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Abstract. Bisimulation semantics are a very pleasant way to define the
semantics of systems, mainly because the simplicity of their definitions
and their nice coalgebraic properties. However, they also have some di-
sadvantages: they are based on a sequential operational semantics defined
by means of an ordinary transition system, and in order to be bisimilar
two systems have to be “too similar”. In this work we will present several
natural proposals to define weaker bisimulation semantics that we think
properly capture the desired behaviour of distributed systems. The main
virtue of all these semantics is that they are real bisimulation semantics,
thus inheriting most of the good properties of bisimulation semantics.
This is so because they can be defined as particular instances of Jacobs
and Hughes’ categorical definition of simulation, which they have already
proved to satisfy all those properties.

1 Introduction

Bisimulation is a usual way to define the semantics of systems. It is defined
starting from an operational semantics that defines the (low level) behaviour
of the system as a labelled transition system (Its) whose states correspond to
the possible internal states of the systems, while the transitions represent the
change of state, observable by means of labels. Bisimulations have many pleasant
theoretical and practical properties that justify its use to define the semantics of
systems. At the theoretical level, bisimulations are the adequate way to define
the behaviour of a system defined by a coalgebra s : X — P(A x X). They
capture the idea that in order to be equivalent, two states must have two sets of
labelled successors that have to be related in both directions: Vs = s/ 3t 5 ¢/
with (s/,#') € Rand Vt % ' 3s % s’ with (s',¢') € R.

This only slightly generalizes the isomorphism of transition systems, mainly
by taking into account the idempotent law. This means that the correspondence
relating the a-successors of two related states do not need to be bijective. For ins-
tance, the relation R = {(z,y), (x1,91), (¥2,91), (x3,¥2), (x3,y3)} is the smallest
bisimulation relating the two states z and y of the two systems in Fig. 1.
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Fig. 1. Two bisimilar systems

Besides the simple and easy to manipulate way in which they are defined, bi-
simulations and the equivalence relation they induce, bisimilarity, satisfy many
pleasant properties that have been thoroughly studied since they were intro-
duced by Park [20]. For instance, we can prove that whenever the operational
semantics of a language is defined by a SOS-system [21] of several quite large
syntactical classes, such as the De Simone class [6], then bisimulation equivalence
is a congruence with respect to all the syntactical constructors of the language.

At the practical level, bisimilarity is an interesting way to define the equiva-
lence of two systems, since it can be checked by efficient algorithms [8]. When,
instead, we prefer to use symbolic proofs to prove the equivalence between two
systems described by two syntactical terms of a language, we can construct the
corresponding bisimulation relating them by using quite powerful techniques
such as bisimulation up-to [18].

The most important disadvantage of using bisimulation semantics is that
bisimulation equivalence is a too coarse relation: all the extensional semantics
that have been proposed to define the semantics of systems by adding some
information to the quite simple trace semantics, such as the failure semantics or
the readiness semantics, have less discriminatory power than the bisimulation
equivalence, as we can see in the famous Van Glabbeek’s spectrum [27].

Bisimulation is also too powerful with respect to the testing framework. This
is also seen in [27]: copy and “parallel” testing are needed in order to characterize
bisimulation equivalence as a testing equivalence. Besides, in [3] Bloom et al. have
proved that ready simulation equivalence, that is also weaker than bisimilarity,
is the strongest equivalence relation that is preserved by any operator defined by
means of GSOS rules. We can sum up this discussion by saying that bisimulation
equivalence is too fine because it forces the two compared transition systems to
be “too similar”. Our aim in this paper will be to present other bisimulation-like
semantics that generalize the definition of plain bisimulations, by allowing us
to get other equivalences between systems that we will naturally justify when
comparing distributed systems.

Simulations are one of the first natural ways to relax the definition of bisimu-
lation. In the one hand, because its definition is obtained by retaining just one
half of the two symmetric parts of the definition of bisimulation. In this way, we
obtain an order relation, similarity, that also has a coalgebraic definition. Howe-
ver, mutual simulation, that is again an equivalence relation, is not as powerful
as bisimulation equivalence. We can try to enforce the simulation semantics by
adding some additional constraints, getting for instance the ready simulations
and the ready simulation equivalence. However, there is not any non-trivial or-
der relation whose kernel is bisimilarity. Even so, simulations are a reasonable
and useful way to compare two given systems, and also a powerful tool to define
interesting equivalence relations, as ready similarity.



