
Liveness by Invisible Invariants?

Yi Fang1, Kenneth L. McMillan2, Amir Pnueli3, and Lenore D. Zuck4

1 Microsoft, Redmond, Washington,yfang@microsoft.com
2 Cadence Design Systems, Berkeley, California,mcmillan@cadence.com

3 New York University, New York, New York,amir@cs.nyu.edu
4 University of Illinois at Chicago,lenore@cs.uic.edu

Abstract. The method of Invisible Invariants was developed in order to verify
safety properties of parametrized systems in a fully automatic manner. In this pa-
per, we apply the method of invisible invariant to “bounded response” properties,
i.e., liveness properties of the typep =⇒ 1 q that are bounded – once ap-state
is reached, it takes a bounded number of rounds (where a round is a sequence of
steps in which each process has been given a chance to proceed) to reach aq-state
– thus, they are essentially safety properties.
With a “liveness monitor” that observes certain behavior of a system, establishing
“bounded response” properties over the system is reduced to the verification of
invariant properties.
It is often the case that the inductive invariants for systems with “liveness mon-
itors” contain assertions of a certain form that the original method of invisible
invariant is not able to generate, nor to check inductiveness. To accommodate in-
variants of such forms, we extend the techniques used for invariant generation, as
well as the small model theorem for validity check.

1 Introduction

Uniform verification of parameterized systemsis one of the most challenging problems
in verification. Given a parameterized systemS(N) : P [1] ‖ · · · ‖ P [N] and a property
p, uniform verification attempts to verify thatS(N) satisfiesp for everyN > 1. One of
the most powerful approaches to verification that is not restricted to finite-state systems
is deductive verification. This approach is based on a set of proof rules in which the user
has to establish the validity of a list of premises in order to validate a given temporal
property of the system. The two tasks that the user has to perform are:

1. Provide some auxiliary constructs that appear in the premises of the rule;
2. Use the auxiliary constructs to establish the logical validity of the premises.

When performing manual deductive verification, the first task is usually the more dif-
ficult, requiring ingenuity, expertise, and a good understanding of the behavior of the
program and the techniques for formalizing these insights. The second task is often per-
formed using theorem provers such asPVS [OSR93] orSTeP [BBC+95], which require
user guidance and interaction, and place additional burden on the user. The difficulties

? This research was supported in part by NSF grant CCR-0205571 and ONR grant N00014-99-
1-0131

in the execution of these two tasks are the main reason why deductive verification is not
used more widely.

A representative case is the verification of invariance properties using the proof rule
INV of [MP95]: in order to prove that assertionr is an invariant of programP , the rule
requires coming up with an auxiliary assertionϕ that isinductive(i.e. is implied by the
initial condition and is preserved under every computation step) and that strengthens
(implies)r. The rule is described in Fig. 1, whereΘ is the initial condition of program
P .

I1. Θ → ϕ
I2. ϕ ∧ ρ → ϕ′

I3. ϕ → r

0 r

Fig. 1.The proof ruleINV

In [PRZ01,APR+01], we introduced the method ofinvisible invariants, that offers a
method for automatic generation of the auxiliary assertionϕ for parameterized systems,
as well as an efficient algorithm for checking the validity of the premises ofINV . The
generation of invisible auxiliary constructs is based on the following idea: it is often
the case that an auxiliary assertionϕ for a parameterized systemS(N) has the form
∀i : [1..N].q(i) or, more generally,∀i 6= j.q(i, j). We construct an instance of the pa-
rameterized system taking a fixed valueN0 for the parameterN . For the finite-state
instantiationS(N0), we compute, usingBDDs, some assertionψ that we wish to gener-
alize to an assertion in the required form. Letr1 be the projection ofψ on processP [1],
obtained by discarding references to variables that are local to all processes other than
P [1]. We takeq(i) to be the generalization ofr1 obtained by replacing each reference
to a local variableP [1].x by a reference toP [i].x. The obtainedq(i) is our candidate
for the body of the inductive assertionϕ : ∀i.q(i). We refer to this generalization proce-
dure asproject & generalize. For example, when computing invisible invariants,ψ is the
set of reachable states ofS(N0). The procedure can be easily generalized to generate
assertions of the type∀i1, . . . , ik.p(~i).

Having obtained a candidate for the assertionϕ, we still have to check the validity
of the premises of the proof rule we wish to employ. Under the assumption that our
assertional language is restricted to the predicates of equality and inequality between
bounded-range integer variables (which is adequate for many of the parameterized sys-
tems we considered), we proved asmall-modeltheorem, according to which, for a cer-
tain type of assertions, there exists a (small) boundN0 such that such an assertion is
valid for everyN iff it is valid for all N ≤ N0. This enables usingBDD-techniques
to check the validity of such an assertion. The cases covered by the theorem are those
whose premises can be written in the form∀~i∃~j.ψ(~i,~j), whereψ(~i,~j) is a quantifier-
free assertion that may refer only to the global variables and the local variables ofP [i]
andP [j] (∀∃-assertionsfor short).

Being able to validate the premises onS[N0] has the additional important advantage
that the user never sees the automatically generated auxiliary assertionϕ. This assertion
is produced as part of the procedure and is immediately consumed in order to validate
the premises of the rule. Being generated by symbolicBDD-techniques, the representa-

tion of the auxiliary assertions is often extremely unreadable and non-intuitive, and it
usually does not contribute to a better understanding of the program or its proof. Be-
cause the user never gets to see it, we refer to this method as the “method ofinvisible
invariants.” As shown in [PRZ01,APR+01], embedding a∀~i.q(~i) candidate inductive
invariant inINV results in premises that fall under the small-model theorem.

