Liveness by Invisible Invariants*

Yi Fang', Kenneth L. McMillar?, Amir Pnuel?, and Lenore D. Zuck

1 Microsoft, Redmond, Washingtogfang@microsoft.com
2 Cadence Design Systems, Berkeley, Californiamillan@cadence.com
3 New York University, New York, New Yorkamir@cs.nyu.edu
4 University of lllinois at Chicagolenore@cs.uic.edu

Abstract. The method of Invisible Invariants was developed in order to verify
safety properties of parametrized systems in a fully automatic manner. In this pa-
per, we apply the method of invisible invariant to “bounded response” properties,
i.e., liveness properties of the type=— <> ¢ that are bounded — onceestate

is reached, it takes a bounded number of rounds (where a round is a sequence of
steps in which each process has been given a chance to proceed) togesatea
—thus, they are essentially safety properties.

With a “liveness monitor” that observes certain behavior of a system, establishing
“bounded response” properties over the system is reduced to the verification of
invariant properties.

It is often the case that the inductive invariants for systems with “liveness mon-
itors” contain assertions of a certain form that the original method of invisible
invariant is not able to generate, nor to check inductiveness. To accommodate in-
variants of such forms, we extend the techniques used for invariant generation, as
well as the small model theorem for validity check.

1 Introduction

Uniform verification of parameterized systeim®ne of the most challenging problems

in verification. Given a parameterized systéifiV) : P[1] || - - - || P[/N] and a property

p, uniform verification attempts to verify th&t(V) satisfiegp for everyN > 1. One of

the most powerful approaches to verification that is not restricted to finite-state systems
is deductive verificationThis approach is based on a set of proof rules in which the user
has to establish the validity of a list of premises in order to validate a given temporal
property of the system. The two tasks that the user has to perform are:

1. Provide some auxiliary constructs that appear in the premises of the rule;
2. Use the auxiliary constructs to establish the logical validity of the premises.

When performing manual deductive verification, the first task is usually the more dif-
ficult, requiring ingenuity, expertise, and a good understanding of the behavior of the
program and the techniques for formalizing these insights. The second task is often per-
formed using theorem provers suchrass [OSR93] orster [BBCT95], which require

user guidance and interaction, and place additional burden on the user. The difficulties

* This research was supported in part by NSF grant CCR-0205571 and ONR grant NO0014-99-
1-0131

in the execution of these two tasks are the main reason why deductive verification is not
used more widely.

A representative case is the verification of invariance properties using the proof rule
INV of [MP95]: in order to prove that assertieris an invariant of progran®, the rule
requires coming up with an auxiliary assertipgithat isinductive(i.e. is implied by the
initial condition and is preserved under every computation step) and that strengthens
(implies)r. The rule is described in Fig. 1, wheggis the initial condition of program
P.

11. 0 — ¢
2.0 A p— ¢
3.0 —r
Or
Fig. 1. The proof ruleinv

In [PRZ01,APR 01], we introduced the method infvisible invariantsthat offers a
method for automatic generation of the auxiliary assertiéor parameterized systems,
as well as an efficient algorithm for checking the validity of the premisasiof The
generation of invisible auxiliary constructs is based on the following idea: it is often
the case that an auxiliary assertiprfor a parameterized systef(N) has the form
Vi : [1..N].q(¢) or, more generallyy: # j.q(4,j). We construct an instance of the pa-
rameterized system taking a fixed vallyg for the parametefV. For the finite-state
instantiationS(Ny), we compute, usingDDs, some assertion that we wish to gener-
alize to an assertion in the required form. kebe the projection of) on process[1],
obtained by discarding references to variables that are local to all processes other than
P[1]. We takegq(i) to be the generalization of obtained by replacing each reference
to a local variableP[1].z by a reference td[i].«. The obtained(7) is our candidate
for the body of the inductive assertign: Vi.q(i). We refer to this generalization proce-
dure agroject & generalizeFor example, when computing invisible invariantds the
set of reachable states §fNy). The procedure can be easily generalized to generate
assertions of the typeiy, . .., i.p(i).

Having obtained a candidate for the assertignve still have to check the validity
of the premises of the proof rule we wish to employ. Under the assumption that our
assertional language is restricted to the predicates of equality and inequality between
bounded-range integer variables (which is adequate for many of the parameterized sys-
tems we considered), we provedmall-modetheorem, according to which, for a cer-
tain type of assertions, there exists a (small) bodfdsuch that such an assertion is
valid for every N iff it is valid for all N < N,. This enables usingDD-techniques
to check the validity of such an assertion. The cases covered by the theorem are those
whose premises can be written in the foviij. (7, j), wherey (i, ;) is a quantifier-
free assertion that may refer only to the global variables and the local variabig of
andP[j] (v3-assertiondor short).

Being able to validate the premises8[Vy] has the additional important advantage
that the user never sees the automatically generated auxiliary asserTibis assertion
is produced as part of the procedure and is immediately consumed in order to validate
the premises of the rule. Being generated by symlrmip-techniques, the representa-

tion of the auxiliary assertions is often extremely unreadable and non-intuitive, and it
usually does not contribute to a better understanding of the program or its proof. Be-
cause the user never gets to see it, we refer to this method as the “methoiible

invariants” As shown in [PRZ01,APRO01], embedding a/Z.q(z) candidate inductive
invariant inINV results in premises that fall under the small-model theorem.