Another way to generalize the concept of bisimulation is by means of its
categorical definition, by allowing any functor F' in the definition of the coal-
gebras a : X — F(X)and b : Y — F(Y) to be related. Besides the seminal
work on the subject [1], you can look at the wonderful monography [16] to find
a thorough study of the subject. Even if it would be interesting to know all the
technical details, in this paper we mainly pretend to motivate the use of several
bisimulation-like equivalence relations, which can in fact be supported by all that
abstract machinery. Therefore, we are both saying that those semantics can be
formally defined, and have all the pleasant properties of bisimulation semantics;
and we are proving that those general abstract studies have indeed a practical
use, since these new interesting semantics can be obtained as particular instances
of the bisimulation semantics they allow to define.

For instance, we will present “commutative bisimulation”, that checks “from
time to time”, by means of some introduced “checkpoints” that the compared
systems have executed the same actions, but possibly in a different order; and
“action sets bisimulation”, where we also introduce a simple definition of “distri-
buted transition system”. We also discuss “approximated bisimulation”, where
the compared systems need not to execute exactly the same actions but some
“similar” ones; this includes the notion of amortized bisimulation, where the
costs of the executed actions need to be only similar. All these bisimulation-
like equivalences are weaker than strong bisimulation, so that they diminish the
proof obligations imposed by the ordinary definition of bisimulation.

Although we will recall that categorical definition, and we will show how can
be indeed used to define some of the semantics we propose, in this paper we will
mainly focus on the presentation of these new semantics, leaving the details of
their categorical definition to other more appropriate forum.

It is important to point out that although there were several proposals for
bisimulations for distributed systems in the past, they were in the opposite
direction to our approach, since they tried to capture the differences between
systems induced by facts such as the location where the actions were executed,
and therefore produce semantic equivalences finer than ordinary bisimilarity;
instead, as said before, we are looking for coarser equivalences, which therefore
are more easily accomplished.

The rest of the paper is structured as follows. Section 2 defines the new
bisimulation-like semantics that we propose. Section 3 is a brief survey of abs-
tract results on categorical bisimulations that can be applied to justify the coal-
gebraic character of all the new bisimulation notions that we have introduced.
As an illustration of how this can be done we present the details for one of
the semantics. Section 4 discusses some related work, and finally Sect. 5 briefly
presents our conclusions and directions for future work.

2 Bisimulations for distributed systems

We have looked for several directions in which we could relax the definition of
plain bisimulations getting nice weaker semantics which could be still rigorously



presented as coalgebraic semantics, thus preserving their good properties. Next
we present those simplest proposals that, at the same time, seem to be more
promising in practice.

2.1 Commutative bisimulations

There are several scenarios in which we are not interested in the order in which
the actions are executed, but in the set of actions that is finally executed. If we
only have finite sequential systems to compare, then we could define the trace
semantics as a starting point, by applying the seq-to-multiset operator that
transforms the sequence of executed actions into the corresponding multiset
of actions. However, if we are considering reactive systems that possibly run
forever, we need to consider adequate bisimulation-like versions of that intended
semantics.

As a first proposal in this direction, we present checkpoint commutative bi-
simulations, that are defined by incorporating into the transition systems that
define the operational semantics of our distributed systems a boolean attribute
checkpoint that signals the times where we have to check for the equality of the
multiset of actions that the systems have executed from their previous check-
points.

We can describe the desired bisimulation equivalence using plain, but accu-
rate words, as follows: in order to check if two states of two systems are equi-
valent, we will play the ordinary bisimulation game, but now we are not forced
to replicate the execution of any action a by executing the same action in the
other process; instead, we remember the multiset of actions executed through
the paired computations until we arrive to a checkpoint. Then, the other process
has to arrive to another checkpoint and the two remembered multisets of actions
should be the same.

To formalize this new class of bisimulations we need to introduce those sets
of remembered actions. This is done by defining our bisimulations not just as
relations on states, but as relations on pairs (s,m) € SxMS8(A), where s is a state
and m a multiset of actions. This takes us to the following formal definitions.

Definition 1. (S, A, —,chk) is an lts with checkpoints if (S, A, —) is an ordi-
nary lts and chk : S — {0,1} is the characteristic function of a set of so called
checkpoints of the system.