In this paper we apply the method of invisible invariants to the second-most impor-
tant properties of concurrent systems, namely, “response” properties. Response prop-
erties are properties of the typeq=�1 r (i.e.,0(q →1 r)), and they are the most
common liveness properties. The most frequent form of response properties of param-
eterized systems is∀~i.(q(~i)=�1 r(~i)), whereq(~i) andr(~i) are quantifier-free. Since
the systems we are dealing with are finite-state, that is, for every valueN , S[N] is
finite-state, every valid response property isboundedby some of the parameters of the
system.

The ability to prove onlyboundedprogress may seem like a limitation. However,
note that we are dealing here only with finite-state systems. That is, for everyN , S[N]
is finite-state. If a finite-state system satisfies a progress property, then it satisfies a cor-
responding bounded progress property, for a suitable bound. In the case of a simple
transition system without fairness assumptions, the bound can be given in terms of the
maximum number of transitions required to satisfy the progress condition. In the case
of “justice” assumptions (of the form01 p(i)), the bound can be given in terms of
the number of “rounds” in which every justice conditionp(i) is satisfied. Of course, the
bound may be a rapidly increasing function ofN . The main limitation of the present
method is that it handles only the case when the bound increases linearly withN . We
will show, however, that this condition is satisfied for several typical examples of pa-
rameterized protocols.

Roughly speaking, the bound determines “how fast” progress is achieved. In the
case that the bound depends on the transition relation, the proof of progress can be re-
placed by a proof of a simpler safety property,bounded progress, that establishes that
onceq(~i) holds and enough transitions (where “enough” is determined by the bound)
occur,r(~i) obtains. Since we are dealing with parameterized systems, the bound de-
pends on the parameterN . For simplicity of notation, assume that~(i) is of size 1, i.e.,
the progress property at hand is∀i.q(i)=�1 r(i). Let z be some process. It suffices to
show thatq(z)=�1 r(z). LetK range overrounds, in each of which each process is
to take at least one step. Since we want to rule out stuttering rounds, we allow a process
to take a stuttering step only if it has no non-stuttering step available to it. We show
how to obtainK and how to automatically construct a non-interfering “liveness mon-
itor” such that, once (synchronously) composed with the original system, the method
of invisible invariants can be used to show a (K-dependent) bounded progress (safety)
property that establishes the liveness property of the parameterized system.

Often it is the case that the safety property obtained is too large for the model
checker. Our experience has shown that splitting such individual proofs into two parts,
livelock freedom and bounded overtaking, often helps to avoid those two obstacles.
“Livelock freedom” establishes∃i.q(i)=�∃i.1 r(i), and “bounded overtaking” es-
tablishes that once∃i.q(i), there is a boundb such that for everyj 6= i, the (regular)
sequenceq(j)Σ∗r(j)Σ∗¬r(j) can occur at mostb times beforer(i) becomes true.

Bounded overtaking is a safety property, and, as we show, can be proved using the
method of invisible invariants. Put together, livelock freedom and bounded overtaking
establish individual liveness.

It is often the case that the invisible invariants we obtain contain∃∀-formulae, which
are not covered under the small model theorem previously proven. We extend the small
model theorem to deal with invariants that have∃∀-subformulae.

The paper is organized as follows: In Section 2, we give an informal overview of
our method. In Section 3, we present the general computational model ofFTS and the
restrictions that enable the application of the invisible auxiliary constructs methods.
We also review the small model theorem, which enables automatic validation of the
premises of the various proof rules. In Section 4, we describe how to construct liveness
monitors. In some cases, the inductive invariant requires∃∀-components, to which the
invisible invariant method no longer applies. Section 5 shows an extended small model
theorem that allows handling such invariants, as well as an enhancedproject & gener-
alizemethod that generates invariants with∃∀-components. In Section 6, we illustrate
the method on an example of aBAKERY protocol.

Related WorkProving “bounded liveness” properties by safety techniques was pro-
posed in [BAS02]. There, the justice requirements are incorporated into the safety
model. It is not clear whether the method can be extended to parameterized systems. In-
corporating the justice of such systems into the safety model seems to be prohibitively
costly.

A survey on the method of invisible invariants is in [ZP04]. A tool that allows auto-
matic generation of invariants using the method is described in [BFPZ05].

The problem of uniform verification of parameterized systems is undecidable [AK86].
One approach to remedy this situation, pursued, e.g., in [EK00], is to look for restricted
families of parameterized systems for which the problem becomes decidable. Unfortu-
nately, the proposed restrictions are very severe and exclude many useful systems such
as asynchronous systems where processes communicate by shared variables.

Another approach is to look for sound but incomplete methods. Representative
works of this approach include methods based on: explicit induction [EN95], network
invariants that can be viewed as implicit induction [LHR97], abstraction and approxi-
mation of network invariants [CGJ95], and other methods based on abstraction [GZ98].
Other methods include those relying on “regular model-checking” (e.g., [JN00]) that
overcome some of the complexity issues by employingaccelerationprocedures, meth-
ods based on symmetry reduction (e.g., [GS97]), or compositional methods (e.g., ([McM99]),
combining automatic abstraction with finite-instantiation due to symmetry. Some of
these approaches (such as the “regular model checking” approach) are restricted to par-
ticular architectures and may, occasionally, fail to terminate. Others, require the user to
provide auxiliary constructs and thus do not provide for fully automatic verification of
parameterized systems.

Most of the mentioned methods only deal with safety properties. Among the meth-
ods dealing with liveness properties, we mention [CS02], which handles termination of
sequential programs, network invariants [LHR97], andcounter abstraction[PXZ02].