In this paper we apply the method of invisible invariants to the second-most impor-
tant properties of concurrent systems, namely, “response” properties. Response prop-
erties are properties of the tyge>- < r (i.e., [1(¢ — <> 1)), and they are the most
common liveness properties. The most frequent form of response properties of param-
eterized systems ii.(¢(i) = <> r(i)), whereq(i) andr(7) are quantifier-free. Since
the systems we are dealing with are finite-state, that is, for every va|lug[N] is
finite-state, every valid response propertp@aindedoy some of the parameters of the

system.

The ability to prove onlyboundedprogress may seem like a limitation. However,
note that we are dealing here only with finite-state systems. That is, for &uesyN]
is finite-state. If a finite-state system satisfies a progress property, then it satisfies a cor-
responding bounded progress property, for a suitable bound. In the case of a simple
transition system without fairness assumptions, the bound can be given in terms of the
maximum number of transitions required to satisfy the progress condition. In the case
of “justice” assumptions (of the forr] <> p(4)), the bound can be given in terms of
the number of “rounds” in which every justice conditipfi) is satisfied. Of course, the
bound may be a rapidly increasing function/gf The main limitation of the present
method is that it handles only the case when the bound increases linearlyvwtle
will show, however, that this condition is satisfied for several typical examples of pa-
rameterized protocols.

Roughly speaking, the bound determines “how fast” progress is achieved. In the
case that the bound depends on the transition relation, the proof of progress can be re-
placed by a proof of a simpler safety propetigunded progresghat establishes that
onceq(f) holds and enough transitions (where “enough” is determined by the bound)

-,

occur, r(¢) obtains. Since we are dealing with parameterized systems, the bound de-
pends on the parametéf. For simplicity of notation, assume thét) is of size 1, i.e.,

the progress property at handvisq(:) = <> r(i). Let z be some process. It suffices to
show thatg(z) == r(z). Let K range overounds in each of which each process is

to take at least one step. Since we want to rule out stuttering rounds, we allow a process
to take a stuttering step only if it has no non-stuttering step available to it. We show
how to obtaink and how to automatically construct a non-interfering “liveness mon-
itor” such that, once (synchronously) composed with the original system, the method
of invisible invariants can be used to showré-fependent) bounded progress (safety)
property that establishes the liveness property of the parameterized system.

Often it is the case that the safety property obtained is too large for the model
checker. Our experience has shown that splitting such individual proofs into two parts,
livelock freedom and bounded overtaking, often helps to avoid those two obstacles.
“Livelock freedom” establishesi.q(i) =-3i. r (i), and “bounded overtaking” es-
tablishes that oncéi.q(4), there is a bound such that for every # i, the (regular)
sequencey(j)X*r(j)X*—r(j) can occur at mosk times beforer(i) becomes true.

Bounded overtaking is a safety property, and, as we show, can be proved using the
method of invisible invariants. Put together, livelock freedom and bounded overtaking
establish individual liveness.

It is often the case that the invisible invariants we obtain cortseiiformulae, which
are not covered under the small model theorem previously proven. We extend the small
model theorem to deal with invariants that hawesubformulae.

The paper is organized as follows: In Section 2, we give an informal overview of
our method. In Section 3, we present the general computational modekaind the
restrictions that enable the application of the invisible auxiliary constructs methods.
We also review the small model theorem, which enables automatic validation of the
premises of the various proof rules. In Section 4, we describe how to construct liveness
monitors. In some cases, the inductive invariant requikésomponents, to which the
invisible invariant method no longer applies. Section 5 shows an extended small model
theorem that allows handling such invariants, as well as an enh@ngjedt & gener-
alize method that generates invariants witt-components. In Section 6, we illustrate
the method on an example oBakERY protocol.

Related Work Proving “bounded liveness” properties by safety techniques was pro-
posed in [BAS02]. There, the justice requirements are incorporated into the safety
model. It is not clear whether the method can be extended to parameterized systems. In-
corporating the justice of such systems into the safety model seems to be prohibitively
costly.

A survey on the method of invisible invariants is in [ZP04]. A tool that allows auto-
matic generation of invariants using the method is described in [BFPZ05].

The problem of uniform verification of parameterized systems is undecidable [AK86].
One approach to remedy this situation, pursued, e.g., in [EKO0Q], is to look for restricted
families of parameterized systems for which the problem becomes decidable. Unfortu-
nately, the proposed restrictions are very severe and exclude many useful systems such
as asynchronous systems where processes communicate by shared variables.

Another approach is to look for sound but incomplete methods. Representative
works of this approach include methods based on: explicit induction [EN95], network
invariants that can be viewed as implicit induction [LHR97], abstraction and approxi-
mation of network invariants [CGJ95], and other methods based on abstraction [GZ98].
Other methods include those relying on “regular model-checking” (e.g., [JNOO]) that
overcome some of the complexity issues by employiacelerationprocedures, meth-
ods based on symmetry reduction (e.g., [GS97]), or compositional methods (e.g., ((McM99)),
combining automatic abstraction with finite-instantiation due to symmetry. Some of
these approaches (such as the “regular model checking” approach) are restricted to par-
ticular architectures and may, occasionally, fail to terminate. Others, require the user to
provide auxiliary constructs and thus do not provide for fully automatic verification of
parameterized systems.

