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Abstract. Designing and interoperability testing of distributedpbgation-level
network protocols is complex. Windows, for example, suppourrently more
than 200 protocols, ranging from simple protocols for ereathange to com-
plex ones for distributed file replication or real time commiwation. To fight this
increasing complexity problem, we introduce a methodolaggt formal frame-
work that uses model program composition to specify belmafisuch protocols.
A model program can be used to specify an increment of prbfaoationality
with a coherent purpose, which can be understood and ambdgarately. The
overall behavior of a protocol can be defined by a compositdeinprogram,
which defines how the individual parts interoperate.

1 Introduction

Protocols are abundant; we rely on the reliable sending eceiving of email, multi-
media, and business data. But protocols, such as SMB [28]pearery complex and
hard to get right. They require careful design to guaranédiaehility and failure re-
silience; they require careful and efficient implementadido not clog the system; and
they require careful documentation and interoperabiisfing, so that different vendors
understand the same protocol.

A protocol typically has many different facets. Each facetvides a partial view
of the overall functionality of the protocol with a cohergntrpose. An example of a
facet is a set of rules that describes how message ids aveedllim be computed and
communicated between a client and a server in a client-spregocol.

In this paper we provide a methodology and a formal framevarkpecifying pro-
tocol facets as separate model programs. A model programadiextion of guarded
update rules indexed by actions. A model program of a siragtetfcan be subject to
liveness and safety analysis, which can be infeasible tfoparfor the whole proto-
col model. Instead, one can apply compositional reasomiribe following sence. If
a model program satisfies one property and another modetarogatisfies another
property, then the composition of those model programsfeetiboth properties. Dis-
tilling facet model programs also fosters reuse, sincetéaceich as an algorithm for
request cancellation in a particular client-server prokotypically reappear in similar
protocols.

Model programs of different facets of a protocol can be cosepdointo a single
model program. Composition of model programs is syntabtit the underlying trace
semantics is based on the classical theory of labeled tiamsystems (LTSs) [31,
32]. This enables a direct application of the formal LTS laseory of testing using



IOCO [9] or interface automata refinement [15]. The step seimaof model programs
is based on the theory of abstract state machines (ASMsWb]Ja rich background
universe [6]. This enables explicit state exploration teghes [21] and symbolic anal-
ysis techniques that support the needed background tkq86& as well as a range of
other ASM technologies [8] to be applied to model programs.

A key property of the composition of model programs is thdtoss may include
parameters as logic variables. When actions are synclemnialues are shared through
unification from one model program to another, which is défe from communication
through actions by composition of input/output automat®,[#here input actions in
one model are synchronized with output actions in the othedeh We provide tool
support for analyzing safety and liveness properties feidend composed model pro-
grams within the NModel framework [34]. We have integrateodel program com-
position into a model-based test environment in NModel s ithteroperability tests
can be driven from those combined models. The NModel framlewses C# for writ-
ing model programs and is explained in detail in [30], whidoaliscusses the use of
model programs as a practical modeling technique.

To summarize, this paper makes the following contributions

— We introduce a novel modeling technique for protocols usirdgcomposition of
a protocol into different facets that are modeled separatetl composed using
model programs.

— We define formally the composition of model programs thaipdifies and extends
the definition of parallel composition of model programs38]. In particular, the
composition admits sharing of state variables and can be fosestate-dependent
scenario control.

— We illustrate the use of this modeling technique and contipomson an excerpt of
an industrially relevant and non-trivial SMB2 protocol.

The remainder of the paper is organized as follows. Sectidafihes model pro-
grams and related notions needed in the sequel. Sectionrigd@fiodel program com-
position. Section 4 illustrates the application of the téghe to a sample protocol.
Section 5 explains some aspects of the implementation gperiexents. Section 6 is
about related work. We finish off the paper with a short cosiclo.

2 Model programs

Model programs can be viewed as abstract state machines $ARM] indexed by
actions. The main use of model programs is as high-levelfsge@ons in model-based
testing tools such as Spec Explorer [1,37] and NModel [34]Spec Explorer, one
of the supported input languages is the abstract state matdmguage AsmL [2, 26].
AsmL is used in this paper as the concrete specification kgeéor update rules that
correspond to basic ASMs with a rich background P6lincluding arithmetic, sets,
maps, tuples, user defined data types, etc.