Most relevant to the work here are [FPPZ04b,FPPZ04a] that extend the method of
invisible invariants toinvisible ranking, by applying the method for automatic genera-

tion of auxiliary assertions to general assertions (not necessarily invariant), and propos-
ing a rule for proving progress properties that embed the generated assertions in the
rule’s premises, and efficiently checks for their validity. As is well known to users of
such rules, such a proof requires the generation of two kinds of auxiliary constructs:
helpful assertionsandranking functions. To automatically generate ranking functions,
we associate, with each potentially helpful transition an individual ranking function
mapping states to integers in a small range. If the auxiliary constructs have no quan-
tifiers, all the resulting premises are∀∃-premises and the small-model theorem can be
used.

For protocols that cannot be proven with such restricted assertions, [FPPZ04a] ex-
tends the method of invisible ranking by allowing helpful assertions (and ranking func-
tions) belonging to transitions to be of the form∀j.H(i, j), whereH(i, j) is a quantifier-
free assertion. (Substituted in the standard proof rules for progress properties, these as-
sertions lead to premises that do not conform to the required∀∃ form, and therefore
cannot be validated using the small model theorem.) To handle such premises the proof
rule is extended by implementing a new mechanism for selecting a helpful transition
based on the establishment of apre-orderamong transitions in each state.

Similarly to the method of invisible ranking, the method proposed here is applica-
ble to the same type of “bounded progress” properties. However, the invisible ranking
method requires numerous auxiliary construct, some (especially the pre-order) are at
times hard to compute. The method proposed here is much simpler. The bound is de-
rived from a small instantiation of the system, and, once the bound is computed, the
only auxiliary construct needed is the strengthening invariant, which is well studied.

2 From Bounded Progress into Safety

This section contains a somewhat intuitive overview of the method that will be formal-
ized and detailed in the following sections.

Consider a parameterized systemS and a progress propertyφ : q=�1 r. The prop-
ertyφ is bounded, if there is a boundK, independent ofN , such that once aq-state is
reached, after at mostK rounds in which each process takes at least one step, a goal
r-state is reached.

Consider a “liveness monitor”Mφ that observesS. Once aq-state is reached,Mφ

resets a counter of rounds. Once each process takes (at least) one step,Mφ increases the
round counter. When there are no pending states – states on ar-free path that originates
at aq-state – the monitor keeps the round count at zero and does not keep track of the
processes. Ifφ is bounded byK, then in the monitored systems the round counter never
exceedsK. Thus, provingφ is equivalent to proving that theS‖|Mφ |= 0(rnd < K)
wherernd is the round counter.

Of course, one has to chooseK. One can either try to compute it (e.g., by instantiat-
ing S(N) for a small number of processes, sayN0, and considering the pending paths
on the instantiation) or one may choose some small instantiation, try increasing values
ofK until one succeeds, and then try the resultingK on larger (yet small) instantiations.

OnceK is chosen, the method of invisible invariants can be used to show that for
everyN , S‖|Mφ |= 0(rnd < K). In fact, since the monitor needs to be finite-state,

we construct it with the knowledge of (the assumed)K and bound the round counter by
K.

The method may fail for the following reasons:

1. For someN , S(N) 6|= φ or φ is not bounded;
2. The boundK is too small;
3. The heuristics used for the generation of invisible invariants are not sufficient for

the given system;

We cannot deal with the first case. As to the second case, a larger instantiation usually
solves the problem. Hence, it makes sense to tryK on several instantiations before
attempting to prove the property.

To deal with the third case, we present a new heuristic to generate candidate invari-
ants with∃∀-assertions, and extend the small model theorem to accommodate invariants
in such forms.

3 Preliminaries

As a computational model for parameterized bounded-data systems we usebounded
just transition systems, that are a compassion-less variant of the model ofbounded fair
transition systemof [FPPZ04a].

3.1 Just Transition Systems

We present a variant of thejust transition systemof [MP95]. A JTS is described by
S = 〈V,Θ, T 〉, with:

• V = {u1, . . . , un}— A finite set of typedsystem variables. A states of the system
provides a type-consistent interpretation of the system variablesV , assigning to
each variablev ∈ V a values[v] in its domain. LetΣ denote the set of all states
overV . An assertionoverV is a first order formula overV . A states satisfies an
assertionϕ, denoteds |= ϕ, if ϕ evaluates toT by assignings[v] to every variable
v appearing inϕ. We say thats is aϕ-state ifs |= ϕ.

• Θ — The initial condition: An assertion characterizing the initial states. A state is
calledinitial if it is a Θ-state.

• T — A finite set of transitions. Every transitionτ ∈ T is an assertionτ(V, V ′)
relating the valuesV of the variables in states ∈ Σ to the valuesV ′ in an S-
successor states′ ∈ Σ. Given a states ∈ Σ, we say thats′ ∈ Σ is aτ -successor
of s if 〈s, s′〉 |= τ(V, V ′) where, for eachv ∈ V , we interpretv ass[v] andv′ as
s′[v]. We say that transitionτ is enabledin states if it has someτ -successor, oth-
erwise, we say thatτ is disabledin s. In the system we consider, every transition is
disabled immediately after it is taken. LetEn(τ) denote the assertion∃V ′.τ(V, V ′)
characterizing the set of states in whichτ is enabled.

Let σ : s0, s1, s2, . . ., be an infinite sequence of states. We say that transitionτ ∈ T a is
enabled at positionk of σ if τ is enabled onsk. We say thatτ is taken at positionk if

sk+1 is aτ -successor ofsk. Note that several transitions can be considered as taken at
the same position.