Most of the mentioned methods only deal with safety properties. Among the meth-
ods dealing with liveness properties, we mention [CS02], which handles termination of
sequential programs, network invariants [LHR97], aodnter abstractiofiPXZ02].

Most relevant to the work here are [FPPZ04b,FPPZ04a] that extend the method of
invisible invariants tdnvisible ranking by applying the method for automatic genera-

tion of auxiliary assertions to general assertions (not necessarily invariant), and propos-
ing a rule for proving progress properties that embed the generated assertions in the
rule’s premises, and efficiently checks for their validity. As is well known to users of
such rules, such a proof requires the generation of two kinds of auxiliary constructs:
helpful assertionandranking functionsTo automatically generate ranking functions,

we associate, with each potentially helpful transition an individual ranking function
mapping states to integers in a small range. If the auxiliary constructs have no quan-
tifiers, all the resulting premises avé-premises and the small-model theorem can be
used.

For protocols that cannot be proven with such restricted assertions, [FPPZ04a] ex-
tends the method of invisible ranking by allowing helpful assertions (and ranking func-
tions) belonging to transitions to be of the foxth H (¢, j), whereH (i,) is a quantifier-
free assertion. (Substituted in the standard proof rules for progress properties, these as-
sertions lead to premises that do not conform to the requitetbrm, and therefore
cannot be validated using the small model theorem.) To handle such premises the proof
rule is extended by implementing a new mechanism for selecting a helpful transition
based on the establishment gbi@-orderamong transitions in each state.

Similarly to the method of invisible ranking, the method proposed here is applica-
ble to the same type of “bounded progress” properties. However, the invisible ranking
method requires numerous auxiliary construct, some (especially the pre-order) are at
times hard to compute. The method proposed here is much simpler. The bound is de-
rived from a small instantiation of the system, and, once the bound is computed, the
only auxiliary construct needed is the strengthening invariant, which is well studied.

2 From Bounded Progress into Safety

This section contains a somewhat intuitive overview of the method that will be formal-
ized and detailed in the following sections.

Consider a parameterized systSrand a progress propefty. ¢ = <> r. The prop-
erty ¢ is bounded, if there is a bourid, independent ofV, such that once a-state is
reached, after at mogt’ rounds in which each process takes at least one step, a goal
r-state is reached.

Consider a “liveness monito}/,; that observes. Once ag-state is reached\/,
resets a counter of rounds. Once each process takes (at least) oié stepreases the
round counter. When there are no pending states — states-re@path that originates
at ag-state — the monitor keeps the round count at zero and does not keep track of the
processes. lf is bounded by, then in the monitored systems the round counter never
exceedds. Thus, provingp is equivalent to proving that th&||| M, = [1(md < K)
wherernd is the round counter.

Of course, one has to choo&e One can either try to compute it (e.g., by instantiat-
ing S(V) for a small number of processes, s&y, and considering the pending paths
on the instantiation) or one may choose some small instantiation, try increasing values
of K until one succeeds, and then try the resultihgn larger (yet small) instantiations.

OnceK is chosen, the method of invisible invariants can be used to show that for
everyN, S||M, = O(rnd < K). In fact, since the monitor needs to be finite-state,

we construct it with the knowledge of (the assum&dand bound the round counter by
K.
The method may fail for the following reasons:

1. For someN, S(N) £ ¢ or ¢ is not bounded:;

2. The boundX is too small;

3. The heuristics used for the generation of invisible invariants are not sufficient for
the given system;

We cannot deal with the first case. As to the second case, a larger instantiation usually
solves the problem. Hence, it makes sense toifrpn several instantiations before
attempting to prove the property.

To deal with the third case, we present a new heuristic to generate candidate invari-
ants withdv-assertions, and extend the small model theorem to accommodate invariants
in such forms.

3 Preliminaries

As a computational model for parameterized bounded-data systems vi®wsged
just transition systemshat are a compassion-less variant of the modéloninded fair
transition systenof [FPPZ04a].

3.1 Just Transition Systems

We present a variant of thest transition systenof [MP95]. A JTsis described by
S =(V,0,T), with:

o V ={uy,...,u,} — Afinite set of typedsystem variables\ states of the system
provides a type-consistent interpretation of the system varidblesssigning to
each variables € V' a values[v] in its domain. LetY denote the set of all states
overV. An assertionover V is a first order formula oveV'. A states satisfies an
assertionp, denoteds = o, if ¢ evaluates ta by assignings[v] to every variable
v appearing inp. We say that is ap-state ifs = .

e © — Theinitial condition: An assertion characterizing the initial states. A state is
calledinitial if it is a ©-state.

e 7 — A finite set of transitions. Every transition € 7 is an assertion (V, V")
relating the valued’ of the variables in state € X' to the valuesV’ in an S-
successor stat€ € Y. Given a state € X, we say that’ € X is ar-successor
of sif (s,s") = 7(V,V’) where, for eachy € V, we interpretv ass[v] andv’ as
s'[v]. We say that transition is enabledin states if it has somer-successor, oth-
erwise, we say that is disabledin s. In the system we consider, every transition is
disabled immediately after it is taken. LBt (7) denote the assertiatl”’.7(V, V')
characterizing the set of states in whicls enabled.