Definition 2. A commutative checkpoint bisimulation relating states of an lts
with checkpoints (S, A, —, chk) is a relation R C (S x MS(A)) x (S x MS(A))
that satisfies:

— (s1,m1)R(s2,m2) A (chk(s1) V chk(s2)) = chk(s1) A chk(s2) Amy = ma,

— (s1,m1)R(s52,m2) A 81 — 8| = Tso 2, sh A (sh,my + {a})R(s5, m2 + {b}),

— (s1,m1)R(s2,m2) A s9 LA sh = 3s1 5 8| A (s),m1 + {a})R(sh, ma + {b}),

where + represents the union of multisets.
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Fig. 2. Checkpoint bisimilar states

As usual, we say that (s1,m1) and (sq,mg) are checkpoint bisimilar, and we
write (s1,m1) ~cnk (82, m2), if and only if there exists a commutative checkpoint
bisimulation R such that (si,m71)R(s2,m2). We simply say that s; and so are
checkpoint bisimilar, and we also write s1 ~cpi S2, if and only if (s1,0) ~cnk
(82, (Z))

First notice that in order to simplify the definition above, we are remembering
the complete multiset of executed actions from the very beginning, and not
only from the last checkpoint. If we prefer to faithfully capture that more local
memory constraint, it is easy to check that changing the second condition in
Def. 2 by the following one

a ’ chk(s1) = (s, {a})R(SI ) {b})
(s1,m2) Rz, ma)sy = s = 3z = SzA{ — chk(s) = (s} m1 + {a})R(sh, m + {B})

and similarly for the third condition, we obtain an equivalent definition.

As a first and trivial example, let us consider the lts with checkpoints in
Fig. 2. In it, we denote by c’s the states which are checkpoints. Then, tri-
vially the states c¢; and cy are checkpoint bisimilar. Indeed, the relation R =
{<(CO7 @)7 (Cl7 ®)>7 <(81a {a})’ (527 {b})>v <(C/1, {a7 b})7 (0/2’ {a'7 b})>} is a checkpoint bi-
simulation.

As it has been done many other times in the past, once we have a bisimulation-
like definition of an equivalence relation, we could prove one by one all the pro-
perties of such a relation. However, what we advocate here is the use of the
general results that have been recently developed in a general framework, so
that those properties are obtained just for free, as particular cases of those ge-
neral results. We will recall in Sect. 3 some of those general results and the
way in which they can be used to prove that all the bisimulation-like semantics
proposed in this paper have, indeed, a pure coalgebraic flavour.

2.2 Amortized commutative bisimulation

One could argue that the use of checkpoints is not very natural, although we
could give some examples where they can be introduced in a quite simple way.
For instance, we could consider the comparison between two search engines that
collect information in the web in two different ways. In this case, the checkpoints
correspond to the points in which they have completed a search: it is at that
time that we have to compare the results of the search.

However, we could prefer a more “continuous” equivalence where the compa-
rison is done after each step of the bisimulation game, although allowing multiple



steps in order to allow the interleaving of other actions whenever we need to re-
plicate the execution of a given action. In order to make easier the presentation
of this semantics, we prefer to start in this case by the formal definitions.

Definition 3. Given a transition system (S, A, —), we define the step transition
system induced by it as (S, A*, =), where s = ' with a = ay ...a, if and only

if
a @i41 an /
§=80—81...5 — Si4+1---Sp—1—7Sp =S

Definition 4. An amortized commutative bisimulation relating states of an lIts
(S, A, —) is a relation R C (S x M8(A)) x (S x MS(A)) that satisfies

s1,m1)R(s2,ma) A sy — s = 3sy = sh  my + {a} € mo + {a} and
R(sh, m) with m +my + {a} = ma + {a},
R(sa,ma) A sy % sh = 351 = sy mao + {a} € my + {a} and

1)R(s
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where by abuse of notation we take {a} = {a1,...,an} ifa=ay...ay,.

In this case we could start by considering only the pairs ((so,mo), (s1, m1))
with mg = @V m; = 0. Then we could see the corresponding set m; # ) as the
stock accumulated by s; when comparing it with s;_;.

We could also consider a restricted variant where the size of this stock is
somehow bounded. For instance, given a size bound B we could impose to the
sets m; = 0, my_; # (0 that |m;_;| < B, in order to define the corresponding
bisimilarity Nchb' The idea is that we cannot execute too many other actions in
advance when simulating the execution of an action a.

If we disregard checkpoints in Fig.2 then states ¢; and c; are amortized
bisimilar, since the following relation is an amortized bisimulation.

