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Abstract. We treat the effect of absence/failure of ports or components
on properties of component-based systems. We do so in the framework
of interaction systems, a formalism for component-based systems that
strictly separates the issues of local behavior and interaction, for which
ideas to establish properties of systems were developed. We propose how
to adapt these ideas to analyze how the properties behave under absence
or failure of certain components or merely some ports of components. We
demonstrate our approach for the properties local and global deadlock-
freedom as well as liveness and local progress.

1 Introduction

Component-based design techniques are an important paradigm for mastering
design complexity and enhancing reusability. In the object-oriented approach
subsystems interact by invoking in their code operations or methods of other
subsystems and hence rely on the availability of these subsystems. In contrast
to this, components are designed independently from their context of use. They
are put together by some kind of gluing mechanism. This view has lead some
authors, e.g. [1–3], to consider a component as a black box and to concentrate
on the combination of components using a syntactic interface description of the
components. However, if we want to make assertions about the behavior of a
component system, be it functional, temporal or quantitative, knowledge about
the components has to be provided.

There have been approaches using different techniques to model the behavior
of a component, e.g. Petri-nets [4], process algebra [5, 6] or channel-based meth-
ods [7]. Except for model-checking, where the complete global state space has to
be analyzed, there are not many approaches that investigate generic properties
of systems as deadlock-freedom, liveness, etc. In some previous work [5, 8] the
question of deadlock-freedom is addressed for special cases.

We build here on interaction systems, a model for component-based systems
that was proposed and discussed by Sifakis et al. in [9–12] and has been imple-
mented in the PROMETHEUS [13] as well as the BIP tool [14].

The model strictly separates the description of the components from the way
they are glued together. Each component i has a static description that gives the
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information about its interface, which is here modeled by a set Ai of ports. The
dynamics of a component is given by a transition system where the edges are
labeled with elements from Ai. Components are glued together via connectors. A
connector is a set of ports which contains at most one port for every component.
The connectors give the information how components cooperate. When each
component is ready to perform its port in a connector c then all ports in c can
be performed conjointly. The same set of components can be glued together
differently (i.e. with other connectors) for different applications. The behavior of
the global system Sys, i.e. the component system, is fully determined by the static
and dynamic description of each component and by the connectors. The model is
suitable to investigate important properties of component-based systems, as e.g.
local/global deadlock-freedom, local progress and liveness. In [15–17] it is shown
that deciding deadlock-freedom is PSPACE-hard and deciding liveness is NP-
hard for interaction systems. However, as the information about the individual
components is maintained in the model it can be exploited to develop sufficient
conditions for the desired properties that can be tested in polynomial time [18,
19, 17]. As violations of safety properties can be expressed as deadlocks broad
classes of properties can be handled in this approach.

Here we deal with the question of robustness in interaction systems in the
following sense. Consider e.g. an interaction system Sys that is deadlock-free,
i.e. the system may proceed in every state. Let us now assume that the system
has been running for a certain amount of time when a subset A′ of the set of all
ports becomes unavailable (out of service). This might be because the ports in
A′ suffer some kind of failure or malfunction but it is also possible to model a
situation where certain ports or components are switched off. Can the system Sys
still proceed in every state? How are other properties affected? Can a component
that could previously make progress in the system still make progress? How do
we know if a component is live in Sys when some ports are out of service, etc?

In a first attempt one might try to solve these problems by simply removing
the ports in A′ from the description of Sys and by then investigating the resulting
construct. However, this is not feasible as will be shown later. What we propose
to do is to adapt the sufficient conditions and derived algorithms for the desired
properties appropriately so that they can be used to answer the questions posed.

Not much work has been done that theoretically investigates the question
what effect the failure/absence of parts of a component system has on interesting
properties of the system. This is also due to the fact that there is not much work
on the theoretical analysis of properties of component-based systems. In [20]
component systems are modeled in a way such that they are fault tolerant to
a certain extent. This is achieved by requesting that local faulty behavior in
a component is detected and handled within the affected component itself. A
particular question concerning the classification of safety and liveness in the
context of failures has been investigated in [21].

The paper is structured as follows. In Sect. 2 we give a summary of the model
of interaction systems. In Sect. 3 we present properties of interaction systems.
In Sect. 4 we explain how the sufficient conditions for a desired property can



be adapted to the situation where A′ is not available. We do so in detail at the
hand of global deadlock-freedom of a system and liveness of a set of components.
Finally we sketch how local progress and local deadlock-freedom can be treated
in a similar way. The paper is summarized by a short conclusion in Sect. 5.