We let X denote the overall signature of function symbols. Part efdignature,
denoted byXV®, contains function symbols whose interpretation may vemsynf state
to state. The remaining pafs?i contains symbols whose interpretation is fixed by



the background theory. A ground term ouBF?iC is called avalue term Formally,
the interpretationof a value ternt. is the same in all states and is denotediy An
example of a value termy using AsmL syntax, is aange expressiof3. . 7} ; whose
value[t] is the set of all integers from 3 to 7.

A subset of2stic denoted byXacion gre free constructors calletttion symbols
An actionis a value termf (¢4, ...,t,) wheref is an action symbol, also called an
f-action. We also sagction for [f(t1,...,tn)] = f([t1],-.-,[tn]). For all action
symbolsf with arity n > 0, and alli, 1 < ¢ < n, there is a uniquparameter variable
denoted byf.i. We write s for { f.i}1<i<,. Note that ifn. = 0 thenX'; = 0.

Definition 1. A model programP is atuple(Vp, Ap, Ip, Rp), where

— Vp is afinite subset oEV®", called thestate variables of;

— Ap is afinite subset oE2°"" called theaction symbols oP;

— Ipis aformulaovep = ¥s@licy v/, called thanitial state condition ofP;

— Rpisafamily{R]} sea, of action ruleskRY, = (G4, U}), where
. G{; is a formula ovet’» U X' called theguardor enabling condition oRR%;
e U}, is an update rule ovex'r U X; called theupdate rule ofR},.

We often sayactionto also mean an action rule or an action symbol, if the intent i
clear from the context.

Example 1 (Credits)The following model program is written in AsmL. It specifies
how a client and a server need to use message ids, based dimg slindow proto-
col (see Section 4). Here we illustrate the components oCileelits model program
according to Definition 1.

var window as Set of Integer = {0}
var mexld as Integer = 0
var requests as Map of Integer to Integer = {->}

[Action("Req(_,mc)")]

Req(m as Integer, c as Integer)
require min window and c > 0
requests : = Add(requests, mc)
wi ndow : = wi ndow di fference {n}

[Action("Res(_,mc,_)")]

Res(mas Integer, c as Integer)
require min requests
require requests(n) >=c
require c >= 0

wi ndow : = wi ndow union {maxld + i | i in {1..c}}
requests : = RenoveAt (requests, m
maxld := maxld + ¢

Its three state variables are indicated with the keyward Creditshas two actions
Req andRes, indicated with thg Act i on] attribute on the corresponding method defi-
nition. The initial state condition is given by the initisdgignment of values to the state
variables. The argument of thiéct i on] attribute provides the arity of the action sym-
bol and the mapping from the formal parameter names use@ im#thod definition to
the corresponding parameter variables for the action symBach occurrence of the

1 If the mapping coincides with the method signature, thisiargnt can be omitted.



placeholder_’ indicates that the corresponding parameter variable igeferenced.
The Req action ruleRE2,, . has the following components. The guaded,. . is the

conjunction of all of the equi r e-statements. The update rufg . is defined by the
body of the method. Note that the parallel update rule is #faudt in AsmL, thus both
assignments in thReq action are executed in parallel as a single transactidmyadth

in this case a sequential execution would yield the sametapdaheRes action rule is
analogous. To summarize,

Veredits = {Wi ndow, max| d,r equest s},
Acredits = {Reqa Res},
Icredits = (Wi ndow= {0} A maxl d =0 Arequests = {—}),
GR4. .= (Req.2 € wi ndow A\ Req.3 > 0),
USd. = (requests := Add(r equest s, Req.2, Req.3) ||
wi ndow := wi ndow\ {Req.2}).

We introduce a special class of model programs used hereéoasio control. A
finite state model prograns a model program all of whose state variables have a finite
range. There is a straightforward encoding of regular esgioes over the alphabet of
actions with placeholders to finite state model progra@szen such a regular expres-
sionp we write FSMR(p) for the corresponding finite state model program.