Leto : sg, 81, s2, . . ., be an infinite sequence of states. We say that transitiory ¢ is
enabled at positiork of ¢ if 7 is enabled or,. We say that- is taken at positiork if

sip+1 IS ar-successor of;. Note that several transitions can be considered as taken at
the same position.
We say thatr is acomputatiorof S if it satisfies the following requirements:

e Initiality — sq is initial, i.e.,sq = ©.

e Consecution— For each? = 0,1, ..., statesy,; is ar-successor of, for some
TeT.

e Justice— for everyr € 7T, there are infinitely many positioris > 0, such that
7 is disabled or taken at positidh Since we assume that transition are disbled
immediately after they are taken, this is equivalent to requiringthatdisbaled
infinitely many times.

Composition of Just transition Systemissume twaTss Sy : (V1,01,71) andSs: (Va, Oy, To).
Thesynchronous parallel compositiaf S; andS,, denoted by, |||.S2, is thedTs

(ViU V3,601 A Bs, \/ T AT2)
T1€T1,72€T>

Theasynchronous parallel compositiafi S; and.S2, denoted bys, ||.Ss, is thedTs
(ViuVz,01 NGOy, TIHUT,Y)

where for everyi = 1,2, 7;" includes, for every transition € 7;, the transitionr
with a conjunct requiring that all nol; variable are presevered. Formally, for a set of
variablesU, letpregU) denote the assertiqy, ., (u' = u) stating that nd/-variables

is modified. TherZ,* = {r ApregV; UVo \ V;) : 7 € T;}.

3.2 Bounded Just Transition Systems

To allow the application of the invisible invariants method, we further restrict the sys-
tems we study, leading to the model lndunded just transition systenigiTs). For
brevity, we describe here a simplified two-type model; the extension for the general
multi-type case is straightforward.

Let N € N7 be thesystem’s parametekVe allow the following data types:

. bool: the set of boolean and finite-range scalars;

. index: a scalar data type that includes integers in the rahg¥|;

. data: a scalar data type that includes integers in the rahg®]; and

. Any number of arrays of the tyjiedex — bool. We refer to these arrays hsolean
arrays

5. At most one array of the type: index — data. We refer to this array as ttdata

array.

A WN P

Atomic formulasmay compare two variables of the same type. E.qgy, #ndy’ are
index variables, and is anindex — data array, theny = 3’ andz[y] < z[y'] are
both atomic formulas. Fot : index — data andy : index, we also allow the special
atomic formulaz[y] > 0. We refer to quantifier-free formulas obtained by boolean

combinations of such atomic formulasrm@stricted assertionsAs the initial condition
O, we allow assertions of the foriv¥.«(:), whereu(i) is a restricted assertion. As the
transitionst € 7, we allow assertions of the form(i) : Vj.¢)(¢,) for a restricted

assertionp (i, j).

Example 1 (A Simple Mutual Exclusion Algorithm).
Consider progransiMPLE in Fig. 2, which is a simple mutual exclusion algorithm that
guarantees deadlock-freedom access to critical section faNgmpcesses.

in N :naturalwhere N > 1
local t : bool wheret =1
loop forever do

N 0 : NonCritical
H Pli] 1:whent=1dot:=0
i=1 2 : Critical

3:t:=1

Fig. 2. ProgramsiMPLE

In this version of the algorithm, locatidhconstitutes the non-critical section which a
process may non-deterministically exit to the trying section at locatidrocation1

is the waiting location where a process waits until the tokens(available and then

takes it. Locatior? is the critical section, and locatichis the exit section where the
process returns the token. As we show, the program guarantees that if some processes
are waiting to enter the critical section, eventually some process will succeed. Fig. 3
describes theJTscorresponding to prograsimMPLE.

_J @ array[1..N] of [0..3]
v {t: bool;

O:Vi:wli]=0At=1

T0(2) : Vj # i w[i] =0Ax[i] € {0,1} A pred{r[j],t})
T(3):Vj#£i:wfi)]=1At=1A"[{] =2At =0Apre{{r[j]})
T2(i) 1 V5 # i 7wli) = 2 An'[i] = 3 A pre({~[j],t})

T3(1) 1 Vi £ i w[i] =3AT i) =0At =1Apred{r[j]})

T

Fig. 3. BJTsfor ProgramsimMPLE

As seen in the example of Fig. 3, the transition relation of proé¥gss a disjunction
of individual transitions of the formy[i] V7 [i] V- - - 7 [¢]. We denote this disjunction by
pli] and refer to it as thprocess transition relatiolWe denote bylis[i] = = En(p[i])
the assertion stating that the process transition is disabled, add by _taken[i] the
disjunctiondis[i] V p[i] claiming that proces®[i] is currently disabled.

3.3 The Small Model Theorem

Lety : Vidj.R(i,) be an AE-formula, wher&(i, ;) is a restricted assertion that refers
to the state variables of a parameterized sysf&iV) and to the quantifiedifdex)
variables; andj. Let N, be the number of universally quantified, fieelex variables
andindex constants appearing iR. The claim below (stated in [PRZ01] and extended
in [APRT01]) provides the basis for automatic validation of the premises in the proof
rules:

Theorem 1 (Small model property).
An AE-formulap is valid iff it is valid over all instance$ (V) for N < Nj.