R = {{(c1,0), (c2,0)), {(51,0), (c5, {b})), {(c}, {a}), (52, ), {(c], D), (c2, 0))}

2.3 Idempotent bisimulations

If we assume that the execution of actions should be not only commutative, but
also idempotent, so that after executing once an action a the repeated execution
of that action is of no use but has no negative consequence either, then we are
in a scenario where we should use the powerset constructor P instead of using
multisets. Then we can define an exact ic-bisimulation as follows:

Definition 5. An exact ic-bisimulation relating states of (S, A, —) is a relation
R C S xS xP(A) that satisfies

[e%

— (51,52, P) € R, 81 = 8} = Jsy = s such that PU {a} = P U {a} and
(sh,s5,PU{a}) € R
— (s1,82,P) € R, 89 % s = sy = 8| such that P U {a} = P U {a} and
(3/17823PU {a}) €R.



We define as usual the corresponding bisimilarity notion ~;..

Note that in this case we do not need two sets of remembered actions because
the related states have to correspond to the common set of executed actions P.
Instead, we need a perpetuous memory, since we consider that the repeated
execution of an action, from the very beginning, does not have any consequence,
so that it can be replicated by executing any sequence of actions in P*. We could
also imagine that once an action has been executed, and therefore included in
the set of executed actions P, from then on the repeated execution of actions in
P behaves as if they had become internal actions, so that we could also say that
our ic-bisimulations is a kind of dynamic weak bisimulation.

Besides, we could define the corresponding amortized ic-bisimulations and
bounded versions of these new bisimilarity notions, where we can also limit the
length of the replicating sequences «.. This would be related with efficiency issues,
in which we want to impose the condition that the number of actions executed
by comparable computations of two bisimilar processes will be somehow similar.

Obviously, we can also define checkpoint idempotent bisimulations, although
in this case we should also allow replicating steps = in the right-hand side of
the defining conditions, since due to the idempotence of actions we could need
to repeat the execution of some actions in order to reach the adequate bisimilar
state, so that the lengths of two equivalent computations could be different.

2.4 Amortized quantitative bisimulation

There have recently been two approaches to amortized bisimulation [15, 30],
where the authors had to develop by hand the corresponding theories, in order to
proof the good properties of the new bisimulation notions they introduce. These
amortized notions, besides the replication of the execution of an action, impose
that the total costs of the actions executed by two comparable computations are
somehow similar. Next we present our simple proposal for a symmetric notion
of amortized bisimulation.

Definition 6. A weighted lts is a tuple (S, A, —,w) where (S, A,—) is an lts
and w: {s 5 s’ €=} — P(RY).

The function w represents the cost of the execution of a transition. It returns
a set of possible costs, because once we have represented the set of transitions
as a set, and not as a multiset, this is the way we can represent the possibility
of having several ways, with different costs, to execute the same transition.
From now on, we write just s % s" whenever ¢ € w(s % s').

Definition 7. An amortized bisimulation relating states of (S, A, —,w) for the
absolute bound B € RT is a relation R C S x S x [—B, B that satisfies
— (s1,82,d) € RA sy > sy = Isg = sh and (s}, 8h,d —c1 + c2) € R,
C1 C2

— (s1,82,d) € RA s2 C&séiﬂsl % 81 and (sh, sh,d —c1 +c3) € R.



We write ~5 for the amortized bisimilarity relation. As for any other relation
expressing an inexact or approximated equivalence, these amortized bisimilarity
relations are not equivalence relations, because we can have P; Nfb P Nfb
P3; but not P; Nfb P5. Instead, they behave as a distance measure, so that
we have P NaBbl P, Nsz P; = P NaBbl"’Bz P5. Oppositely to what was done
in [15], we have defined a symmetric relation that can be read as “similarly
fast on the large”, and not an order relation “amortized faster”. We could get
an equivalence relation related to the amortized costs by taking ~.= J NaBb.
Obviously, this would be the full relation if we just considered finite processes,
but it becomes interesting for infinite behaviours where this coalgebraic notion
accurately reflects the notion of “equal amortized cost”.

We can also define an exact distance relation between processes by taking
dap(P,Q) = min{B | P ~5 @}, which has all the properties imposed to a
topological distance relation.