Example 2 (FSMRReq( _, 0, 2) *)). The following model progran® is a finite state
model program, sinc&p = (. Intuitively, P describes the closuiReq( _, 0, 2) *.
[Action("Req(_,mc)")]
Req(m as Integer, c as Integer)

require m= 0 and ¢ = 2

skip

Let P be a fixed model program. R-stateis a mapping of//» to values® Given
a P-stateS, an extension of with the parameter assignmeht= {x; — v; }1<i<n iS
denoted by(.S; ). Given an extended-stateS, the reductionof S to Vp is denoted
by S | Vp. Given an actiom = f(t4,...,t,), letd, denote the parameter assignment
{fim [tilh<i<n.

Let S be aP-state, and let be anf-action. We use the notion &fing of an update
rule U in a stateS [25], denoted here b¥ire(S,U), that yields the updated state,
provided thafire(S, U) is defined (a consistent update set exi$hena is enabled
in Sif (S;0,) E G{; ands’ = Fire((S;Ha),Ul{f,) [ Vp is defined. Them causes a
transition fromS to S”.

A labeled transition systewr LTSis a tuple(S, So, L, T'), whereS is a set obtates
Sp C Sis a set ofinitial states L is a set of labels and C S x L x S is atransition
relation.

2 Model programs also have acepting state conditiothat has been omitted from the discus-
sion in this paper.

% More precisely, this is the foreground part of the state,thekground part is the canonical
model of the background theof.

4 There is no consistent update set when for exartipiea parallel update of two distinct values
to the same state variable.



Definition 2. Let P be a model program. TheTS of P, denoted by[P] is the LTS
(S, S0, L, T), whereSy, is the set of allP-statess such thats |= Ip; L is the set of all
actions oved p; T' andS are the least sets such th&§, C S, and ifs € S and there is
an actiona that causes a transition frogrto s’ thens’ € S and(s,a,s’) € T.

A run of P is a sequence of transitiofis;, a;, s;11)i<x in [P], for somex < w,
wheres, is an initial state of P]. The sequencéu; )i« is called an &ctior) trace of
P. The run or the trace inite if x < w. We write TracegP) for the set of all finite
traces ofP.

To illustrate the notion of a trace, consider= FSMRReq( _, 0, 2) *). In this
case[P] has a single state, that is the empty mapping, because there are no state
variables. There is a transitidry, Req(v, 0, 2), so) in [P] for all valuesv. Thus a trace
of P is any sequence @fg-actions whose second argument is 0 and third argument is
2, which explains the intuition provided in Example 2.

3 Model program composition

Under composition, model programs with the same actionasige synchronize their
steps for the actions. The guards of the actions in the comigroare the conjunctions
of the guards of the component model programs. The updats aué the parallel com-
positions of the update rules of the component model progrée use ||’ to denote
parallel composition of update rules (ASMs) [25].

Definition 3. Let P and@ be model programs such that= Ap = Ag. Thecompo-
sition P & Q is (Vp U Vg, A, Ip A, (G AGL UL || Uf) sea).

The following facts follow immediately from the definitiorf oomposition. LetP
and@ (possibly with indices) denote model programs with the saaoti®n signature.

Fact 1 (Commutativity) [P @ Q] = [Q & P].
Fact 2 (Associativity) [(P1 @ P2) ® P3] = [P1 @ (P ® P3)].

A straightforward technique to lift two model programs t@ ulse same action sig-
nature, that is commonly used to compose FSMs and LTSs,vidaebby the following
basic action signature extensions.

Definition 4. Let P be a model program anfl an action symbol not iMlp. Theen-
abling extension o for f, denoted byP7, is the extension of such thatdp; =
Ap U {f} and Rfjf = (true, skip). Thedisabling extension of for f, denoted by

P~7,is the extension oP such thatdp—; = Ap U {f} andRJ, , = (false skip).
Example 3 (OrderedRequest€pnsider the following model program, call€udere-
dRequests

var wi ndow as Set of Integer

[Action("Req(_,m_)")]

Req(m as | nteger)
require m= M n(w ndow)
skip



It requires the second argument ofRaq action to be the smallest element in
wi ndow. Note that/omeredrequests= true because the initial values of the state vari-
ables are unspecified, i.e. all state§@fderedRequedtsire initial states. The enabling
extensionOrderedRequest®® adds the action rulétrue, skip) for Res to Ordere-
dRequestsThe model program®rderedRequests® and Creditsin Example 1 have
the same action signature.

