null. The injective ok predicate ensures that
each node corresponds to only one index (in the relevant range), so that modifications
to a node corresponding to one index do not destroy properties required of nodes corre-
sponding to other indexes. The access safety ok predicate says that the implementation



enqueue ok(is, cs, f )
def
=

∀ p • (cs.pcp = idle ⇒ is.pcp = idle) ∧
(pc e 1 9(cs, p) ∨ cs.pcp = e 13 ⇒ is.pcp = enqueuing(cs.valuep)) ∧

(cs.pcp = e 17 ∨ cs.pcp = enq resp ⇒ is.pcp = enq resp)

nds ok(is, cs, f )
def
= ∀ p • (pc e 2 13(cs, p) ⇒ ¬cs.free?(cs.nodep) ∧ cs.nodep 6= null) ∧

(pc e 3 13(cs, p) ⇒ cs.nodep
cs
→value.ptr = cs.valuep) ∧

(pc e 4 13(cs, p) ⇒ cs.nodep
cs
→next.ptr = null)

procs ok 5(is, cs, f )
def
=

∀ p • pc e 8 9(cs, p) ∧ cs.nextp.ptr = null ⇒

cs.nextp.ver < cs.tailp.ptr
cs
→next.ver ∨ (cs.nextp = cs.tailp.ptr

cs
→next ∧

cs.tailp = cs.Tail ∧ cs.tailp.ptr = f (is.Q.Tail))

procs ok 15(is, cs, f )
def
= ∀ p • cs.pcp = e 9 ⇒ cs.nextp.ptr = null

procs ok 16(is, cs, f )
def
= ∀ p • pc e 6 13(cs, p) ⇒ cs.nodep.ptr 6= cs.tailp.ptr

injective ok(is, cs, f )
def
=

∀ i, j • is.Tail ≤ i ≤ is.Head ∧ is.Tail ≤ j ≤ is.Head ∧ f (i) = f (j) ⇒ i = j

Fig. 12. Some predicates used in FSR. A predicate of the form pc e m n(cs, p), where m, n are
integers, holds when cs.pcp = e i for some i ∈ [m, n].

never dereferences null or accesses a node that is in unalloc, which is important for
correct interaction with a memory allocator.

As in the backward simulation proof, we use a step-correspondence function to de-
termine the intermediate action sequence to choose given a particular transition of the
concrete automaton. (Again, we always choose either a single action, or the empty ac-
tion sequence.) As before, this function maps each external action to itself, and maps all
internal actions to the empty action sequence, with the following exceptions: e 9 yes p,
which models a successful CAS at line E9, is mapped to do enqp; d 9 yesp is mapped
to deq nonemptyp; d 3 p is mapped to observe emptyp; and d 5 yesp is mapped to
deq emptyp.

In contrast to the backward simulation, we do not need to specify a function to
calculate the intermediate state, because this is uniquely determined by the intermediate
pre-state and the action (if any) chosen. However, we specify a witness function that
shows how to choose the new f so that FSR holds between the concrete and intermediate
post-states. For a representation function f , concrete action a, concrete state cs and
intermediate state is, the witness function returns the function f ′ = f ⊕{is.Q.Tail+1 7→
cs.nodep}.

We now present a careful manual proof that obj ok is preserved across transitions
that represent the execution of line E9 by some process, where the CAS is successful.
This is intended to illustrate the use of the representation function, and the style of
reasoning we use to verify algorithms that employ dynamic memory.

Consider a concrete transition cs
a

−→ cs′, where a = e 9 yesp for some p, interme-
diate state is and representation function f , and let as′ and f ′ be respectively the interme-



diate state and function determined by the step-correspondence and witness functions.
When we say that part of the simulation relation holds in the pre-state (resp. holds in
the post-state), we mean that it is true for cs, is and f (resp. cs′, is′, f ′).

The step-correspondence associates e 9 yesp with do enqp(cs.valuep), so we need
to show that if the precondition of e 9 yesp holds in the pre-state (see Fig. 6) and
rel(is, cs, f ) then obj ok(is′, cs′, f ′).

First, we make some observations about the transition:

cs.Tail.ptr = cs.tailp.ptr = f (is.Q.Tail) (i)

f ′(is′.Q.Tail) = cs.nodep (ii)

Claim (i) is shown using procs ok 15 to yield that cs.nextp.ptr = null, and then using
procs ok 5 to yield that cs.Tail.ptr = cs.tailp.ptr = f (is.Q.Tail). Claim (ii) follows
immediately from the construction of f ′ and the effect of do enqp.

(1) of obj ok is preserved because is′.Q.Head = is.Q.Head, but is.Q.Head <

is.Q.Tail+1 (this is a simple invariant of IntAut). Therefore is′.Q.Head 6= is.Q.Tail+1,
so by construction of f ′ and because obj ok holds in the pre-state, f ′(as′.Q.Head) =
f (is.Q.Head) = cs.Head.ptr = cs′.Head.ptr.