2 Components, Connectors and Interaction Systems

In this section we present the basic definitions for interaction systems that
were first introduced in [9]. An interaction system models the behavior of a
component-based system for a set K of components. It is the superposition of
a static model, called interaction model, that considers a component as a black
box with interface description and specifies the “glue code”, and the dynamic
model, which gives the description of the local behavior of the components. For
every component i ∈ K, a set Ai of actions or ports is specified and constitutes
the interface. Gluing of components is achieved via so-called connectors. A con-
nector c is a finite nonempty set of ports that contains at most one port for
every component in K. It describes a cooperation of those components which
have a port in c. When each component is ready to perform its port in c then
all ports in c can be performed conjointly. A subset of a connector is called an
interaction. We may declare certain interactions to be complete. If an interaction
is declared complete it can be performed independently of the environment. It is
a design decision which interactions are chosen to be complete. Connectors may
be of different sizes and one port may be contained in two or more connectors
of different sizes. Thus the model allows for a very flexible way of gluing and
consequently of cooperation among components.

Definition 1 (Interaction Model). Let K be the set of components and Ai

be a port set for component i ∈ K where any two port sets are disjoint. Ports
are also referred to as actions. A finite nonempty subset c of A =

⋃
i∈K

Ai is called

a connector, if it contains at most one port of each component i ∈ K, that is
|c ∩Ai| ≤ 1 for all i ∈ K. A connector set is a set C of connectors that covers
all ports and contains only maximal elements:

1.
⋃

c∈C

c = A 2. c ⊆ c′ ⇒ c = c′ for all c, c′ ∈ C.

I (c) denotes the set of all nonempty subsets of connector c and is called the set of
interactions of c and I (C) =

⋃
c∈C

I (c) is the set of interactions of the connector

set C. For component i and interaction α ∈ I (C), we put i (α) = Ai ∩ α. We
say that component i participates in α, if i (α) 6= ∅. Let Comp ⊆ I (C). We call

IM := (C,Comp)

an interaction model. The elements of C are also called maximal interactions
and those of Comp are called complete interactions.



If not otherwise stated we always assume that K = {1, . . . , n} for some n ∈ N
or that K is countably infinite. We take up an example from [22].

Example 1. We consider a set of tasks i (i ∈ K = {1, ..., n}) that compete
for some resource in mutual exclusion. Task i is represented by the component
i with port set Ai = {activatei, starti, resumei, preempti, finishi, reseti}. The
connector set is chosen as Ctasks = {conni

1, connij
2 , connij

3 , conng|i, j ∈ K, i 6= j},
where

conni
1 := {activatei}

connij
2 := {preempti, startj}

connij
3 := {resumei, finishj}

conng := {reset1, . . . , resetn}

and the complete interactions are given by

Comptasks = {{startj} , {finishj} |i, j ∈ K ∧ i 6= j} ,

and IMtasks := (Ctasks, Comptasks).

So far we have only described components as black boxes with ports and
have specified the possible structure of cooperation in between them. A further
level of description of a component characterizes its local behavior. Basically
this can be understood as a control of the way in which a component offers its
ports. We assume here that this local behavior of every component i ∈ K is
given by a labeled transition system Ti. From the local transition systems and
the interaction model we obtain the global behavior of the component-based
system.

Definition 2 (Interaction System). Let K be a set of components with asso-
ciated port sets {Ai}i∈K and IM = (C,Comp) an interaction model for it. Let
for each component i ∈ K a transition system Ti =

(
Qi, Ai,→i, Q

0
i

)
be given

where →i⊆ Qi × Ai ×Qi and Q0
i ⊆ Qi is a non-empty set of initial states. We

write qi
ai→i q′i instead of (qi, ai, q

′
i) ∈→i.

The induced interaction system is given by Sys :=
(
IM, {Ti}i∈K

)
where the

global behavior T =
(
Q,C ∪ Comp,→, Q0

)
is obtained from the local transition

systems of the individual components in a straightforward manner:

1. The global state space Q :=
∏

i∈K Qi is the Cartesian product of the Qi

which we consider to be order independent. We denote states by tuples q :=
(q1, . . . , qj , . . .) and call them (global) states. Elements of Qi are called local
states of component i.

2. Q0 :=
∏

i∈K Q0
i , the Cartesian product of the local initial states. We call the

elements of Q0 (global) initial states.
3. →⊆ Q× (C ∪ Comp)×Q, the labeled transition relation for Sys defined by

∀α ∈ C ∪ Comp ∀q, q′ ∈ Q : q = (q1, . . . , qj , . . .)
α→ q′ =

(
q′1, . . . , q

′
j , . . .