Instead of a pure absolute amortized character that imposes the common
bound B, that does not take into account the length of computations, we could
also define a relativized amortized bisimilarity as follows

Definition 8. A relativized amortized bisimulation relating states of (S, A, —, w)
for the margin B € RY is a relation R C (S, S, R,N) that satisfies:

— (s1,82,1,n) E R=|r| < B-n,

— (s1,82,7,m) € RA 81 ci; s = Jdso Ci; sh (sh,s8h,r—c1+ca,n+1) €ER,

a a
— (81,82,7,n) € RN sy — sh=Ts; — 8] (8,85, r—c1+ca,n+1) €R.
C2 C1

We write ~B, for the relativized amortized bisimilarity relation.

It is clear that this relativized notion is closer to the simple approximated
cost bisimilarity that just imposed the simulation of the execution of an action
with a given cost by executing the same action with a similar cost.

2.5 Bisimulations with non-atomic actions

In order to prepare the field for other more interesting examples, here we discuss
the case in which the transitions are labelled not with a single action but with

a multiset of actions. Then we can replicate the executions of <, with C C A by

= _ k
executing £ with © = Cy-...-Crand C = |JC;, to get a plain non-atomic
i=1
actions bisimulation, whose induced bisimilarity relation we denote by ~uqq.
It is immediate to define the corresponding non-atomic actions versions of our

checkpoint, idempotent or amortized quantitative bisimulations.

2.6 Distributed bisimulations

Let us now consider the case in which we have distributed systems composed by
agents that execute their actions in parallel. A first simple proposal corresponds
to the case in which any agent is just a state of a common ordinary lts.



Definition 9. A plain distributed bisimulation relating multisets of states of
(S, A, —) is a relation R C MS8(S) x MS8(S), that satisfies:

— (M1, M) € R, {s},....s}} = Ny C My AVi € {1,...,k} s} & st =
INy = {s2,...,82} C My, Vi € {1,...,k} s? % 2 AN (M],M}) € R, where
Mj=M; —N; +{s{,....s}, Vje{l,2},

— (M1, M) € R, {s2,...,82} = Ny C My AVi € {1,...,k} s? & s2 =
INy = {sl,...,sL} € My, Vi€ {1,...,k} s} P A (M|, M) € R, where
Mj=M; — N; +{s,....s}, Vje{l,2}.

We say that two systems given by two multisets of actions My and Ms are
distributely bisimilar, and we write My ~q Ms, if there exists a distributed bisi-
mulation that contains the pair (M, Ms).

Under this simple definition, it is clear that in order to be distributely bisi-
milar, two systems must have the same set of non-completed agents, where we
say that s is a completed agent if there is no transition s — s’. Instead, the
defined equivalence already has an interesting parallel character, so that it does
not coincide with the plain bisimulation equivalence that would be obtained by
considering the corresponding interleaving semantics.

There are many ways in which we can get more realistic distributed bisimula-
tion notions by extending or modifying the definition above, either by modifying
the conditions imposed to the bisimulations, or by defining an adequate notion
of distributed transition system.

The first proposal in the first direction is just the combination of the defini-
tions of both distributed and non-atomic actions bisimulation, thus making possi-

ct
ble to replicate the simultaneous execution of s} — s/ with Ny = {s],...,s}L} C
2

c? k !
M;, by means of Ny = {s},...,s7} C My with s5 = 5’7 and _UlCil = Ulez.
1= Jj=
We could also remove the partial synchronous character of this definition by
allowing the sequential firing of transitions in the replicating system, thus getting

2 k [

s? 0:4 s;? with 'UlCi1 = .UlCJZ, where by abuse of notation we are identifying the
i= j=

sequences of multisets CJZ with the multiset composed of its elements.

Obviously, starting from these asynchronous, non-atomic actions, distributed
semantics, we could easily define the corresponding checkpoint idempotent or
amortized quantitative bisimulation.

In the opposite direction, we could define specific notions of distributed lts’s
by incorporating special transitions for the creation of agents, or mechanisms
to synchronize the firing of transitions when needed. We do not need a special
mechanism for the removal of agents since that can be easily represented by
means of completed states of the system. Just to give a concrete proposal, which
is at the same time flexible and simple, we present the following:

Definition 10. A distributed transition system is a tuple (S, A,+—) where S is
a set of states, A is a set of actions (possibly somehow structured) and +— is
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a distributed transition relation, which means —C S X A x P(S). A concrete
distributed system based on (S, A,+—) is just a multiset M € MS(S). We call
each state in M an agent of the system.