For (2), by construction of f ′ and the effect of do enqp, f ′(is′.Q.Tail) = f ′(is.Q.Tail+

1) = cs.nodep. Moreover, by nds ok, cs.nodep
cs
→next.ptr = null. By procs ok 16,

cs.tailp.ptr 6= cs.nodep, so cs.nodep
cs′
→next.ptr = null, and thus f ′(is′.Q.Tail)

cs′
→next.ptr =

cs.nodep
cs′
→next.ptr = null.

We show that (3b) holds in the post-state, arguing each sub-conjunct in turn.

f ′(is′
.Q.Tail) = cs.nodep by (ii) above

= cs.tailp.ptr cs′
→next.ptr by construction of cs′

= cs.Tail.ptr
cs′
→next.ptr by (i) above

= cs′
.Tail.ptr

cs′
→next.ptr because cs′

.Tail = cs.Tail

cs′
.free?(cs′

.Tail.ptr) = cs.free?(cs′
.Tail.ptr) because cs′

.free? = cs.free?
= cs.free?(cs.Tail.ptr) because cs′

.Tail = cs.Tail
= cs.free?(f (is.Q.Tail)) by (i) above
= false conjunct 4c with i = is.Q.Tail

Now by claim (i), cs.Tail.ptr = f (is.Q.Tail), so by Conjunct (4d) applied to is.Q.Tail,
cs.Tail.ptr 6= null. Therefore, cs′.Tail.ptr 6= null by the effect of the e 9 yes transition,
so the third conjunct is preserved. For the last conjunct of (3b) we have

f ′(is′
.Q.Tail) = cs.nodep by (ii) above

6= cs.tailp.ptr by procs ok 16
= cs.Tail.ptr by (i) above
= cs′

.Tail.ptr

We prove (4) by cases. For any i such that is′.Q.Head ≤ i ≤ is′.Q.Tail, either i =
is.Q.Tail + 1 or is.Q.Head ≤ i ≤ is.Q.Tail. We treat the case in which i = is.Q.Tail +1
first. is.Q.Tail + 1 = is′.Q.Tail so there is nothing to prove for (4a). For (4b) we have



is′
.Q.seq(i) = cs.valuep by effect of do enqp

and enqueue ok
= cs.nodep

cs
→value.ptr by nds ok

= cs.nodep
cs′
→value.ptr by effect of e 9 yeswp

= f ′(i)
cs′
→value.ptr by (ii) above

4c and 4d follow from nds ok and (ii) above.
It remains to consider the case in which is.Q.Head ≤ i ≤ is.Q.Tail. For 4a, we

further distinguish the cases in which i = is.Q.Tail and is.Q.Head ≤ i < is.Q.Tail. For
the first case, we have

f ′(i)
cs′
→next.ptr = f (i)

cs′
→next.ptr because i 6= is.Q.Tail + 1

= cs.tailp.ptr
cs′
→next.ptr by (i) above

= cs.nodep by effect of e 9 yes
p

= f ′(is′
.Q.Tail) by (ii) above

= f ′(i + 1) by effect of do enqp

If is.Q.Head ≤ i < is.Q.Tail, (4a) follows directly if we can show that f (i) 6=
cs.tailp.ptr. This is because i 6= is.Q.Tail and so (4a) holds for i in the pre-state and

(f (i)
cs
→next).ptr = f (i + 1) ⇒ (f (i)

cs′
→next).ptr = f (i + 1) given f (i) 6= cs.tailp.ptr

⇒ (f ′(i)
cs′
→next).ptr = f ′(i + 1) i < is.Q.Tail so f ′(i) = f (i)

and f ′(i + 1) = f (i + 1)

But if f (i) = cs.tailp.ptr then by injective ok and (i) above, we have i = is.Q.Tail,
contradicting the hypothesis that i < is.Q.Tail.

(4b), (4c) and (4d) all follow for i from the fact that these conjuncts held in the
pre-state and that because i 6= is.Q.Tail + 1, is′.Q.seq(i) = is.Q.seq(i) and f ′(i) = f (i).
Moreover, no value fields, nor free? are modified by the transition.

5 Experience with PVS

In this section we describe our experience using PVS to prove that the relations pre-
sented in the previous sections are in fact simulations. We focus on the forward simula-
tion from ConcAut to IntAut because of its greater complexity. The techniques used to
verify the backward simulation are similar.

The PVS system [3] provides a specification language, which we used to define the
notions of backward and forward simulation. Using techniques adapted from [8], we
also encoded the three automata, AbsAut, IntAut and ConcAut, as well as the simulation
relations, BSR and FSR.

One of the goals of our verification effort was to construct the proof without requir-
ing the human prover to attend to the tedious and uninformative aspects. We achieved
this using two techniques: using the step-correspondence and witness functions, and
dividing the forward simulation proof into many small, manageable parts. As noted in



Sect. 4.2, using predefined functions to instantiate existentially quantified variables re-
lieves the user of needing to manually instantiate these variables during proofs. Also, as
described below, dividing the proof into many small parts allowed us to quickly isolate
the parts of the proof that required human insight.