)
⇔

∀i ∈ K : qi
i(α)→i q′i if i participates in α and q′i = qi otherwise.



A state qi ∈ Qi is called complete if there is some interaction α ∈ C ∪ Comp
and some q′i such that qi

α→i q′i. Otherwise it is called incomplete.

Note that a system may proceed in a global state q if qi is complete for some
i ∈ K. The converse does not hold.

Definition 3 (Enabled). Let Sys be an interaction system and let i ∈ K be
a component. For ai ∈ Ai we set en (ai) :=

{
qi ∈ Qi|∃q′i : qi

ai→i q′i

}
. For α ∈

C ∪ Comp we set en (α) :=
{

q ∈ Q|∃q′ : q
α→ q′

}
.

If qi ∈ en(ai) we say that ai is enabled in qi or that qi offers ai and analogously
for q and α. Given a set of components, an interaction model IM = (C,Comp)
and a transition system Ti for each component i the induced interaction system
describes the behavior of the composed system. In particular, in a given global
state q = (q1, . . . , qj , . . .) an interaction α ∈ C ∪Comp may take place provided
that each component j participating in α offers j(α) in qj .

Example 1 continued. The transition system Ti for task i is given in Fig. 1 where
every local state is a starting state.

inaci

waiti

execi susp
i

activatei

starti

finishi

preempt
i

resumei

reseti

Fig. 1. Transition system of task i

We put Systasks := (IMtasks, {Ti}i∈K).

Remark 1. In what follows, we often mention Sys =
(
IM, {Ti}i∈K

)
. It is under-

stood that IM = (C,Comp) is an interaction model for the set K of components
with port sets Ai and Ti =

(
Qi, Ai,→i, Q

0
i

)
for i ∈ K and T are given as above.

3 Properties of Interaction Systems

Properties of systems have been classified into safety- and liveness-properties in
[23] and have been investigated in various settings, see for example [24, 25]. In



Sect. 3.1 we define the properties that we consider here w.r.t. absence/failure of
ports. The properties are local/global deadlock-freedom, local progress of a set
of components and liveness. These properties of interaction systems have been
studied in detail in [22, 18, 19, 17, 15]. In Sect. 3.2 we define what we mean by
robustness.

Remark 2. From now on we will assume that the local transition systems have
the property that every local state offers at least one action. We also identify
singleton sets with their element if it is convenient to do so.

3.1 Properties

Definition 4 (Reachable). Let Sys be an interaction system, q ∈ Q. q is
reachable in Sys if there is a sequence q0 α0→ q1 α1→ . . .

αn−1→ q such that q0 ∈ Q0.

First we take up the notion of local and global deadlock-freedom for interaction
systems from [18, 22].

Definition 5 (Local/Global Deadlock-Freedom). Let Sys be an interac-
tion system. Sys is called globally deadlock-free if for every reachable state q ∈ Q
there exists α ∈ C ∪ Comp such that q ∈ en (α).

A nonempty set K ′ ⊆ K is in local deadlock in the reachable global state
q if for all i ∈ K ′, ai ∈ Ai, α ∈ C ∪ Comp: (qi ∈ en (ai) ∧ ai ∈ α) implies that
there is some j ∈ K ′ with j(α) 6= ∅ ∧ qj /∈ en(j(α)). We say that Sys is locally
deadlock-free if there is no reachable state q for which some subset K ′ ⊆ K is
in local deadlock in q.

A subset K ′ of components is in local deadlock in a reachable global state q if
every component i ∈ K ′ needs for each of the actions enabled in qi the coop-
eration of some component in j ∈ K ′ to proceed which in qj does not offer the
action needed. If K ′ = K we speak of a global deadlock in q. In such a state the
system is not able to proceed. A system that is globally deadlock-free may still
contain local deadlocks. As violations of safety properties can be expressed as
deadlocks, the investigation of deadlock-freedom deserves particular attention.

Definition 6 (Run). Let Sys be a globally deadlock-free interaction system,
q ∈ Q a reachable state. A run of Sys is an infinite sequence σ = q

α0→ q1 α1→ q2 . . .
with ql ∈ Q for all l ∈ N.

Let i ∈ K be a component and let σ be a run of Sys. If there exists l such
that i participates in αl we say that i participates in σ.

The notions of local progress and liveness of a component have been defined
for interaction systems in [22, 19].

Definition 7 (Local Progress and Liveness). Let Sys be a globally deadlock-
free interaction system and let K ′ ⊆ K be a nonempty set of components.