The enabling (or disabling) extension &ffor a set of action symbolg’ not in
Ap is denoted byPF (or P~F). Note thatP? = P~% = P. Let P andQ be model
programs. LePwQ = [PAe\r g QAr\Ae] andPmQ = [P~4e\Ar g Q—Ar\Ae],
Intuitively, ‘@’ is an operator, where all actions whose symbol is not in teged action
signature are interleaveda® on the other hand disables all such actions.

In the sequel, we overload the composition operatgiso that, for arbitrary model

programsP and@, P & @ stands forP & Q.

3.1 Trace intersection

When composition is used in an unrestricted manner thentieesult is a new model
program which from the point of view of trace semantics mibatunrelated to the
original model programs. In general this happens if the amsed model programs share
state variables. The following proposition follows fron8[3rheorem 1].

Proposition 1. Let P and@ be model programs such thdtr = Ao andVpNVy = 0.
Then Trace&P @ Q) = TracegP) N TracegQ).

The main reason why this property is important is that it nsakeossible to do
compositional reasoning over the traces in the followineself all traces ofP satisfy
a propertyp and all traces of) satisfy a property) then all traces of? & @ satisfy
both propertiesp and.

3.2 Trace restriction

For scenario control, it is sometimes useful to refer to taesvariables of a model
program in order to write a scenario for it. In other word®rthis a contract model
programP and there is a scenario model progréhthat may read the state variables
of P but it may not change the values of those variablesWeteSe(()) be the set of
all state variables of) that appear as left hand sides of assignment ruléks in

Proposition 2. Let P and( be model programs such thdy C Ap, and WriteS€t))
andVp are disjoint. Then Tracé® @ Q) C TracegP).

In this case composition dP and(@ does not introduce traces that were not traces
of P. A typical use of such composition guard strengtheninghat is illustrated in
Example 4.



Example 4.Let P be the model program@reditsin Example 1 and lef) be the model
programOrderedRequesti®n Example 3. In this casb’%e: {wi ndow} C Vp and
WriteSetQ) = 0. In P & Q, Q strengthens the gua@y % so that all other choices
for the parametembesides the smallest elementimdows are eliminated, which is a
particular valid scenario faP. It is not possible to achieve this effect easily with “pure”
composition as in Proposition 1.

4 Sample protocol

We consider an excerpt of the new SMB2 protocol, a succedgbedNindows file-
sharing client-server protocol SMB [28], which is used féegharing between Vista
machines and future Windows hosts. We consider a fixed diedta fixed server. The
client sendgequestgo the server and the server semdsponsedpack to the client.
One can decompose SMB2 into various facets, that, when madedividually, would
comprise between 20 and 30 model programs. We look at twdsfétat are represen-
tative from the point of view of complexity and size. The epptds henceforth called
SP.

— Credit negotiatiordescribes how the client and the server need to use message id
based on a sliding window algorithm.
— Cancellationdescribes how the client can cancel a previously sent réques

Concrete messages of the protocol are mapped to (abstctio)sawhere message
fields that are not relevant for the given facets have beett@nMe consider three ac-
tion symbols and the following message fields. Each messagadommandield that
indicates the operation communicated between the cliehtrenserver. This command
field is either mapped to the first argument of the action, & fhapped to the action
symbolCancel when the command is a special cancellation command.

— Req is a ternary action symbol that represents a request froroligmat to execute
a command. Arequestis an actionReq( ¢, m, n) , wherec is a commandyn is a
message id and is a number of requested credits.

— Res is an action symbol that takes four arguments and represespienses from
the server. Aesponsés an actiorRes( ¢, m, n, s) wherec is a command is a
message idy is a number of granted credits, ands a status value.