We say thatσ is acomputationof S if it satisfies the following requirements:

• Initiality — s0 is initial, i.e.,s0 |= Θ.
• Consecution— For each̀ = 0, 1, ..., states`+1 is a τ -successor ofs` for some
τ ∈ T .

• Justice— for everyτ ∈ T , there are infinitely many positionsk ≥ 0, such that
τ is disabled or taken at positionk. Since we assume that transition are disbled
immediately after they are taken, this is equivalent to requiring thatτ is disbaled
infinitely many times.

Composition of Just transition SystemsAssume twoJTS’s S1 : 〈V1, Θ1, T1〉 andS2 : 〈V2, Θ2, T2〉.
Thesynchronous parallel compositionof S1 andS2, denoted byS1‖|S2, is theJTS(

V1 ∪ V2, Θ1 ∧Θ2,
∨

τ1∈T1,τ2∈T2

τ1 ∧ τ2
)

Theasynchronous parallel compositionof S1 andS2, denoted byS1‖S2, is theJTS(
V1 ∪ V2, Θ1 ∧Θ2, T +

1 ∪ T +
2

)
where for everyi = 1, 2, T +

i includes, for every transitionτ ∈ Ti, the transitionτ
with a conjunct requiring that all non-Vi variable are presevered. Formally, for a set of
variablesU , let pres(U) denote the assertion

⋃
u∈U (u′ = u) stating that noU -variables

is modified. ThenT +
i = {τ ∧ pres(V1 ∪ V2 \ Vi) : τ ∈ Ti}.

3.2 Bounded Just Transition Systems

To allow the application of the invisible invariants method, we further restrict the sys-
tems we study, leading to the model ofbounded just transition systems(BJTS). For
brevity, we describe here a simplified two-type model; the extension for the general
multi-type case is straightforward.

LetN ∈ N+ be thesystem’s parameter. We allow the following data types:

1. bool: the set of boolean and finite-range scalars;
2. index: a scalar data type that includes integers in the range[1..N];
3. data: a scalar data type that includes integers in the range[0..N]; and
4. Any number of arrays of the typeindex 7→ bool. We refer to these arrays asboolean

arrays.
5. At most one array of the typeb : index 7→ data. We refer to this array as thedata

array.

Atomic formulasmay compare two variables of the same type. E.g., ify andy′ are
index variables, andz is an index 7→ data array, theny = y′ andz[y] < z[y′] are
both atomic formulas. Forz : index 7→ data andy : index, we also allow the special
atomic formulaz[y] > 0. We refer to quantifier-free formulas obtained by boolean

combinations of such atomic formulas asrestricted assertions. As the initial condition
Θ, we allow assertions of the form∀~i.u(~i), whereu(~i) is a restricted assertion. As the
transitionsτ ∈ T , we allow assertions of the formτ(i) : ∀j.ψ(i, j) for a restricted
assertionψ(i, j).

Example 1 (A Simple Mutual Exclusion Algorithm).
Consider programSIMPLE in Fig. 2, which is a simple mutual exclusion algorithm that
guarantees deadlock-freedom access to critical section for anyN processes.

in N : natural where N > 1
local t : bool wheret = 1

N

i=1

P [i] ::

266664
loop forever do2664

0 : NonCritical
1 : when t = 1 do t := 0
2 : Critical
3 : t := 1

3775
377775

Fig. 2.ProgramSIMPLE

In this version of the algorithm, location0 constitutes the non-critical section which a
process may non-deterministically exit to the trying section at location1. Location1
is the waiting location where a process waits until the token (t) is available and then
takes it. Location2 is the critical section, and location3 is the exit section where the
process returns the token. As we show, the program guarantees that if some processes
are waiting to enter the critical section, eventually some process will succeed. Fig. 3
describes theBJTScorresponding to programSIMPLE.

V :


π : array [1..N] of [0..3]
t : bool;

Θ : ∀i : π[i] = 0 ∧ t = 1

T :

8>><>>:
τ0(i) : ∀j 6= i : π[i] = 0 ∧ π′[i] ∈ {0, 1} ∧ pres({π[j], t})
τ1(i) : ∀j 6= i : π[i] = 1 ∧ t = 1 ∧ π′[i] = 2 ∧ t′ = 0 ∧ pres({π[j]})
τ2(i) : ∀j 6= i : π[i] = 2 ∧ π′[i] = 3 ∧ pres({π[j], t})
τ3(i) : ∀j 6= i : π[i] = 3 ∧ π′[i] = 0 ∧ t′ = 1 ∧ pres({π[j]})

Fig. 3. BJTS for ProgramSIMPLE

As seen in the example of Fig. 3, the transition relation of processP [i] is a disjunction
of individual transitions of the formτ0[i]∨τ1[i]∨· · · τk[i]. We denote this disjunction by
ρ[i] and refer to it as theprocess transition relation. We denote bydis[i] = ¬En(ρ[i])
the assertion stating that the process transition is disabled, and bydis or taken[i] the
disjunctiondis[i] ∨ ρ[i] claiming that processP [i] is currently disabled.

3.3 The Small Model Theorem

Letϕ : ∀~i∃~j.R(~i,~j) be an AE-formula, whereR(~i,~j) is a restricted assertion that refers
to the state variables of a parameterized systemS(N) and to the quantified (index)
variables~i and~j. LetN0 be the number of universally quantified, freeindex variables
andindex constants appearing inR. The claim below (stated in [PRZ01] and extended
in [APR+01]) provides the basis for automatic validation of the premises in the proof
rules:

Theorem 1 (Small model property).
An AE-formulaϕ is valid iff it is valid over all instancesS(N) for N ≤ N0.