1. K ′ can make local progress in Sys if for every reachable state q ∈ Q there ex-
ists a run σ = q

α0→ q1 α1→ . . . starting in q such that some i ∈ K ′ participates
in σ.



2. K ′ is live in Sys if for every run σ of Sys there is some i ∈ K ′ that partic-
ipates in σ.

Example 1 continued. In [22] this example was discussed in detail. In particular
it was shown that Systasks is globally deadlock-free and that every component
can make local progress. It was explained that mutual exclusion is achieved under
a rule of maximal progress defined in [22].

3.2 Robustness of Properties

Let us now assume a situation where a set A′ ( A of ports may become un-
available in a running system. This might be because the ports in A′ suffer some
kind of failure or malfunction at a certain point of time but it is also possible
to model a situation where certain actions or components are switched off for
performance reasons for example. We want to formulate what it means that a
property is present when A′ becomes unavailable. For this we partition C∪Comp
to separate those interactions that involve A′ from those that don’t.

Definition 8 (EXCL and WITH). Let Sys be an interaction system as above
and let A′ ( A. We define EXCL (A′) := {α ∈ C ∪ Comp|α ∩A′ = ∅} and
WITH (A′) := {α ∈ C ∪ Comp|α ∩A′ 6= ∅}

EXCL (A′) denotes the set of all maximal and complete interactions that do not
involve any action from A′. Analogously WITH (A′) is the set of all maximal
and complete interactions that involve some action from A′.

We consider each of the above properties separately w.r.t. absence of A′. Note
that it is not possible to just delete the ports of A′ from the interaction-system
and then check if the definition of a certain property is satisfied by the resulting
“system” for two reasons. Firstly, this construct may fail to be an interaction
system according to the definition (see Sect. 4), and secondly, the failure of A′

may occur at a point of a run where actions from A′ may have been previously
executed in this run. We discuss deadlock-freedom in terms of robustness which
means that we consider a system that is deadlock-free and remains so under
failure of A′.

Definition 9 (Robustness of Deadlock-Freedom). Let Sys be a globally
deadlock-free interaction system and let A′ ( A be a non-empty subset of ports.
In Sys global deadlock-freedom is robust w.r.t. absence of A′ if for every reachable
state q ∈ Q there exists α ∈ EXCL (A′) with q ∈ en(α).

Let Sys be locally deadlock-free. In Sys local deadlock-freedom is not robust
w.r.t. absence of A′, if there is some reachable state q and K ′ such that for any
i ∈ K ′, for any ai which is enabled in qi and for any α ∈ EXCL (A′) with
ai ∈ α there is some j ∈ K ′ with j(α) 6= ∅ and qj /∈ en(j(α)). Otherwise local
deadlock-freedom is said to be robust w.r.t. absence of A′.

Remark 3. In a globally deadlock-free system Sys where K ′ ⊆ K is live it is not
possible that global deadlock-freedom is robust w.r.t. absence of A′ :=

⋃
i∈K′

Ai.



If this was the case it would be possible to construct a run not letting any
component from K ′ participate which is not possible. The converse does not
hold.

We now consider local progress and liveness of a set of components in a
system where global deadlock-freedom is robust w.r.t. absence of A′. First we
need to adapt the notion of a run.

Definition 10 (Run without A′). Let Sys be a globally deadlock-free inter-
action system and A′ ( A. Let global deadlock-freedom in Sys be robust with
respect to absence of A′. Let q be a reachable state.

A run without A′ is an infinite sequence σ = q
α0→ q1 α1→ . . . with ql ∈ Q, l ≥ 1,

and αl ∈ EXCL (A′) , l ≥ 0.

In a system where global deadlock-freedom is robust w.r.t. absence of A′ ( A
such runs always exist by a simple induction argument.

Definition 11 (Local Progress and Liveness without A′). Let Sys be a
globally deadlock-free interaction system and let A′ ( A. Let global deadlock-
freedom in Sys be robust w.r.t. absence of A′ and let K ′ ⊆ K be a nonempty set
of components.

1. K ′ can make local progress without participation of A′ if for every reachable
state q ∈ Q there exists a run without A′ σ = q

α0→ q1 α1→ . . . such that some
i ∈ K ′ participates in σ.

2. K ′ is live without participation of A′ if for every run without A′ σ = q
α0→

q1 α1→ . . . there is some i ∈ K ′ that participates in σ.