The small model theorem allows to check validity of AE-assertions on small mod-
els and to derive from that their validity on arbitrary large instantiations. This can be
accomplished usingDD techniques. The method of invisible invariants apptiegect
& generalizeto produce candidate inductive assertions for the set of reachable states
that are A-formulae. Checking their inductiveness requires checking validity of AE-
formulae. The method of invisible ranking appli@®ject & generalizeo produce can-
didate assertions for various assertions (pending, helpful, ranking), all A- or E-formulae
and, the premises obtained using these assertions are again all AE-formulae. Thus, the
theorem implies they can be verified on small instantiations.

4 Monitoring Liveness with Safety

Assume a progress propetty ¢ = <> r. Itis often the case that such a progress prop-
erty ¢ is “bounded”, that is, there exists some boutidsuch that aftef roundswhere
each process is given at least one chance to progress, a goal state is guaranteed to be
reached. If¢ is a bounded progress property with bouRd then, instead of show-
ing thatS = ¢, we can construct a non-interferimgonitor A, (K) which we syn-
chronously compose with, and show that the simple invariance propdriy(rnd <
K) holds over the new systeSi|| My (K).

Thus, for the case of bounded progress, liveness can be reduced to safety. The pro-
cess can be done automatically, since one can défifiom the reachability graph of
S.

Assume aBJTS S: (V,©, 1) and a progress property: ¢=- <>r. The monitor
My(K)isaBITSMy: (Var, Oum, {7 }), where:

Va — consists oft and three new variables: a booleand, a variablernd in the
range[0.. K], andmoved is an array [1..N] of booleans. The varialjlend is set
when the system is in a state that followg-atate on a-less path. The variable
rnd counts the number of rounds. The variableved[i] is set when processis
disabled.

Oy —pend = (gA-r) A rnd =0 A /\f\f:1 —~moved|i], i.e., initially the round is O
and everymouved is F.

v — Ty consists of three conjuncts, one for each of the variablesfibwe:d-part
is further composed aWV conjuncts). The transition,; consists of the following
parts:

1. pend’ = —r' A (pend V ¢'). This conjunct states thatnd becomes true when
it was false and A —r is true, and thapend becomes false whenis realized.
In all other casegend retains its previous value;

2 ;V\ moved'[i] = [if ﬁpend’ v /\j\f:1 moved|j] Fhen F]
o elsedis_or_taken[i] V moved|i]
This conjunct states that for evety moved]i] is true in pending states that
are reached frommouved[i]-states or when processs disabled, but only if the
round is not over (since then all theoved|i]'s need be reset).

if —pend’ then 0
3. mmd" = |elseifrnd < K A /\;\;1 moved[j] then rnd + 1
else rnd

This conjunct states that a new round starts from pending states once all pro-
cesses are were found disabled andstate was not reached. Similariyd
becomes 0 when anstate is reached. In all other cases it remains intact.

Note that none of the conjuncts update the variabl@és, ijustifying our description
of M, as “non constraining.”

Thus, as long as$ is not in a pending stateend, rnd, and all themoved|i]'s areF.
Once S is in a pending statepend is set. From thereon, whenever every process is
found disabledynd is incremented (as long as it is less th&n. Obviously, if rnd
ever reached(, than it means that the goalwas not reached aftek’ rounds, thus
refuting the assumption thatis a bounded progress property with bouddHowever,

if (1(rnd < K), we can be assured thatholds overS. This is captured by following
claim:

Lemma 1l (Soundness).
(SlIMy(K)) = O(rnd < K) = SkE¢

Proof. Assume thab [~ ¢. Thus, there exists asrcomputatiorns of the form X% (X —
{r})~. Consider the behavior df/4()|||S when run orv. Obviously,c = > [pend.
Since every process is guaranteed to be disabled infinitely many times, we havé-that
O (—moved[i] — <> moved]i]). We can therefore conclude that= > (rnd = K),
thus(S|||My(K)) = O(rnd < K). O

Example 2 (Liveness Monitor for PrograsmmpLE).

Consider the program of Example 1, and suppose we want to establish the progress
property¢: (Fi.w[i] = 1) == (Fion[i] = 2). We guess(= 2, and run the program

for instantiations ofN = 3,4, 5 to confirm that this is a reasonable bound. We then
construct the progress monitdf,(2) as above, where: Ji.x[i] = 1 andr: Ji.w[i] =

2. We instantiated PrograiMPLE to 4 processes and run it composed with,. We

obtained the invariant

Vi j.rnd <2 A (mpend Vit =1V rnd =0) A
(mpend — ™md =0 A —moved[i]) A (pend — w[i] # 2) A
(rnd =1—7[i] =1 A —moved[i]) A
(wli] =0 A t =0V r[i] =3 — —moved[i]) A
(rli] 22 —=t=0A7[j]<2) A (r[i]=1A(t=1V7[j] =3) — pend) A
Eﬂ'[z] =0At=1Amoved[i] =1 — 7[j] =1V —~moved[j]) A

Ji. (md =0At=0)— (r[i] =0 A moved[i] V 7[i] > 2)

which is inductive and impliesnd < 2 over (simple(4)||M,(2)). It follows The-
orem 1 that[J(rnd < 2) is valid over the composed program with eve¥y and,
according to Lemma 1, this implies thatis valid over every instantiation of Program
SIMPLE.