The small model theorem allows to check validity of AE-assertions on small mod-
els and to derive from that their validity on arbitrary large instantiations. This can be
accomplished usingBDD techniques. The method of invisible invariants appliesproject
& generalizeto produce candidate inductive assertions for the set of reachable states
that are A-formulae. Checking their inductiveness requires checking validity of AE-
formulae. The method of invisible ranking appliesproject & generalizeto produce can-
didate assertions for various assertions (pending, helpful, ranking), all A- or E-formulae
and, the premises obtained using these assertions are again all AE-formulae. Thus, the
theorem implies they can be verified on small instantiations.

4 Monitoring Liveness with Safety

Assume a progress propertyφ : q=�1 r. It is often the case that such a progress prop-
ertyφ is “bounded”, that is, there exists some boundK, such that afterK roundswhere
each process is given at least one chance to progress, a goal state is guaranteed to be
reached. Ifφ is a bounded progress property with boundK, then, instead of show-
ing thatS |= φ, we can construct a non-interferingmonitorMφ(K) which we syn-
chronously compose withS, and show that the simple invariance property0(rnd <
K) holds over the new systemS‖|Mφ(K).

Thus, for the case of bounded progress, liveness can be reduced to safety. The pro-
cess can be done automatically, since one can deriveK from the reachability graph of
S.

Assume aBJTS S : 〈V,Θ, τ〉 and a progress propertyφ : q=�1 r. The monitor
Mφ(K) is aBJTSMφ : 〈VM , ΘM , {τM}〉, where:

VM – consists ofV and three new variables: a booleanpend , a variablernd in the
range[0..K], andmoved is an array [1..N] of booleans. The variablepend is set
when the system is in a state that follows aq-state on ar-less path. The variable
rnd counts the number of rounds. The variablemoved [i] is set when processi is
disabled.

ΘM – pend = (q ∧ ¬r) ∧ rnd = 0 ∧
∧N

i=1 ¬moved [i], i.e., initially the round is 0
and everymoved is F.

τM – τM consists of three conjuncts, one for each of the variables (themoved -part
is further composed ofN conjuncts). The transitionτM consists of the following
parts:

1. pend ′ = ¬r′ ∧ (pend ∨ q′). This conjunct states thatpend becomes true when
it was false andq ∧¬r is true, and thatpend becomes false whenr is realized.
In all other casespend retains its previous value;

2.
N∧

i=1

moved ′[i] =
 if ¬pend ′ ∨

∧N
j=1 moved [j] then F

elsedis or taken[i] ∨moved [i]


This conjunct states that for everyi, moved [i] is true in pending states that
are reached frommoved [i]-states or when processi is disabled, but only if the
round is not over (since then all themoved [i]’s need be reset).

3. rnd ′ =


if ¬pend ′ then 0
else ifrnd < K ∧

∧N
j=1 moved [j] then rnd + 1

else rnd


This conjunct states that a new round starts from pending states once all pro-
cesses are were found disabled and ar-state was not reached. Similarly,rnd
becomes 0 when anr-state is reached. In all other cases it remains intact.

Note that none of the conjuncts update the variables inV , justifying our description
of Mφ as “non constraining.”

Thus, as long asS is not in a pending state,pend , rnd , and all themoved [i]’s areF.
OnceS is in a pending state,pend is set. From thereon, whenever every process is
found disabled,rnd is incremented (as long as it is less thanK). Obviously, if rnd
ever reachesK, than it means that the goalq was not reached afterK rounds, thus
refuting the assumption thatφ is a bounded progress property with boundK. However,
if 0(rnd < K), we can be assured thatφ holds overS. This is captured by following
claim:

Lemma 1 (Soundness).

(S‖|Mφ(K)) |= 0(rnd < K) =⇒ S |= φ

Proof. Assume thatS 6|= φ. Thus, there exists anS-computationσ of the formΣkq(Σ−
{r})ω. Consider the behavior ofMφ(K)‖|S when run onσ. Obviously,σ |=10 pend .
Since every process is guaranteed to be disabled infinitely many times, we have thatσ |=
0(¬moved [i] →1moved [i]). We can therefore conclude thatσ |=1(rnd = K),
thus(S‖|Mφ(K)) 6|= 0(rnd < K). ut

.

Example 2 (Liveness Monitor for ProgramSIMPLE).
Consider the program of Example 1, and suppose we want to establish the progress
propertyφ : (∃i.π[i] = 1)=�1(∃i.π[i] = 2). We guessK = 2, and run the program
for instantiations ofN = 3, 4, 5 to confirm that this is a reasonable bound. We then
construct the progress monitorMφ(2) as above, whereq : ∃i.π[i] = 1 andr : ∃i.π[i] =
2. We instantiated ProgramSIMPLE to 4 processes and run it composed withMφ. We

obtained the invariant

∀i 6= j. rnd < 2 ∧ (¬pend ∨ t = 1 ∨ rnd = 0) ∧
(¬pend → rnd = 0 ∧ ¬moved [i]) ∧ (pend → π[i] 6= 2) ∧
(rnd = 1 → π[i] = 1 ∧ ¬moved [i]) ∧
(π[i] = 0 ∧ t = 0 ∨ π[i] = 3 → ¬moved [i]) ∧
(π[i] ≥ 2 → t = 0 ∧ π[j] < 2) ∧ (π[i] = 1 ∧ (t = 1 ∨ π[j] = 3) → pend) ∧
(π[i] = 0 ∧ t = 1 ∧moved [i] = 1 → π[j] = 1 ∨ ¬moved [j]) ∧

∃i. (rnd = 0 ∧ t = 0) → (π[i] = 0 ∧moved [i] ∨ π[i] ≥ 2)

which is inductive and impliesrnd < 2 over (simple(4)‖|Mφ(2)). It follows The-
orem 1 that0(rnd < 2) is valid over the composed program with everyN , and,
according to Lemma 1, this implies thatφ is valid over every instantiation of Program
SIMPLE.