In order to impose the adequate synchronization conditions we introduce the
following firing rule for distributed transitions:

Definition 11. We define a synchronized distributed system as a pair {(S, A,—), Z),
where (S, A,—) is a plain distributed transition system and Z C MS(A) defines
the allowed steps of the computations of the system: given a concrete system for

z
it M € MS(S), we say that M = M’ is a computation step of the system if
Z ={a1,...,an} € Z and there exists N = {s1,...,s,} € M with s; &> S/ for
allie{l,....,k} and M' = M — N+ 3% 5.

This is indeed quite a general synchronization framework that allows the
consideration of autonomous actions that can be executed by a single agent
without having to synchronize ({a} € Z), pairs of synchronizing actions in the
CCS style ({a,a} € Z), and general synchronizing steps (Z € Z) as they were
introduced in E-LOTOS [13]. The framework even considers broadcasting sce-
narios: if a represents the communication of an action, and @y, ..., a, represent
the reception of that information by all the “participants” of the system, so
that at least one agent of each participant receives the information, then we can
represent this scenario by having ({a} + Zle k; -a;) € Z if and only if for all
i€{l,...,k} k; > 1. We have used an instance of this synchronization model
in our ubiquitous nets [10], where we have both autonomous transitions and
synchronization transitions that represent the offering and request of services to
providers.

3 A quick survey on useful abstract bisimulation results

As we said in the introduction, one of the main objectives of this introductory
paper is to establish a bridge between the existing theoretical results that could
support our Formal Methods and the concrete application of these results. Whe-
never the need for new formal methods is detected in one field, we always start
by developing ad-hoc theories that are as simple as possible, but close enough
to the concrete application that has motivated its introduction. Certainly, these
first steps are usually only partially satisfactory from both points of view: the
theories are not too general, and at the same time they use to be unnecessa-
rily involved and even clumsy; on the other side, they are only adequate to solve
simple cases, or cover partial aspects of what we want to cope in our applications.

When a successful, or at least quite promising new theory attracts the at-
tention of both theoreticians and practitioners we hopefully get quite a heap
of nice theoretical results and suggestions for interesting applications. But the
problem appears when both communities separate each other because the theo-
retical studies need quite complicate foundations that produce involved theories
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that practitioners cannot understand in detail. In many cases this produces a
negative attitude which, at the end, even considers those theoretical studies as
useless, since they seem unapplicable in practice. On the other side, those nice
theories become even more difficult to be understood because nobody looks for
interesting and simple examples which, besides illustrating them, constitute a
concrete case in which many useful results can be obtained for free, once it is
presented as an instance of the general theory first produced.

The formal theory whose great interest we want to illustrate by the long co-
llection of complex notions of bisimulations for distributed systems presented in
the previous section, is that of categorical bisimulations [1, 23, 16], that provide
a general notion of bisimulation; and categorical simulations [14], that more than
a general notion of simulation provide a relaxation of the notion of bisimulation
that preserves most of its coalgebraic framework, thus maintaining most of its
nice (co)algebraic properties. By lack of space, we cannot give here even their
formal definitions in full detail. You could check (and hopefully read in detail)
the beautiful studies cited above to look for the details.

We can see a functor F': Sets — Sets as a constructor of the “set of succes-
sors” of the states of a class of systems. Besides, we need a natural translation
of the functions relating two sets of states, that preserves composition and iden-
tity functions, that is,V f : X =Y, g: Y — Z, F(go f) = F(g) o F(f) and
F(ldx) = Idp(x)-

For instance, for the notion of commutative checkpoint bisimulation in Sect. 2.1
we would need a functor F.p,(X) = {0,1} x MS(A) x P(A x X), where roughly
the elements of X correspond to the tuples in {0,1} x S x M8(A), so that they
keep memory of the multiset of executed actions since the last checkpoint, and
indicate us if that state is a checkpoint or not.

F-coalgebras are just functions « : X — FX. Then F-bisimulations can
be characterized by means of spans, using the general categorical definition by
Aczel and Mendler [1]:

X R Y

C‘ e‘ d
Frq Fro

FX FR FY

R is a bisimulation iff it is the carrier of some coalgebra e making the above
diagram commute, where the r; are the projections of R into X and Y.
We can also define them by relation lifting: given R C X x Y, we take

Rel(F)(R) ={(u,v) e FX x FY | 3w € F(R) u= Fri(w) Av= Fra(w)}

Then, F-bisimulations are just the support of any Rel(F)-coalgebra.