5 Cases Requiring an EA-invariant

The method of invisible invariants obtains auxiliary assertions that are boolean combi-
nation ofVv-formulae. Used in the proof ruleiv, the premises to be proved are then
(at most)v3- formulae, whose validity, as the small model theorem establishes, can be
shown on small instantiations.

In some cases, however, the auxiliary assertions obtained cardftagmponents
(thus the proof rule has to establish validity of such formulae), to which the theorem no
longer applies. For example, when attempting to establish the livelock freedom property
of ProgramBAKERY in Section 6, we need an invariant that contains a clause:

i : (atls]i] A moved[i] =0 A Vi #4: (ylj]=0 V yli] <ylj])

claiming that (at the last round) some process has the lowest ticket and has not yet taken
a step. This is aAlvV-assertion, the likes of which are quite common when establishing
progress properties.

In this section we present a new small model theorem that applies to some cases
where 3v-premises need to be validated. To automatically obtaidaassertion as
a component in invariant assertions, we divide the reachable state¥ isymnmetric
subsetsD[1],..., D[N], where eachD][i] can be over-approximated by an assertion
of the typeD, (i) : Vj.q(i,j), so that the disjunction oD, (i)’s is our desireddvV-
assertion. The body of theév-assertiony(z, j) is computed by the procedupeoject &
generalize

5.1 An Extended Small Model Theorem

Consider a parameterizedTs.S(/N) and a formula of the typg3 v 3V that we want

to show valid over all instantiations ¢f. The Small Model Theorem establishes that,
when only the first disjunct exists, it suffices to show validity of the formula only on
small instantiations whose size is bounded by the number of free and universally quan-
tified variables. We extend it here for the case that the second disjunct exists, however,
its scope is limited.

Theorem 2 (Extended Small Model Theorem)Consider the formula
¢: Vi3 .R(i,7) vV 3i¥5.Q(,)
whereR and () are restricted assertions, and, in addition, we have:
Vi, j, k.(2Q(5) A —QUL k) — (=Q(i k) vV —Q(j, 7))

Let Vy be the number of universally quantified, fieelex variables andindex con-
stants appearing irR. Theng is valid overS(N) for everyN > 2 iff ¢ is valid over
S(N) for everyN < 2Nj.

Proof Outline: We show that if-¢ is satisfiable over a model of siZ2¢, > 2Ny, then
it is satisfiable over a model of sizé, < 2N,. The formula—¢ is equivalent to:

-,

¢: V)R, G) A Vi T5-Q(, 5)

and assume = ¢ for some state of S(N;) whereN; > 2N,. Following the proof

of the original theorem ([APR01]), we take the (no more thaN;) values assigned

to the constants, free, and existentially quantifietex variables in the first conjuncts
thats assigns, say tay, ..., uy, (WhereL < Ny). Obviously, if we project ontoU =
{u1,...,ur} (i.e., remove references to amdex variables outsidé/), the resulting

state satisfies the first conjunct, while adding back all the variables that refer to some
particularindex variable that is not in this set, will not change that.

We next add td/ at mostL otherindex variable that will guarantee the satisfiability
of the second conjunct. Starting witty = (), we iterateL steps. At the/" step, we
start with a se¥;,_; and a state,_1, such thats,_; is the projection ok ontoV,_1,
ands,—1 = Vi € Vp_1.3j € V,—1.m-Q(i, 7). We then add td,_; the element.,, and,
possibly, another element, to obtdin

Assumel < ¢ < L and considet,. If s = ~Q(ug, v) for somev € VU {u,}, then
Ve = Vo—1 U{us}. Assume therefore that for alle V,_1, s = =Q(uy, v) and thats =
—Q(ug, ug). Sinces = 1, it follows that for somej; € [1..N1], s E —Q(ug, j1). We
continue along aQ-chain in[1..Nq] of the formu, = jo, j1,. .., jm that thej;’s are
mutually distinct, for every = 0,...,m, s = Q(j;,J;), and for everyi = 1,...,m,

s E —Q(ji-1,7i)- (The finiteness ofl..N;] guaratees that the chain is finite.) It thus
follows thats = —=Q(jm, jm) A ~Q(ue, jm). We then letV, = Up—1 U {ug, jm }-

Note that the process adds at mastew elements td/, thus the state attained is
of size at mos2Ny. Supposd/;, = {v1,...,var} Wherevy < ...var. We can now
contract the state tb..2L and obtain a stat& of S(2L) such thats’ |= 1. O

6 Example: BAKERY

Consider progranBAKERY in Fig. 4, which is a variant of Lamport’s original Bakery
Algorithm that offers a solution to the mutual exclusion problem for Ahgrocesses.

In this version of the algorithm, locatioi constitutes the non-critical section which

a process may non-deterministically exit to the trying section at locatidrocation

1 is the ticket assignment location — to guarantee the finiteness of the state-space, the

in N :natural where N > 1
local y : array [1..N] of [0..V]

wherey =0
[loop forever do i
[0 : NonCritical]
N 1: y := maximal value tay[¢] while
) preserving order of elements
Pl ylil=0v
i= 2:awaitVj # i : ; .
' i# [y[J]>y[Z]]
3 : Critical
4:y[d:=0

Fig. 4. ProgramBAKERY

ticket values arél..N]; when a processtakes a ticket, the tickets help by the other
processes may be changed preserving their relative order, and piapetssa ticket
whose value is higher than the others. Locatlds the waiting phase, where a process
waits until it holds the minimal ticket. Locatio®i is the critical section, and location
4 is the exit section. Note that, the ticket array, is of typindex — data, and the
program location array (which we denotebyis of typeindex — bool. In fact,r is of
typeindex — [0..4], but it can be encoded by three boolean arrays. Note also that the
ticket assignment statementlais non-deterministic and may modify the values of all
tickets.