— Cancel is aunary action symbol that represents a “meta” request fne client to
cancel a previous request.cdancellation request an actionCancel (m) where
m IS a message id.

4.1 Credit negotiation

The client can use certain message identifiers to commeniaitt the server. The set
of available message identifiers can be seen as a window dbengrthat changes over
time. The window is, strictly speaking, not a consecutivterival of numbers because
the client does not have to use the available numbers in atigydar order. This is an

important aspect of the specification that leaves open im@ieation specific details



of the client-side of the protocol. An identifier of a requean only be used once.
The client can ask for credits in the requests that it sendbecserver in order to
expand the window. The server may grant credits in its respomo the client. The
number of credits granted in a response determines how tidowigrows or shrinks as
time progresses. Note that the server may grant creditg dififerent implementation
specific algorithms the details of which are left open by thectfication.

The Creditsmodel program is defined uniformly for all of the commands;ept
for Cancel , see Example 1.

The state variablei ndow is the set of all message ids that the client may use to
send new requests to the serveggquest s is a map containing all the outstanding
credit requests with message ids as keys, @d d is the largest id that has been
granted by the server. In the initial state of the model tHg possible message id is 0,
the maximum id is also 0, and there are no pending requests.

TheReq action records in the state variablequest s that messagmhas an out-
standing credit request farcredits, and removesfrom the window. The actual com-
mand (the first argument) is irrelevant here. The guard afdltion rule requires that
mappears in the window and that the requested number of sriedibsitive. ThdRes
action updates the window with the new ids and updates theaflthe maximum id.
This action is enabled if the given id is an outstanding retjuend the granted credits
do not exceed the requested credits.

Validation The clientstarvesif it runs out of message ids and cannot send further
requests. An important safety requirement of the credgsrihm is that the client
must not starve. Note that this does not mean that the sdwayshas to grant at least
one credit to the client in every response. It may be thatlibatchas pending requests
and the server will eventually grant the client more creditsus, the state invariant
describing this safety condition is that if there are no pegdequests then the window
must be nonempty.

[Statelnvariant]
C i ent HasEnoughCredi t s()
require (requests = {->}) inplies (w ndow <> {})

A natural question that arises here is if tBeeditsmodel program has anynsafe
states, i.e., states that are reachable (through a trawa)tfre initial state that violate
the state invariant. We use the finite state model progF@MPReq( -, 0, 2) *) in
Example 2 to restrict the number of requested credits to 2thednessage id to 0.
[Credits® FSMRAReq( -, 0, 2) *)] is shown in Figure 1 and reveals an unsafe state
reached by the tradgeq( _, 0, 2), Res( _, 0, 0, ) . The labels on the states show the
values of the state variables of the credits model progrsidiin the same order they
appear in Example 1. We need to strengthen the guard ¢kthaction so that if there
are no pending requests and the window is empty, then theegtaumber of credits
must be at least one; see Figure 2. Notice that if the wind@snigty and no credits are
granted then there must be at least two message ids pendergtivia new condition is
checked, because the update rule will remove one of the ids.



Fig. 1. Exploration ofCr edi t s ® FSMR(Req( , 0, 2) *).

[Action("Res(_,mec,_)")]
Res(m as Integer, c as Integer)
require min requests
require requests(n >=c
require ¢ >= 0
require requests.Size > 1 or window <> {} or ¢ >0

wi ndow : = wi ndow union {maxld + i | i in {1..c}}
requests : = RenoveAt (requests, m
maxld := maxld + ¢

Fig. 2. Correction of theRes action in theCreditsmodel program. The guard is stengthened with
an additional condition, indicated in boldface.

4.2 Cancellation

Cancellation enables the client to cancel requests that begn sent to the server. In
order to cancel a previously sent request with message fthe client sends a cancel-
lation message to the server that identifies the request tameelled by including its
id in the message. The model program is shown in Figure 3cBalkiat it is natural
to refer to thewi ndow of the Cr edi t s model program for the valid message ids in a
request.

The state variableegMode records for each message id whether it has been sent
or cancelled by the client. Initially, no request has eitheen sent or cancelled, so the
value ofr eqMbde is the empty map.