5 Cases Requiring an EA-invariant

The method of invisible invariants obtains auxiliary assertions that are boolean combi-
nation of∀-formulae. Used in the proof ruleINV , the premises to be proved are then
(at most)∀∃- formulae, whose validity, as the small model theorem establishes, can be
shown on small instantiations.

In some cases, however, the auxiliary assertions obtained can have∃∀-components
(thus the proof rule has to establish validity of such formulae), to which the theorem no
longer applies. For example, when attempting to establish the livelock freedom property
of ProgramBAKERY in Section 6, we need an invariant that contains a clause:

∃i : (at l2[i] ∧ moved [i] = 0 ∧ ∀j 6= i : (y[j] = 0 ∨ y[i] < y[j]))

claiming that (at the last round) some process has the lowest ticket and has not yet taken
a step. This is an∃∀-assertion, the likes of which are quite common when establishing
progress properties.

In this section we present a new small model theorem that applies to some cases
where∃∀-premises need to be validated. To automatically obtain an∃∀-assertion as
a component in invariant assertions, we divide the reachable states intoN symmetric
subsetsD[1], . . . , D[N], where eachD[i] can be over-approximated by an assertion
of the typeDα(i) : ∀j.q(i, j), so that the disjunction ofDα(i)’s is our desired∃∀-
assertion. The body of the∃∀-assertionq(i, j) is computed by the procedureproject &
generalize.

5.1 An Extended Small Model Theorem

Consider a parameterizedBJTSS(N) and a formula of the type∀∃ ∨ ∃∀ that we want
to show valid over all instantiations ofS. The Small Model Theorem establishes that,
when only the first disjunct exists, it suffices to show validity of the formula only on
small instantiations whose size is bounded by the number of free and universally quan-
tified variables. We extend it here for the case that the second disjunct exists, however,
its scope is limited.

Theorem 2 (Extended Small Model Theorem).Consider the formula

φ : ∀~i∃~j.R(~i,~j) ∨ ∃i∀j.Q(i, j)

whereR andQ are restricted assertions, and, in addition, we have:

∀i, j, k.(¬Q(i, j) ∧ ¬Q(j, k) → (¬Q(i, k) ∨ ¬Q(j, j))

LetN0 be the number of universally quantified, freeindex variables andindex con-
stants appearing inR. Thenφ is valid overS(N) for everyN ≥ 2 iff φ is valid over
S(N) for everyN ≤ 2N0.

Proof Outline: We show that if¬φ is satisfiable over a model of sizeN1 > 2N0, then
it is satisfiable over a model of sizeN2 ≤ 2N0. The formula¬φ is equivalent to:

ψ : ∃~i∀~j.¬R(~i,~j) ∧ ∀i.∃j.¬Q(i, j)

and assumes |= ψ for some states of S(N1) whereN1 > 2N0. Following the proof
of the original theorem ([APR+01]), we take the (no more thanN0) values assigned
to the constants, free, and existentially quantifiedindex variables in the first conjuncts
thats assigns, say tou1, . . . , uL (whereL ≤ N0). Obviously, if we projects ontoU =
{u1, . . . , uL} (i.e., remove references to anyindex variables outsideU), the resulting
state satisfies the first conjunct, while adding back all the variables that refer to some
particularindex variable that is not in this set, will not change that.

We next add toU at mostL otherindex variable that will guarantee the satisfiability
of the second conjunct. Starting withV0 = ∅, we iterateL steps. At thè th step, we
start with a setV`−1 and a states`−1, such thats`−1 is the projection ofs ontoV`−1,
ands`−1 |= ∀i ∈ V`−1.∃j ∈ V`−1.¬Q(i, j). We then add toV`−1 the elementu`, and,
possibly, another element, to obtainV`.

Assume1 ≤ ` < L and consideru`. If s |= ¬Q(u`, v) for somev ∈ V`∪{u`}, then
V` = V`−1∪{u`}. Assume therefore that for allv ∈ V`−1, s 6|= ¬Q(u`, v) and thats 6|=
¬Q(u`, u`). Sinces |= ψ, it follows that for somej1 ∈ [1..N1], s |= ¬Q(u`, j1). We
continue along a¬Q-chain in[1..N1] of the formu` = j0, j1, . . . , jm that theji’s are
mutually distinct, for everyi = 0, . . . ,m, s |= Q(ji, ji), and for everyi = 1, . . . ,m,
s |= ¬Q(ji−1, ji). (The finiteness of[1..N1] guaratees that the chain is finite.) It thus
follows thats |= ¬Q(jm, jm) ∧ ¬Q(u`, jm). We then letU` = U`−1 ∪ {u`, jm}.