The livelock freedom property of the program is:

¢: (3z: atdh]z]) = &3z :atls]z])

The bound obtained for the propertyAs = 2.
Following are the results of our verification experiments applied tosthicERY
protocol.

1. We chose (arbitrarily) to instantiate the systenite= 4. We applied the enhanced
project & generalizemethod [FPPZ04a] tBAKERY (4), generating candidate in-

variants in the forms of a boolean combinations of universal assertions. The best

candidate obtained was of the form
(bl: VZ,]OQ(%]) A 317]a2(27]) \ V’L,]O@(Z,])S

The assertiow, failed to be inductive.

2. We used our invisible invariant generator to generaftévaassertion, : 3iV;j5(4, j)
overBAKERY (4). We then define: ¢; A ¢2, which is both inductive and implies
the safety property](rnd < 2) overBAKERY (4).

5 We can “guide” our automated invisible invariant generator as to the form of the assertion to be
produced; however, being invisible and producedby techniques, the generated assertions
cannot be neatly displayed

3. We next checked whethey3 is reflexive or transitive. Since the test requires check-
ing a universal assertion, we can apply Theorem 1 and derive that it suffices to check
the reflexivity/transitivity of—3 over BAKERY (Ny) for Ny < 4 to derive that it is
reflexive/transitive oveBAKERY (V) for everyN.

4. By applying Theorem 2, we derived = 8 as the size of the small model to
establish the validity of the premisesimv using¢ as the auxiliary invariant. The
candidate invarianp; A @2 was reconstructed ov&nKERY (8), and proved to be
inductive and to imply the safety propeiffy (rnd < 2). We can therefore conclude
that the protocol satisfy the livelock freedom property for any instantiation.

The code for the programs can be foundhitp://eeyore.cs.nyu.edu/acsys/forte06/

We would like to point out that the proof obtained by the method proposed here is
considerably simpler than the proof presented in [FPPZ04a] which calls for auxiliary
constructs other than invariants, thus requires considerably more interaction with the
user.

7 Discussion and Future Work

The paper presents a method for automatic verification of progress properties of pa-
rameterized systems based on the method of invisible invariants. The method is based
on the observation that such progress properties are usually “bounded,” and can thus
be converted into safety properties. The heuristic proposed attempts to find a bound for
the progress property, and use the method of invisible invariants to prove the resulting
safety property.

There are several cases where the proposed method is bound to fail:

Super-linear bounds: As itis now, the method can only be successful when the bound
is linear in the number of processes. Some protocols (e.g., Petergeprecess
mutual exclusion protocol) have bounds that are non-linear in the number of pro-
cesses. We are currently working on extending the method to apply to cases where
the bound is quadratic in the number of processes.

Fairness-dependent bounds:The method cannot be applied to cases where the bound
depends on non-justice assumptions. Such non-justice fairness assumptions occur,
for example, when using semaphores, the bound depends on the number of com-
passion (strong fairness) assumptions. However, compassion can be translated into
justice, at the cost of adding some new variables to the system, hence our method
can indirectly deal with such cases.

Probability-dependent progress: When protocols involve probabilistic choices among
transitions, progress often depends on probabilistic arguments. As shown in [APZ03],
one can often transform such protocols to non-probabilistic protocols by a “plan-
ner” that occasionally determines the results of some probabilistic choices, leaving
the others non-deterministic. In fact, the projection used in the method of invisible
invariants can be applied to obtain the planner automatically, and then the progress
property can be bounded. Consequently, the method proposed here, in conjunction
with the automatically obtained planner. can be applied to probabilistic protocols
as well.

Failure of invisible invariants: The method of invisible invariant is heuristic in na-
ture, and may sometimes fail. As we showed here, sometimés iavariant is
called for, which we can obtain only in certain cases. In some cases, there is no
strengthening invariant of the type we can generate. For these cases, the method
presented here is bound to fail.

As in the case of all BD-based techniques, it is always possible that the invariant
generated is too large for the model checker to handle. In fact, this may happen much
faster than when checking “regular” safety properties, since those required here include
the round counter.

References

[AK86] K. R. Apt and D. Kozen. Limits for automatic program verification of finite-state
concurrent systemsnfo. Proc. Lett, 22(6), 1986.

[APRT01] T. Arons, A. Pnueli, S. Ruah, J. Xu, and L. Zuck. Parameterized verification with
automatically computed inductive assertions.GnBerry, H. Comon, and A. Finkel,
editors,Proc.13*" Intl. Conference on Computer Aided Verification (CAV'Q1jpl-
ume 2102 otect. Notes in Comp. S¢iSpringer-Verlagpages 221-234, 2001.

[APZ03] T. Arons, A. Pnueli, and L. Zuck. Parameterized verification by probabilistic ab-
straction. In6th International Conference on Foundations of Software Science and
Computational Structuresolume 2620 of_ect. Notes in Comp. Scpages 87-102,
Warsaw, Poland, April 2003. Springer-Verlag.