Note that, in analogy to deadlock-freedom, we could formulate a notion of
robustness of the property of local progress. In a system where component i can
make local progress we could say that this property is robust w.r.t. absence of
A′ ( A if i can make local progress without participation of A′. By contrast it
does not make sense to consider robustness of liveness. If a set K ′ of components
is live in a system, then for every run σ there is a component i ∈ K ′ that partic-
ipates in σ. This is true in particular for all runs without A′. Therefore liveness
of K ′ without A′ follows from liveness of K ′ and robustness of deadlock-freedom
w.r.t. A′. Nonetheless it is interesting to investigate liveness of K ′ without par-
ticipation of A′ ( A because it is possible that certain runs in which K ′ does
not participate infinitely many often are no longer present when the ports from
A′ are not available any more.

4 Testing Robustness

From our results about the PSPACE-hardness of deciding deadlock-freedom [16]
and NP-hardness of deciding liveness of a set of components [15, 17] it is clear
that deciding robustness of deadlock-freedom w.r.t. A′ ( A respectively liveness
without A′ ( A is at least as hard. One way to deal with the complexity issue



for properties is to establish conditions that ensure a desired property and can
be tested more easily, see for example [22, 18, 19, 26]. In this paper we want
to explain how one can systematically use such conditions to obtain results in
the case of failure of A′. One could raise the question why we study robustness
instead of applying the definitions and results of [22, 18, 19] to a suitably modified
“interaction system”. One could try to do so by simply removing the ports in
A′ from the components of the interaction system under consideration. This
approach does not work for two reasons. Firstly, a thus modified construct is in
general no longer an interaction system according to our definition. One of the
problems that arise can be seen as follows. Consider e.g. the removal of a port
aj of component j. It could be the case that every c ∈ C containing ak for some
k ∈ K also contains aj . On removal of aj the connectors containing aj have to
be removed as well. But then the condition in Definition 1 that every port of k is
contained in some connector c ∈ C is violated. This condition is however crucial
in various places and in particular for correctness of the criterion presented in
[22]. Secondly, the failure of A′ may occur at a point of a run such that actions
from A′ may have been previously executed in this run. It would not be possible
to model this situation in a system with alphabet A\A′.

4.1 Robustness of Deadlock-Freedom

Definition 12 (Incomplete States). Let Sys be an interaction system and
let i ∈ K be a component. We denote by inc (i) := {qi ∈ Qi|qi is incomplete} the
set of incomplete states of component i.

We obtain a criterion for robustness of global deadlock-freedom by adapting
the condition of [22] for global deadlock-freedom of an interaction system. This
condition involves a graph GSys. The nonexistence of certain cycles in GSys

guarantees deadlock-freedom. GSys can be built in time polynomial in |C∪Comp|
and the sum of the sizes of the local transition systems for finite interaction
systems.

Definition 13 (Dependency Graph). Let Sys be an interaction system. The
dependency graph for Sys is a labeled directed graph GSys := (K, E) where the
set of nodes is given by the components of Sys, the set of labels is given by
L := L1 ∪ L2 with

L1 := {c ∈ C|@α ∈ Comp : α ⊆ c}

L2 := {(c, α) |c ∈ C,α ∈ Comp such that α ⊆ c ∧ @β ∈ Comp : β ( α} ,

and the set of edges E ⊆ V × L× V is defined as follows:

1. For c ∈ L1 : (i, c, j) ∈ E ⇔ j (c) 6= ∅ ∧ ∃qi ∈ en (i (c)) ∩ inc (i).
2. For (c, α) ∈ L2 : (i, (c, α) , j) ∈ E ⇔ j (α) 6= ∅ ∧ ∃qi ∈ en (i (c)) ∩ inc (i).

Further we define the snapshot of GSys w.r.t. state q = (q1, q2, . . .) as GSys (q) :=
(K, E (q)) where E (q) ⊆ E such that

1. For c ∈ L1 : (i, c, j) ∈ E (q) ⇔ j (c) 6= ∅ ∧ qi ∈ en (i (c)) ∩ inc (i).



2. For (c, α) ∈ L2 : (i, (c, α) , j) ∈ E (q) ⇔ j (α) 6= ∅ ∧ qi ∈ en (i (c)) ∩ inc (i).

Let Gf = (Kf , Ef ) be a subgraph of GSys. Gf is successor-closed if Kf 6= ∅ and
for all i ∈ Kf and all edges e = (i, l, j) ∈ E where l ∈ L and j ∈ K we have
e ∈ Ef and j ∈ Kf .

The intuitive meaning of the graph is as follows. An edge (i, c, j) means that i
and j participate in c and that there is an incomplete local state qi ∈ Qi such
i(c) is enabled in qi. This means that there could be a global state where i is
waiting for j due to the connector c.