Note that the process adds at mostL new elements toU , thus the state attained is
of size at most2N0. SupposeUL = {v1, . . . , v2L} wherev1 < . . . v2L. We can now
contract the state to1..2L and obtain a states′ of S(2L) such thats′ |= ψ. ut

6 Example: BAKERY

Consider programBAKERY in Fig. 4, which is a variant of Lamport’s original Bakery
Algorithm that offers a solution to the mutual exclusion problem for anyN processes.
In this version of the algorithm, location0 constitutes the non-critical section which
a process may non-deterministically exit to the trying section at location1. Location
1 is the ticket assignment location – to guarantee the finiteness of the state-space, the

in N : natural where N > 1
local y : array [1..N] of [0..N]

wherey = 0

N

i=1

P [i] ::

266666666664

loop forever do2666666664

0 : NonCritical
1 : y := maximal value toy[i] while

preserving order of elements

2 : await ∀j 6= i :

8>>: y[j] = 0 ∨
y[j] > y[i]

9>>;
3 : Critical
4 : y[i] := 0

3777777775

377777777775
Fig. 4.ProgramBAKERY

ticket values are[1..N]; when a processi takes a ticket, the tickets help by the other
processes may be changed preserving their relative order, and processi gets a ticket
whose value is higher than the others. Location2 is the waiting phase, where a process
waits until it holds the minimal ticket. Location3 is the critical section, and location
4 is the exit section. Note thaty, the ticket array, is of typeindex 7→ data, and the
program location array (which we denote byπ) is of typeindex 7→ bool. In fact,π is of
type index 7→ [0..4], but it can be encoded by three boolean arrays. Note also that the
ticket assignment statement at1 is non-deterministic and may modify the values of all
tickets.

The livelock freedom property of the program is:

φ : (∃z : at l1[z])=�1(∃z : at l3[z])

The bound obtained for the property isK = 2.
Following are the results of our verification experiments applied to theBAKERY

protocol.

1. We chose (arbitrarily) to instantiate the system toN = 4. We applied the enhanced
project & generalizemethod [FPPZ04a] toBAKERY(4), generating candidate in-
variants in the forms of a boolean combinations of universal assertions. The best
candidate obtained wasϕ1 of the form

φ1 : ∀i, j.α1(i, j) ∧ ∃i, j.α2(i, j) ∨ ∀i, j.α3(i, j)5

The assertionφ1 failed to be inductive.
2. We used our invisible invariant generator to generate an∃∀-assertionφ2 : ∃i∀jβ(i, j)

over BAKERY(4). We then defineφ : φ1 ∧ φ2, which is both inductive and implies
the safety property0(rnd < 2) overBAKERY(4).

5 We can “guide” our automated invisible invariant generator as to the form of the assertion to be
produced; however, being invisible and produced byBDD techniques, the generated assertions
cannot be neatly displayed

3. We next checked whether¬β is reflexive or transitive. Since the test requires check-
ing a universal assertion, we can apply Theorem 1 and derive that it suffices to check
the reflexivity/transitivity of¬β over BAKERY(N0) for N0 ≤ 4 to derive that it is
reflexive/transitive overBAKERY(N) for everyN .

4. By applying Theorem 2, we derivedN = 8 as the size of the small model to
establish the validity of the premises inINV usingφ as the auxiliary invariant. The
candidate invariantϕ1 ∧ ϕ2 was reconstructed overBAKERY(8), and proved to be
inductive and to imply the safety property0(rnd < 2). We can therefore conclude
that the protocol satisfy the livelock freedom property for any instantiation.

The code for the programs can be found inhttp://eeyore.cs.nyu.edu/acsys/forte06/.
We would like to point out that the proof obtained by the method proposed here is

considerably simpler than the proof presented in [FPPZ04a] which calls for auxiliary
constructs other than invariants, thus requires considerably more interaction with the
user.

7 Discussion and Future Work

The paper presents a method for automatic verification of progress properties of pa-
rameterized systems based on the method of invisible invariants. The method is based
on the observation that such progress properties are usually “bounded,” and can thus
be converted into safety properties. The heuristic proposed attempts to find a bound for
the progress property, and use the method of invisible invariants to prove the resulting
safety property.

There are several cases where the proposed method is bound to fail:

Super-linear bounds: As it is now, the method can only be successful when the bound
is linear in the number of processes. Some protocols (e.g., Peterson’sN -process
mutual exclusion protocol) have bounds that are non-linear in the number of pro-
cesses. We are currently working on extending the method to apply to cases where
the bound is quadratic in the number of processes.

Fairness-dependent bounds:The method cannot be applied to cases where the bound
depends on non-justice assumptions. Such non-justice fairness assumptions occur,
for example, when using semaphores, the bound depends on the number of com-
passion (strong fairness) assumptions. However, compassion can be translated into
justice, at the cost of adding some new variables to the system, hence our method
can indirectly deal with such cases.

Probability-dependent progress: When protocols involve probabilistic choices among
transitions, progress often depends on probabilistic arguments. As shown in [APZ03],
one can often transform such protocols to non-probabilistic protocols by a “plan-
ner” that occasionally determines the results of some probabilistic choices, leaving
the others non-deterministic. In fact, the projection used in the method of invisible
invariants can be applied to obtain the planner automatically, and then the progress
property can be bounded. Consequently, the method proposed here, in conjunction
with the automatically obtained planner. can be applied to probabilistic protocols
as well.

Failure of invisible invariants: The method of invisible invariant is heuristic in na-
ture, and may sometimes fail. As we showed here, sometimes a∀∃ invariant is
called for, which we can obtain only in certain cases. In some cases, there is no
strengthening invariant of the type we can generate. For these cases, the method
presented here is bound to fail.

As in the case of all BDD-based techniques, it is always possible that the invariant
generated is too large for the model checker to handle. In fact, this may happen much
faster than when checking “regular” safety properties, since those required here include
the round counter.

References

[AK86] K. R. Apt and D. Kozen. Limits for automatic program verification of finite-state
concurrent systems.Info. Proc. Lett., 22(6), 1986.

[APR+01] T. Arons, A. Pnueli, S. Ruah, J. Xu, and L. Zuck. Parameterized verification with
automatically computed inductive assertions. InG. Berry, H. Comon, and A. Finkel,
editors,Proc.13th Intl. Conference on Computer Aided Verification (CAV’01), vol-
ume 2102 ofLect. Notes in Comp. Sci., Springer-Verlag, pages 221–234, 2001.