We will also need the general concept of simulation introduced by Hughes and
Jacobs [14] using orders on functors. Let F' : Sets — Sets be a functor. An order
on F' is defined by means of a functorial collection of preorders CxC FX x FX
that must be preserved by renaming: for every f : X — Y, if u Ex v then
Ff(u) Cy Ff(u').



12

Given an order C on F, a C-simulation for coalgebras ¢ : X — FX and
d:Y — FY is a relation R C X x Y such that

if (z,y) € R then (c(x),d(y)) € Rel(F)c(R),
where Rel(F)c(R) is C oRel(F)(R)o C, which can be expanded to
Rel(F)c(R) = {(w,v) | Jw € F(R). u C Fryi(w) A Fra(w) C v}.

As we discuss in [12], it could be argued that the class of simulations obtained
in this way is perhaps too broad. For example, we would expect simulations
to be asymmetric order relations. However, equivalence (functorial) relations,
represented by =, are a particular class of orders on F', thus generating the
corresponding class of =-simulations. As it is the case for ordinary bisimulations,
=-simulations themselves need not be equivalence relations, but the induced
notion of =-similarity clearly is.

Let us briefly explain what is the idea behind this quite nice relaxation of
the notion of F-bisimulation: any F-bisimulation has to satisfy a local coherency
condition which roughly says that the successors of two related states (s1, s2) € R
can be paired each other getting the same attributes when comparing informa-
tion not in X, and states also related by R, when we compare elements in X.
The introduction of the order C allows us to change these sets of successors
according to it, before comparing them as indicated above. Obviously, the pos-
sibility of modifying those sets makes it easier to get the needed correspondence
and, therefore, for any order C on F', the corresponding C-similarity relation is
weaker than F-bisimulation. In particular, by means of the adequate orderings,
we will be able to relax the condition imposed by bisimulations: any information
in the successors of two related states not corresponding to the “reached sets”
must be exactly the same.

As a consequence, we cannot define any of our bisimulation notions that need
the use of any kind of memory as plain F-bisimulations. Instead, we can capture
those notions of memory and the necessary comparisons between them by means
of the adequate notion of order on F. Next, we will illustrate all this by means
of our first notion of commutative checkpoint bisimulation. For the functor Fi s
we define the equivalence = as follows:

— (0, M,T) =i (0, M',T") VM, M, T, T' with
T={(ai,s:) |i€{l,....k}y & T ={(d,s)]ie{l,... .k},
— (1, M,T) =i (1, M, T') VM, T, T' with
T={(a,s)|ie{l,....k}} & T ={(d,s)|ie{l,....k}}

The idea is that whenever we are in a checkpoint the remembered multiset
of executed actions must be the same, so that =, does not allow to change
them. However, if we are not in a checkpoint, we do not need to compare the
remembered multisets at all. This is why =, allows to change any of the
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compared values, thus making it equal to the other in order to satisfy the equality
imposed “in the middle of the condition” defining =.i-simulations. Note also
that the actions executed in the transitions need not to be compared, so that we
can always change an action a; by any other af.

In many of the bisimulation notions that we have defined in this paper, we
need to consider transition sequences instead of plain transitions, for instance
when defining our amortized commutative bisimulations. Certainly, all these
equivalence notions could be studied by means of the derived step transition
system =, as it is done when characterizing the ordinary weak bisimulation as
a strong bisimulation on the expanded system =. However, we do not want
to explicitly construct such a tremendous system which, in fact, presents any
computation of the original system as a single transition of the derived step
transition system, thus completely losing the ability of reasoning on the full
behaviour of a system in a local way. In other words, by expanding the original
transition system and then defining bisimulation relations we are apparently still
using a coalgebraic language, but the spirit of coinduction that means getting
global properties by local reasonings has completely disappeared in practice.

There are a few recent works on the categorical definition of weak bisimula-
tion and step semantics. In particular, a part of the results and techniques used
in [26] can be used to formalize several of the new bisimulation notions intro-
duced in this paper, following the general ideas sketched in [25]. Another more
technical approach to the subject is that in [22], which needs a more careful
study and more developments in order to find the way of using their ideas easily.

4 (Not so much) related work

Since its official introduction in [18], although we can find some related concepts
in several older works devoted to different subjects, as explained in [24], quite a
number of generalizations of the bisimulation equivalence have been proposed.
However, these generalizations tend to preserve more of the structure of proces-
ses, thus obtaining even finer equivalences than bisimulation. For instance, in [5]
Castellani et al. define a so called distributed bisimulation that deals with the
distributed nature of processes, by distinguishing between concurrent processes
and nondeterministic but sequential processes. As a consequence, the processes
alb and ab + ba are not identified by this semantics.