[BAS02] A.Biere, C. Artho, and V. Schuppan. Liveness checking as safety checking. In Rance
Cleaveland and Hubert Garavel, edito&ectronic Notes in Theoretical Computer
Sciencevolume 66. Elsevier, 2002.

[BBC195] N. Bjgrner, I.A. Browne, E. Chang, M. Gim, A. Kapur, Z. Manna, H.B. Sipma,
and T.E. Uribe. STeP: The Stanford Temporal Prover, User's Manual. Technical
Report STAN-CS-TR-95-1562, Computer Science Department, Stanford University,
November 1995.

[BFPZO05] I. Balaban, Y. Fang, A. Pnueli, and L.D. Zuck. An invisible invariant verifier. In Proc.
17t" Intl. Conference on Computer Aided Verification (CAV’05), Springer-Verlage
LNCS 3576, pp. 291-295, 2005.

[CGJ95] E.M. Clarke, O. Grumberg, and S. Jha. Verifying parametrized networks using ab-
straction and regular languages. 6th International Conference on Concurrency
Theory (CONCUR92)volume 962 ofLect. Notes in Comp. Scipages 395-407,
Philadelphia, PA, August 1995. Springer-Verlag.

[CLP84] S. Cohen, D. Lehmann, and A. Pnueli. Symmetric and economical solutions to the
mutual exclusion problem in a distributed systeffheor. Comp. Sci.34:215-225,
1984.

[CS02] M. Colon and H. Sipma. Practical methods for proving program terminatio&. In
Brinksma and K. G.Larsen, editorBroc.14%" Intl. Conference on Computer Aided
Verification (CAV’02), volume 2404 ofect. Notes in Comp. SgiSpringer-Verlag
pages 442-454, 2002.

[EKOO] E.A. Emerson and V. Kahlon. Reducing model checking of the many to the few. In
17th International Conference on Automated Deduction (CADE{dages 236—-255,
2000.

[EN95] E.A.Emerson and K. S. Namjoshi. Reasoning about ringBrdn. 22nd ACM Conf.
on Principles of Programming Languages, POPL'$n Francisco, 1995.

[FPPZ04a] Y. Fang, N. Piterman, A. Pnueli, and L. Zuck. Liveness with incomprehensible rank-

ing. InProc. 10*" Intl. Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS'04), volume 298&0f. Notes in Comp. SqiSpringer-
Verlag, pages 482-496, April 2004.

[FPPZ04b] Y. Fang, N. Piterman, A. Pnueli, and L. Zuck. Liveness with invisible ranking. In

[GS97]

[GZ98]

[INOO]

[LHR97]

[McM99]

[MP95]

[OSR93]

[PRZ01]

[PXZ02]
[VW86]

[ZP04]

Proc. of the 8" conference on Verification, Model Checking, and Abstract Interpreta-
tion, volume 2937 of_ect. Notes in Comp. Scpages 223-238, Venice, Italy, January
2004. Springer-Verlag.

V. Gyuris and A. P. Sistla. On-the-fly model checking under fairness that exploits
symmetry. InO. Grumberg, editor, ProcProc.9*" Intl. Conference on Computer
Aided Verification, (CAV’97) volume 1254 okect. Notes in Comp. SciSpringer-
Verlag 1997.

E.P. Gribomont and G. Zenner. Automated verification of szymanski’s algorithm. In
B. Steffen, editor, Proct’” Intl. Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS'98), volume 13Bdatf Notes in Comp.

Sci, Springer-Verlagpages 424-438, 1998.

B. Jonsson and M. Nilsson. Transitive closures of regular relations for verifying
infinite-state systems. I$. Graf and M. Schwartzbach, editors, Prag” Intl.
Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS'00), volume 1785 akct. Notes in Comp. SgiSpringer-Verlag2000.

D. Lesens, N. Halbwachs, and P. Raymond. Automatic verification of parameterized
linear networks of processes. 2dth ACM Symposium on Principles of Programming
Languages, POPL'97Paris, 1997.

K.L. McMillan. Verification of Infinite State Systems by Compositional Model
Checking. InProc. Charme 1999/0lume 1703 of.ect. Notes in Comp. ScSpringer-
Verlag, pages 219-234, 1999.

Z. Manna and A. Pnuelifemporal Verification of Reactive Systems: Safgpringer-
Verlag, New York, 1995.

S. Owre, N. Shankar, and J.M. Rushby. User guide for the PVS specification and ver-
ification system (draft). Technical report, Comp. Sci.,Laboratory, SRI International,
Menlo Park, CA, 1993.

A. Pnueli, S. Ruah, and L. Zuck. Automatic deductive verification with invisible
invariants. InProc.7¢" Intl. Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS'01), volume 203flecf. Notes in Comp. Sci.
Springer-Verlagpages 82-97, 2001.

A. Pnueli, J. Xu, and L. Zuck. Liveness wifh, 1, co)-counter abstraction, 2002.

M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program
verification. InProc. First IEEE Symp. Logic in Comp. S@ages 332—-344, 1986.

L. Zuck and A. Pnueli. Model checking and abstraction to the aid of parameterized
systems.Computer Languages, Systems, and Structivelsime 30(3—4), pp. 139—
169 2004.