The Req action records the mode of the messagsas . The Cancel action is
always enabled, it updatesSent mode toCancel mode, and ignores the request
otherwise (this behavior is needed for robustness) Relseaction removes the pending
reguest and requires that the request has indeed beenledrmethe client if the status
is false Note that the client may try to cancel a request but is to® tatdo so, when
the server has already completed it but the response hagnhached the client due
to network latencies. Therefore, the status of a resporsedquest that the client tried
to cancel, is eithetrue or falsg so that a potential race condition that would otherwise
arise in the specification is avoided.

Validation Cancellationbehaves uniformly for all message ids. It is therefore ehoug
to fix a single message id, say 5, to expose all possible iggmmbehaviors. As above,



enum Mode
Sent /1 Cient has sent the request
Cancel /1 Cient has asked to cancel the request

var reqMbde as Map of Integer to Mde = {->}

[Action("Req(_,m_)")]
Req(m as | nteger)
require min w ndow
reghbde : = Add(regMbde, m Sent)

[ Action]
Cancel (m as | nteger)
if reqvbde(nm) = Sent
reghde : = Add(regMWbde, m Cancel)

[Action("Res(_, m_,status)")]

Res(m as | nteger, status as Bool ean)
require min regh€de. Keys
require (status or reqvbde(nm) = Cancel) //status=fal se means cancell ed
reghbde : = RenpveAt (reqMbde, n)

Fig. 3. Cancellationmodel program.

Cancel(5) Req(_5

Res(_,5,_,true

a

Res(_,5,_,false)
Res(_,5, .true

Fig. 4. Exploration ofCancellation® Cancel5

we use a finite state model program to do this.
Cancel5= FSMR{Cancel (5), Req(_, 5, ), Res(_, 5, , ) }")

Exploration of[Cancellation® Cancelq is shown in Figure 4. The labels on the states
show the value of eqMbde. Using more message ids does not provide any additional
useful information abouCancellation but blows up the state space exponentially in the
number of distinct message ids. Witdistinct message ids there a'estates.

4.3 Composition

Once the individual facets have been modeled and validatesblation, we can com-
pose some or all of their model programs to validate theiradtions. We use an
additional model program calledommandsif a request with idn has command,

then the response with ith must also have command i.e., the server cannot re-
spond with a command that is different from the one it was estpd to execute. Note
that it is convenient to refer tai ndow of the Credits model program in th&Com-

mandsmodel program for the domain of message ids. (The definitiothe Com-

mandsamodel program is straightforward, using a map from messdgy®icommands.)
We assume that the commands arandB.> Note that only the first two arguments
of Req andRes actions are relevant in thEommandsnodel program. Moreover,

5In reality, SMB2 has 19 commands.



Fig. 5. Exploration ofSPscenari o.

Client Server|

Req(A, 0,2) —
je———— Res(A, 0,1, true)
Req(B, 1, 2) —— ————
Cancel (1) —

lje— Res(B, 1, 1, fal se)

Fig. 6. A trace in Figure 5 from state O to state 8.

we use two scenario model programs3 = FSMRReq(A, -, -) Req(B, ., ) ) and
M = FSMR{Cancel (1), Req(- -, 2) }*). AB restricts the client behavior so that
a singleA request is followed by a singrequestM restricts the client behavior so
that only message 1 is ever cancelled, and all requests askdaredits. Exploration
of the composition

SPscenario= Credits® Cancellation Commandsy AB® M

is illustrated in Figure 5. All self-loops afancel (1) are hidden. All occurrences of
placeholders (for the status argument of responses) itedicat bothrue andfalseare
possible. Notice that the server behavior is unconstraimetthe states 7, 8 and 10, the
value ofwi ndow is, respectively{2, 3}, {2}, and{2, 3,4}, corresponding to all the
possible ways in which the server could grant credits on thg fnom the initial state.
A particular trace from the initial state to state 8 in Figans illustrated in Figure 6.