Example 1 continued. The dependency graph GSystasks
is given in Fig. 2 for n =

3. For better readability we define lij :=
(
connij

3 , {finishj}
)

where connij
3 =

{resumei, finishj}. Moreover we omit the label conng. Therefore all edges with-
out label in Fig. 2 carry the label conng.

1 2 3
l32l21

l12 l23

l31

l13

Fig. 2. GSystasks

Next we define predicates that are evaluated on Q.

Definition 14. Let Sys be an interaction system.

1. For e = (i, c, j) we set cond (e) := en (i (c)) ∧ ∃x ∈ c : ¬en (x).
2. For e = (i, (c, α) , j) we set cond (e) := en (i (c)) ∧ ∃x ∈ α : ¬en (x).

3. For a path p = e1, . . . , er in GSys we set cond (p) :=
r∧

l=1

cond (el).

For an edge e = (i, c, j), cond(e) is satisfied in state q = (q1, . . . , qi, . . .) ∈ Q if
i(c) is enabled in qi but c is not enabled in q because at least one component
does not provide the necessary action.

Definition 15. Let Sys be an interaction system.

1. A path p in GSys is called critical if
(
cond (p) ∧

∧
i∈p

inc (i)
)
6≡ false. A path

p in GSys (q) is called critical if
(
cond (p) ∧

∧
i∈p

inc (i)
)
(q) = true. A path

that is not critical is called non-critical.



2. Let p be a critical cycle in a successor-closed subgraph Gf = (Kf , Ef ) of
GSys. p is refutable, if, whenever p lies in Gf (q) where qi ∈ inc (i) for all i,
there is a non-critical path p̂ in Gf (q).

A path is critical if there is some q = (q1, . . . , qi, . . .) ∈ Q such that qi is in-
complete for all components i on the path and cond(e) is satisfied in q for every
edge e on the path. If a cycle in GSys is critical it describes a potential circular
waiting relation among components.

Theorem 1. Let Sys be a globally deadlock-free interaction system as above
and let A′ ( A be a set of ports. Global deadlock-freedom is robust in Sys w.r.t.
absence of A′ if the following conditions hold.

1. There is no a ∈ A′ such that {a} ∈ C ∪ Comp.
2. GSys contains a finite successor-closed subgraph Gf = (Kf , Ef ) such that

(a) For all e = (i, c, j) ∈ Ef we have c ∈ EXCL (A′).
(b) For all e = (i, (c, α) , j) ∈ Ef we have α ∈ EXCL (A′).
(c) Every critical cycle in Gf is refutable.

The proof can be found in the technical report [27]. Basically, if GSys contains
a successor-closed subgraph Gf as above, for every state q ∈ Q this subgraph
yields α ∈ C ∪ Comp that can be executed in q.

Example 1 continued. It is not hard to see that the conditions of Theorem 1
are satisfied for any A′ ⊆ {resume1, . . . , resumen} and robustness of global
deadlock-freedom w.r.t. absence of A′ follows. A situation where resumei fails
for some i can be understood in such a way that the system may function as usual
without this action as long as component i does not allow any other component
to enter the critical region before it has finished its task. In case it performs
a preempti action together with some other component, the component i will
be excluded from any further participation while the global system continues
operating.

4.2 Liveness without A′

Here we transform the criterion of [19] that ensures liveness of a set of compo-
nents K ′ to handle the case of failure of A′.

We define excl (A′,K ′) the set of maximal and complete interactions that
neither involve any action from A′ nor any component from K ′.

Definition 16. Let K ′ ⊆ K be a subset of components. Let excl (A′,K ′) :=
{α ∈ EXCL (A′) |∀i ∈ K ′ : i (α) = ∅} .

Definition 17. Let Sys be an interaction system as above and let j ∈ K be a
component.

1. We define needj (A′) := {aj ∈ Aj |aj ∈ α ⇒ α ∈ WITH (A′)} the set of ports
of j that only occur in maximal or complete interactions also involving A′.



2. Let Bj ⊆ Aj be a subset of actions of j. Bj is weakly inevitable w.r.t. A′ in
Tj if the following two conditions hold:
(a) There is an infinite path in the transition system obtained by canceling

all transitions in Tj that are labeled with an action from needj (A′).
(b) On every infinite path in the transition system obtained this way only

finitely many transitions labeled with aj ∈ Aj\Bj can be performed before
some action from Bj must be performed.