In [4], Boudol et al. follow the same intention, that of defining a notion of bisi-
mulation that distinguishes between concurrency and sequential non-determinism.
However, unlike in [5], where the authors focus on the distributed nature of pro-
cesses, here the authors focus on the atomicity of actions by adding extra struc-
ture in the labels of transitions, which become partially ordered sets. Again, the
resulting bisimulation semantics is stronger than strong bisimulation. For ins-
tance, processes alb, ab+ ba and ab + (alb) + ba are all distinct with respect to
that semantics.

Another interesting collection of works, that in this case also introduce a
general categorical approach based on so called open maps, is [17, 9, 19], where
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h
Fig. 3. Bisimilar but not FC-bisimilar nets

again a stronger semantics based on event structures that capture the causal
relation between actions is studied. History-preserving bisimulation studied by
W.Vogler [28] and Maximality preserving bisimulation [7] are other bisimula-
tion semantics for Petri Nets and related models that are based on the so called
process semantics for them. This kind of semantics became very popular in the
first nineties when action refinement was studied in depth looking for a modular
semantics that would be preserved by the implementation of complex actions
by means of the corresponding processes (see for instance [29]). In the same
direction we can find [2], that presents FC-bisimulation (standing for Fully Con-
current), based on the process semantics of Petri nets, also preserving the level
of concurrency. For instance, the two simple nets in Fig. 3 are strong bisimilar,
but not FC-bisimilar.

However, when we tried to find previous work on weaker bisimulation seman-
tics we have found nearly nothing, out of, of course, anything related with the
classical weak bisimulation. Probably, there is a formal reason why that is the
case: any classical bisimulation equivalence imposes the equality of all the com-
pared information, out of the consideration of the compared states themselves,
and besides, it has to be defined in a local way. Both conditions produce rather
strong equivalences as discussed above.

In order to get weaker equivalences one possibility is to consider adequate
bisimulation up-to relations, as we have successfully done in [11], getting coalge-
braic characterizations of any semantics in Van Glabbeek’s spectrum [27]. The
other possibility is to consider categorical simulations, as we have explored in
this paper. As a matter of fact, there are some connections between these two
approaches, since both relax the proof obligations imposed by the clauses de-
fining bisimulations, by introducing up-to mechanisms. However, an important
difference is that orders on functors can only be based in local information in the
successors of the compared states, and thus categorial simulations have many
pleasant coalgebraic properties. Instead, in [11] we had to renounce to these pure
local definitions, since we wanted to characterize all the classical extensional se-
mantics, such as failures or trace semantics, that cannot be captured by local
conditions.

5 Conclusions and future work

By means of the new coalgebraic semantics for distributed systems presented in
this paper, we have tried to narrow the gap between theoretical developments
on categorical bisimulations and the applications of coalgebraic techniques to
define and study new interesting semantics for distributed systems. Certainly,
this is just an introductory paper that, however, already shows the applicability
of some recent general results on categorical simulations and categorical weak
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bisimulations. These results allow us to guarantee that our new bisimulation-
like semantics are indeed coalgebraically based, so that they have all the good
properties of this kind of semantics, without the need to prove them again,
because they were established and proved once and forever.

There are two directions for further work on the subject: we have to present in
detail the reformulations of our new semantics in the categorical framework. We
have already done it for most of the semantics presented in the paper, either by
directly presenting them as instances of the categorical definition of simulation
or by using a step semantics defined by hand, for the cases in which we need to
consider sequences of transitions in the definitions. As mentioned above, there is
not a general theory for categorical step semantics available yet, and therefore
in this case we need either to wait for those general results or to apply the
particular cases that have already been solved, which fortunately correspond in
particular to the functors defining the kind of transition systems in which we
are interested.

Concerning the applications, we hope to motivate the people working in the
field to consider the new semantics introduced in this paper, looking for those
that could be more useful in practice. Practitioners have always considered bisi-
mulation semantics not so useful because the equivalence it defines is too strong.
By relaxing the conditions to become equivalent, but maintaining the good pro-
perties of coalgebraic semantics, we could obtain new promising semantics, and
then develop for them all the machinery that makes applicable in practice the
bisimulation semantics.
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