We divided the forward simulation verification condition into over 1000 lemmas.
One lemma covers condition 1 of Fig. 7; for each concrete action associated by the step-
correspondence with a nonempty intermediate action sequence, there is a lemma stating
that if the concrete precondition holds, then the intermediate precondition holds in all
related states; and finally, more than 900 preservation lemmas, each asserting that a part
of the simulation relation is preserved across some transition. We used the mechanical
proof facilities of PVS to prove a large proportion of these lemmas automatically.

Constructing proofs for the preservation lemmas constituted by far the bulk of the
proof effort, and so we describe the techniques used to achieve this here. The conjuncts
of the simulation relation can be divided into a small number of classes, depending on
the presence and structure of the top level quantification: for example, enqueue ok and
all the subpredicates of procs ok are universally quantified over a single process, so fall
into the same class. For each of these classes, we developed a simple strategy that set up
a proof, to be continued by a user or automated strategy. All these strategies begin by ex-
ecuting a strategy called Begin-Simstep, which evaluates the step-correspondence
and witness functions, and expands the definition of rel and the definitions on which
it depends, resulting in a set of subformulae each making assertions about is, cs and f .
Begin-SimStep then labels each subformulae, allowing strategies applied later to
refer to each subformula by name. Because rel is too complex to be analysed by PVS’s
automated strategies, Begin-SimStep hides the subformulae of rel. In PVS, each
subgoal of a proof is associated with a set of formulae that are hidden; that is, they are
not visible to any strategies, unless they are first revealed.

After Begin-SimStep has completed, one or more strategies are applied, each
of which applies proof steps that are always needed to prove a conjunct of a particular
form. For example, the SimStep-obj-ok strategy, which is applied at the beginning
of preservation proofs involving obj ok (which has no top-level quantifier), expands
obj ok in the consequent, and generates a set of new subgoals, where each conjunct
must be shown to hold in the post-state. Once this strategy is completed, either an
automatic strategy is applied to attempt to complete the proof without user intervention,
if possible, or PVS waits for a command to be invoked interactively.

Now we have a situation in which the user is presented with a set of subgoals. Using
primitive PVS proof commands and the labels defined by Begin-SimStep, the user
reveals antecedent formulae that assert facts about the pre-state that are relevant to the
subgoal at hand and instantiates any universally quantified variables. Once the relevant
formulae have been revealed and instantiated, it remains to invoke the PVS automated
strategies on the subgoal. These strategies apply boolean decision procedures, rewrite
rules, and sometimes heuristic instantiations to attempt to complete the goal.

The limited form of interaction with the theorem prover not only reduces user-effort,
but also improves the robustness of the proof. As the project progressed, we often made
small modifications to the simulation relation and even the automata. Because we used
proof commands that did not depend on fine aspects of the formulae being proved, we



were able to successfully re-run most proofs after a modification, without changing the
proofs themselves.

6 Concluding Remarks

We have presented a variation on the practical lock-free FIFO queue algorithm of
Michael and Scott, and described a semi-automated proof of its linearisability we devel-
oped using the PVS system. The algorithm and specification are both modelled using
I/O automata, and the proof is based on a combination of forward and backward simu-
lation proofs. Our work illustrates some techniques for modelling and reasoning about
dynamically allocated memory, and also some techniques for fully automating the easy
parts of proofs, allowing the human prover to focus on aspects of the proof that require
human insight. Future work includes refining our techniques to increase automation and
applicability, as well as applying them to other problems. We expect that our efforts to
automate the easy parts of the proof will enable us to tackle larger and more complicated
problems in the future.

References

1. Michael, M., Scott, M.: Nonblocking algorithms and preemption safe locking on multipro-
grammed shared memory multiprocessors. Journal of Parallel and Distributed Computing 51
(1998) 1–26

2. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent objects.
TOPLAS 12 (1990) 463–492

3. Crow, J., Owre, S., Rushby, J., Shankar, N., Srivas, M.: A tutorial introduction to PVS.
In: Workshop on Industrial-Strength Formal Specification Techniques, Boca Raton, Florida
(1995)

4. Moir, M.: Practical implementations of non-blocking synchronization primitives. In: Pro-
ceedings of the 15th Annual ACM Symposium on the Principles of Distributed Computing,
Santa Barbara, CA. (1997)

5. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann (1996)
6. Lynch, N.A., Vaandrager, F.W.: Forward and backward simulations – Part I: Untimed systems.

Information and Computation 121 (1995) 214–233
7. Ramı́rez-Robredo, J.A.: Paired simulation of I/O automata. Master’s thesis, Massachusetts

Institute of Technology (2000)
8. Devillers, M.: Translating IOA automata to PVS. Technical Report CSI-R9903, Computing

Science Institute, University of Nijmegen, the Netherlands (1999)