[APZ03] T. Arons, A. Pnueli, and L. Zuck. Parameterized verification by probabilistic ab-
straction. In6th International Conference on Foundations of Software Science and
Computational Structures, volume 2620 ofLect. Notes in Comp. Sci., pages 87–102,
Warsaw, Poland, April 2003. Springer-Verlag.

[BAS02] A. Biere, C. Artho, and V. Schuppan. Liveness checking as safety checking. In Rance
Cleaveland and Hubert Garavel, editors,Electronic Notes in Theoretical Computer
Science, volume 66. Elsevier, 2002.

[BBC+95] N. Bjørner, I.A. Browne, E. Chang, M. Colón, A. Kapur, Z. Manna, H.B. Sipma,
and T.E. Uribe. STeP: The Stanford Temporal Prover, User’s Manual. Technical
Report STAN-CS-TR-95-1562, Computer Science Department, Stanford University,
November 1995.

[BFPZ05] I. Balaban, Y. Fang, A. Pnueli, and L.D. Zuck. An invisible invariant verifier. In Proc.
17th Intl. Conference on Computer Aided Verification (CAV’05), Springer-Verlage
LNCS 3576, pp. 291–295, 2005.

[CGJ95] E.M. Clarke, O. Grumberg, and S. Jha. Verifying parametrized networks using ab-
straction and regular languages. In6th International Conference on Concurrency
Theory (CONCUR92), volume 962 ofLect. Notes in Comp. Sci., pages 395–407,
Philadelphia, PA, August 1995. Springer-Verlag.

[CLP84] S. Cohen, D. Lehmann, and A. Pnueli. Symmetric and economical solutions to the
mutual exclusion problem in a distributed system.Theor. Comp. Sci., 34:215–225,
1984.

[CS02] M. Colon and H. Sipma. Practical methods for proving program termination. InE.
Brinksma and K. G.Larsen, editors,Proc.14th Intl. Conference on Computer Aided
Verification (CAV’02), volume 2404 ofLect. Notes in Comp. Sci., Springer-Verlag,
pages 442–454, 2002.

[EK00] E.A. Emerson and V. Kahlon. Reducing model checking of the many to the few. In
17th International Conference on Automated Deduction (CADE-17), pages 236–255,
2000.

[EN95] E. A. Emerson and K. S. Namjoshi. Reasoning about rings. InProc. 22nd ACM Conf.
on Principles of Programming Languages, POPL’95, San Francisco, 1995.

[FPPZ04a] Y. Fang, N. Piterman, A. Pnueli, and L. Zuck. Liveness with incomprehensible rank-
ing. In Proc.10th Intl. Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’04), volume 2988 ofLect. Notes in Comp. Sci., Springer-
Verlag, pages 482–496, April 2004.

[FPPZ04b] Y. Fang, N. Piterman, A. Pnueli, and L. Zuck. Liveness with invisible ranking. In
Proc. of the 5th conference on Verification, Model Checking, and Abstract Interpreta-
tion, volume 2937 ofLect. Notes in Comp. Sci., pages 223–238, Venice, Italy, January
2004. Springer-Verlag.

[GS97] V. Gyuris and A. P. Sistla. On-the-fly model checking under fairness that exploits
symmetry. InO. Grumberg, editor, Proc.Proc.9th Intl. Conference on Computer
Aided Verification, (CAV’97), volume 1254 ofLect. Notes in Comp. Sci., Springer-
Verlag, 1997.

[GZ98] E.P. Gribomont and G. Zenner. Automated verification of szymanski’s algorithm. In
B. Steffen, editor, Proc.4th Intl. Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS’98), volume 1384 ofLect. Notes in Comp.
Sci., Springer-Verlag, pages 424–438, 1998.

[JN00] B. Jonsson and M. Nilsson. Transitive closures of regular relations for verifying
infinite-state systems. InS. Graf and M. Schwartzbach, editors, Proc.6th Intl.
Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’00), volume 1785 ofLect. Notes in Comp. Sci., Springer-Verlag, 2000.

[LHR97] D. Lesens, N. Halbwachs, and P. Raymond. Automatic verification of parameterized
linear networks of processes. In24th ACM Symposium on Principles of Programming
Languages, POPL’97, Paris, 1997.

[McM99] K.L. McMillan. Verification of Infinite State Systems by Compositional Model
Checking. InProc. Charme 1999, volume 1703 ofLect. Notes in Comp. Sci., Springer-
Verlag, pages 219–234, 1999.

[MP95] Z. Manna and A. Pnueli.Temporal Verification of Reactive Systems: Safety. Springer-
Verlag, New York, 1995.

[OSR93] S. Owre, N. Shankar, and J.M. Rushby. User guide for the PVS specification and ver-
ification system (draft). Technical report, Comp. Sci.,Laboratory, SRI International,
Menlo Park, CA, 1993.

[PRZ01] A. Pnueli, S. Ruah, and L. Zuck. Automatic deductive verification with invisible
invariants. InProc.7th Intl. Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’01), volume 2031 ofLect. Notes in Comp. Sci.,
Springer-Verlag, pages 82–97, 2001.

[PXZ02] A. Pnueli, J. Xu, and L. Zuck. Liveness with(0, 1,∞)-counter abstraction, 2002.
[VW86] M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program

verification. InProc. First IEEE Symp. Logic in Comp. Sci., pages 332–344, 1986.
[ZP04] L. Zuck and A. Pnueli. Model checking and abstraction to the aid of parameterized

systems.Computer Languages, Systems, and Structures, Volume 30(3–4), pp. 139–
169 2004.