5 Implementation and experiences

All experiments in this paper have been made within the NNMbdenework using C#
as the modeling language. The complete examples, as whk &slksource of NModel
itself, can be downloaded from [34]. The exploration and ¢bmposition examples
have been carried out using thgvultility of NModel.

In NModel a model program is scoped by a namespace. Withinniamespace,
classes can be givern &eat ur e] attribute that declares that class as a feature or sub-
model program of the full model program. This mechanism camuged to construct
separate facet model programs that share state variabléscaissed in this paper. The
main composition operator in NModel assumes that the coetpo®del programs do
not share state variables.

The FSMP construct is supported in NModel by entering a textual regnéation
of a nondeterministic finite automaton or NFA (e.g. in a tgffithat is converted to a
finite state model program representing a lazy determiinizatf the NFA based on the
Rabin-Scott algorithm, see e.g. [29, Theorem 2.1].

For conformance testing of the server, the client actioesdaclareccontrollable
and the server actions (in this case responses) are dedbsedvableFor online (or
on-the-fly) test execution, with thet utility of NModel, the composed model program
is exploredlazily by firing the actions one at a time, i.e. building up a traceheaf t
model program incrementally. Due to the lazy explorati@alability is not an issue.
The discussion abouaiccepting statebhas been omitted in this paper. Accepting states
are used to define states where a trace may end, thus prowisiag to finish a test in
a clean way.

Model program analysis in NModel is based on explicit statplaation over
abstract states. Much of the algorithmic support builds ariiex work in Spec Ex-
plorer [37]. In addition, the exploration includes a pruptachnique based on isomor-
phism checking of states that use objects and unorderedulataures [40].

NModel does currently not support symbolic analysis. Wararestigating an SMT
approach for doing reachability analysis of model progrf86$ where we use Z3 [41,
5] for our implementation, as it supports background thesofiL7, 16] for arithmetic
as well as sets and maps. A prototype is being implemented fagment of model
programs written in AsmL. Integration of this analysis ilkModel is future work.

The entire SMB2 specification contains over 300 pages ofadanguage specifi-
cation and corresponds to roughly 20 facets. The specditaiwritten in a way where
the different facets are specified in separate sectionsealdcument and therefore the
corresponding model programs are closely tied to thes@ssciThus, having separate
facet model programs matches well with the style of the @dtianguage specs and
makes it possible to do requirements tracking in the comedimg model programs.

The internal version of the modeling tool based on model Enog is called Spec
Explorer 2007 and is being developed and used internallyimddévs as a core tech-
nology for protocol modeling and model-based testing. lecSpxplorer 2007, model
programs and composition are used for modeling and sceparityol of industrial
application-level network protocols. The entire SMB2 pautl has been modeled. In
addition to the contract part of the protocol, over 100 addél model programs were
used for scenario control. The use of composition betweetract model programs and



model programs for scenario control (test purposes) is dileeocore techniques for
controlling exploration [24]. For complex protocols it miag hard to identify facets due
to dependencies. A crude classification of the protocols awe tooked at is whether
remote procedure call or message passing is being usede \8B2 belongs to the
latter kind. Being able to decompose a large protocol intet&is crucial for the latter
kind of protocols.

At least half of the effort in model-based conformance testf protocols is ac-
tually spent in harnessing of the implementation. A big drthis effort goes into
implementing a protocol-specific adapter from concretesagss on the wire to ab-
stract actions. When defining a mapping from concrete messagthe wire not all of
the fields of messages are relevant. For example, some ofettds fn a message are
solely related to well-formedness of the message structivecking of which can be
part of a message validation layer that is orthogonal to #tebioral model.