3. Let Λ ⊆ I (C) be a nonempty set of interactions and let j ∈ K be a compo-
nent. We define Λ [j] := Aj ∩

⋃
α∈Λ

α the set of ports of j that participate in

one of the interactions of Λ.

The set needj (A′) contains exactly those actions of j that can only be per-
formed in the global system if an action from A′ is also performed at the same
time. Note that it is clear that (A′ ∩Aj) ⊆ needj (A′). Further a subset of ac-
tions of component j is weakly inevitable w.r.t. A′ in Tj if it is possible in Tj to
choose an infinite path that does not contain a transition labeled with an action
from needj (A′) and if for all such paths there are infinitely many transitions
that are labeled with some action from the set in question. The last part of the
definition introduces a sort of a projection-operator that yields those actions of
component j that participate in one of the interactions in Λ.

In the following we define a graph G := (K, E) for an interaction system
with a finite set K of components and finite port sets which is a modification of
the graph introduced [19] to establish liveness. Informally, an edge e = (i, j) ∈ E
has the meaning that component j can only participate in finitely many global
steps before i has to participate as well.

Definition 18. Let G := (K, E) with E :=
⋃∞

m=0 Em, where:

E0 := {(i, j) |Aj\excl (A′, i) [j] is weakly inevitable w.r.t. A′ in Tj}

En+1 := {(i, j) |Aj\excl (A′, Rn (i)) [j] is weakly inevitable w. r. t. A′ in Tj}

Rn (i) := {j|j is reachable from i in (K,∪n
m=0Em)}

Theorem 2. Let Sys be a globally deadlock-free finite interaction system such
that global deadlock-freedom is robust w.r.t. absence of A′ ( A. Let K ′ ⊆ K be a
set of components. K ′ is live without participation of A′ in Sys if all components
i in K\K ′ such that Ti contains an infinite path that is only labeled with actions
that are not in needi (A′) are reachable from K ′ in G. The construction of the
graph and the reachability analysis can be performed in time polynomial in |C ∪
Comp| and the sum of the sizes of the local transition systems.

The proof can be found in the technical report [27].

Example 2. We model a system consisting of a user u, two service components
s1 and s2 and two maintenance components m1 and m2. The local transition
systems of these components are given in Fig. 3. It is understood that the port
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Fig. 3. A system of one user and two servers

sets are given implicitly by the transition systems. The initial states are marked
by ingoing arrows. The following connector set defines the allowed cooperations:

C :=
{
{internali} , {reqi, servicei} ,

{
mainti,m

i
j

}
|i, j = 1, 2

}
Further we define Comp := ∅. In the global system a state where a global
deadlock occurs cannot be reached. It is clear that global deadlock-freedom is
robust w.r.t. absence of Am2 .

Figure 4 depicts part of the graph G for this system. It is clear that the condi-
tion of Theorem 2 is satisfied yielding liveness of m1 without Am2 . This property
guarantees, that after each use a service component will undergo maintenance
even if the second maintenance component fails.

m1 u s1 s2

Fig. 4. G for the user/server example

4.3 Treating Local Progress and Local Deadlock

Here we want to outline the ideas how the criteria for local progress of a com-
ponent [22] and local deadlock-freedom [18] can be adapted such that they can
be used to test whether a component i ∈ K can make local progress without
A′ ( A respectively whether local deadlock-freedom is robust w.r.t. absence of
A′ ( A.

In [22] a criterion for local progress of a component i was presented. This
criterion is based on the dependency graph from Definition 13. The criterion
demands the existence of a successor-closed subgraph Gf,i as in Theorem 1 such
that i ∈ Gf,i. Moreover every subset of nodes of Gf,i has to be controllable



for the notion of controllability defined for subsets K ′ ⊆ K of components in
[22]. Controllability of K ′ basically ensures that, whenever a global interaction
needs participation of components from K ′, a certain path ending in a state that
provides the needed interaction can be chosen in the subsystem defined by K ′.
This idea can be adapted to test whether a component can make local progress
without A′ ( A. Again it must be possible to choose Gf,i such that no label
contains any action from A′. Furthermore the definition of controllability has to
be changed such that the path eventually providing the needed interaction can
be chosen such that it does not involve any port from A′.

Finally we discuss robustness of local deadlock-freedom. We informally ex-
plain how our algorithm from [18] can be adapted such that it can be used to
ensure that local deadlock-freedom is robust with respect to absence of A′ ( A.

First we will sketch the idea of the algorithm from [18]: in a first step for
every three-element subset {i, j, k} ⊆ K this algorithm calculates the states qijk

that are reachable in the system consisting of these three components under the
assumption that for every connector the actions belonging to components from
K\ {i, j, k} are always available1. This amounts to an over-approximation of the
projection of the set of the globally reachable states to {i, j, k}. Then for each of
these triple-states the algorithm checks the following necessary condition for a
local deadlock. If there is a global state q and a set D ⊆ K such that D is in local
deadlock in q there must be i, j, k ∈ D with i 6= j 6= k such that i is blocked by j
and j is blocked by k where a component j blocks a component i in q if i offers
an action that occurs in a maximal or complete interaction c that j participates
in, but j (c) is not enabled in qj . If this condition is violated for every such
subsystem the algorithm affirms local deadlock-freedom. This idea only needs
to be slightly adapted in order to ensure that local deadlock-freedom is robust
w.r.t. absence of A′ ( A in a system. The first step of the algorithm is identical
to the original algorithm. This reflects our assumption that A′ may fail at any
point of time which means that to begin with all states that can be reached in
the original system can also be reached in the system where A′ may fail. The
necessary condition for a local deadlock has to be adapted. First it is possible
that because of the absence of A′ there might be a local state qi of component i
for which all actions that are offered in this state only occur in α ∈ WITH (A′).
Such a state should be detected as a locally deadlocked state. The existence of
such a state can be checked by investigating all local transition systems and
the set C ∪ Comp. If no such state exists a local deadlock can only occur if
there is a set D ⊆ K and a reachable state q such that for every component
i ∈ D the fact that ai is enabled in qi and ai ∈ α for α ∈ EXCL (A′) implies
that there is at least one j ∈ D such that j (α) is not enabled in qj . From the
second step of the algorithm it follows that there is at least one such α for every
i ∈ D. Moreover there must be at least one i ∈ D such that ai is enabled in qi

that occurs in α ∈ WITH (A′). If this was not the case then the local deadlock
would have been there before the failure of A′ which is a contradiction to the
assumption. Therefore the necessary condition for a local deadlock amounts to

1 We can increase accuracy by considering subsystems of fixed size d.



checking whether there are i, j, k ∈ K and a reachable sub-global state such
that k blocks j and j blocks i (this time only interactions from EXCL (A′) are
considered for possible blockings) and at least one of the three components is
affected by the loss of A′ in the sense described above. If this condition is never
fulfilled the system at hand does not contain any local deadlocks even if the
actions from A′ are not available any more.

5 Conclusion and Future Work

This work investigates a notion of robustness in interaction systems. The contri-
butions are as follows. 1) We presented notions of robustness of global and local
deadlock-freedom w.r.t. failure of a set A′ ( A of ports. Further we introduced
notions of local progress and liveness without participation of a set A′ ( A of
ports. 2) We explained how sufficient conditions for desired properties can be
adapted to handle a situation where a set A′ ( A of ports becomes unavailable.
We did so in detail for robustness of global deadlock-freedom and for liveness
without A′ ( A. 3) We informally explained how a similar adaptation is possible
for local progress and local deadlock-freedom.

Work is in progress towards treating malfunction of components or ports
by introducing probabilities into the framework of interaction systems. In every
local state we assign each enabled action a probability that it might fail such that
we can make statements such as “with probability p no deadlock will arise” about
properties of components. It is clear that this quantitative approach is different
from the approach taken here were we want to make assertive statements about
the properties in situation where services may fail.

References

1. Arbab, F.: Abstract Behavior Types: A Foundation Model for Components and
Their Composition. In: Proceedings of FMCO’02. Volume 2852 of LNCS., Springer
(2002) 33–70

2. Chouali, S., Heisel, M., Souquières, J.: Proving Component Interoperability with
B Refinement. In: Proceedings of FACS’05. Volume 160., ENTCS (2006) 157–172

3. Moschoyiannis, S., Shields, M.W.: Component-Based Design: Towards Guided
Composition. In: Proceedings of ACSD’03, IEEE Computer Society (2003) 122–
131

4. Bastide, R., Barboni, E.: Software Components: A Formal Semantics Based on
Coloured Petri Nets. In: Proceedings of FACS’05. Volume 160., ENTCS (2006)
57–73

5. Allen, R., Garlan, D.: A Formal Basis for Architectural Connection. ACM Trans.
Softw. Eng. Methodol. 6(3) (1997) 213–249

6. Nierstrasz, O., Achermann, F.: A Calculus for Modeling Software Components.
In: Proceedings of FMCO’02. Volume 2852 of LNCS., Springer (2002) 339–360

7. Broy, M.: Towards a Logical Basis of Software Engineering. In Broy, M.,
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