6 Related work

The notion of facets as behavioral aspects of a protocolridasi to protocolfeatures
Feature oriented specifications have a long standing inefleedmmunication indus-
try [42], because it makes specifications easy to changenaldddual features easy to
understand, but it also introduces semantic challengesodueintended feature inter-
actions [10]. More recently, features, as increments ofjm functionality, are being
used infeature oriented programmin@OP) for step-wise refinement of systems, and
are supported by theory and tools using algebraic spedificaf4]. In FOP, features
are viewed as program transformations, and the purposesispjoort feature oriented
development through program synthesis and generativegroging [4]. This is quite
different from model programs that provide a partial vievitedf expected behavior of a
system as an LTS, where the system itself is a black box,ghgpically a combination
of different applications from different vendors. Howewee relationship between the
mathematical underpinnings of model programs and FOP desarcloser look.
Composition of model programs is a lazy automata-theooetinposition of the
underlying LTSs, where actions are composed by unificafitwe. unification between
action parameters happens through the conjoined actiaalgiuBhe motivation comes
from the domain of model-based testing and analysis toals as Spec Explorer [37].
A survey of model-based approaches to software modelirty, ani emphasis on test-
ing, is given in the recent book [35]. The notion of model pEdg composition is a
simplified and extended version of parallel composition afdel programs in [38].
Work related to other forms of composition of automata icaésed in [38]. The use
of several feature classes within a single C# model prograiiNlodel [34] allows
for sharing of state variables across features. This esaéde-dependent parameter
generation and guard strengthening, which is, in genesapassible with composition
of model programs with disjoint state signatures. Featlagses are also implemented
in Spec Explorer 2007 [24]. The semantics of model prograsmsatso be formulated
in terms of labeled Kripke structures. This formulation ki@ advantage that one can
adapt techniques that are used for model checking of terhpaaerties of concurrent



software systems, including counterexample-guidedatistn refinement and compo-
sitional reasoning [12].

In aspect oriented programming two concerns crosscut whemdiated method
behaviors intersect [19]. In the current paper the crosisgudf concerns corresponds to
interacting behaviors between different facets of a pmtdithe sharing of information
is achieved through unification of actions, that allow datéde shared between traces
but make the sharing explicitly visible in action traces.ddbprogram composition
might be a viable approach for formalizing certain formsafnposition of trace based
aspects [18] or model weaving of stateful aspects in aspiaited modeling [13].

The main application of model programs is for analysis astirtg of software sys-
tems. In particular, for passive testing or runtime moiiitgy a model program can be
used as an oracle that observes the traces of a system ustdandereports a failure
when an action occurs that is not enabled in the model. Tidased to aspect oriented
approaches to trace monitoring [3]. In the context of tgsbih reactive systems with
model programs [39], the action symbols are separated ontvalable and observable
ones. In that context the semantics of a model program as 8§31, 32] is fundamen-
tal in order to use I0CO [9], or refinement of interface auttarja4], for formalizing
the conformance relation.

Model program composition as defined in this paper is inddpenhof the mech-
anism of exploration or analysis. Various approachesuitinly explicit state explo-
ration [30] as well as symbolic reachability analysis [3®Ry be applied. The main
difference compared to composition a€tion machine$23] is that composition of
model programs is syntactic, whereas composition of actianhines is defined in the
style of natural semantics using inference rules and syimbomputation that incor-
porates the notion of computable approximations of subsiomghecking between
symbolic states. The computable approximations reflecptiveer of the underlying
decision procedures that are being used and are an intemtabipthe composition,
using a three-valued logic. More about model-based testpyications and further
motivation for the composition of model programs can be tbum[11, 23, 39, 37].

Model programs are also related to symbolic transitionesystthat have an explicit
notion of data and data-dependent control flow [20].

TheFSMRp) construction introduced here is a subset of a more genevatita-
tion language approach for scenario control calledd [22].

Besides protocol modeling, model program compositionss alkeing investigated
as a technique for modeling and analyzing scheduling pnabla embedded real-time
systems [27].

When consideringnteractionof model programs that require synchronization or
communication on objects rather than actions, then cortipnsdf model programs
may be too limited. A more general foundation can be basedtamnactive abstract
state machines [7].

Conclusion

The modeling approach introduced in this paper is beingiegh a variety of indus-
trially relevant modeling and testing contexts. In patécumodel programs are being



adopted as a technique for protocol modeling within Micfodthe use of composition
of model programs is an important part of this effort thatl#es scenario control as
well as a divide-and-conquer approach to model complexopots. Individual facet
model programs can be analyzed separately, they can be sedhfar interoperability
analysis and for constructing the oracle for the full prolanodel for test case genera-
tion and conformance testing.
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