Using SPIN to Detect Vulnerabilities in the AACS
Drive-Host Authentication Protocol

Wei Wang'! and Dongyao Ji?

The State Key Laboratory of Information Security,
Graduate University of Chinese Academy of Science,
NO.19 Yuquan Road, Shijingshan District, Beijing, 100049, P.R.China
bessiel9831109@163.com

Abstract. In this paper, we use SPIN, a model checker for LTL, to detect vulner-
abilities in the AACS drive-host authentication protocol. Before the detection, we
propose a variant of the Dolev-Yao attacker model [4] and incorporate the synthe-
sis and analysis rules [7] to formalize the protocol and the intruder capabilities.
During the detection, we check the authenticity of the protocol and identify a few
weaknesses. Besides, we propose a novel collusion attack that seriously threaten
the security of the protocol, and build a corresponding LTL formula. Based on
the formula, SPIN detects a few relevant attack instances in the original scheme
of the authentication protocol and a modified scheme advanced in [5].

Key words: AACS, SPIN, Model Checker, LTL, Authenticity, Collusion Attack.

1 Introduction

Nowadays, in the field of protocol verification, the formal verification techniques ap-
pear to be a popular method for analyzing the vulnerabilities of protocols. There are
two major approaches: theorem-proving and model-checking. Compared with theorem-
proving, model-checking seems to be more suitable to detect errors and find correspond-
ing attack modes of the target protocols [3].

So far, some researchers have developed specific model checkers for particular prop-
erties verification, whereas others have shown the ability of the general purpose tools
such as FDR and SMV to achieve the same purpose. In this paper, we would like to
implement our protocol verification using the general purpose tool of SPIN, which is
one of the most powerful general purpose model checkers. Until now, some researchers
have already shown how it can be used to check the security properties such as secrecy
and authenticity, and successfully found the known attack in the Needham-Schroeder
Public Key Authentication Protocol [2, 8].

In this paper, we will use SPIN to verify the AACS drive-host authentication pro-
tocol. The Advanced Access Content System (AACS) is a content distribution system
for recordable and pre-recorded media. This system consists of three entities: a drive,
PC host and the AACS protected optical media. The AACS drive-host authentication
protocol, a part of the AACS protection scheme, plays the role of practicing the mutual
authentication between the PC host and the drive and letting them negotiate a shared

2 Wei Wang and Dongyao Ji

key which is used for message authentication in the subsequent interaction between the
PC host and the drive [1].

In the whole process of verifying the AACS drive-host authentication protocol, we
not only make use of the technique of model-checking, but also adopt the method of
static analysis. And according to the variant of the Dolev-Yao attacker model [4] ad-
vanced by us in order to match the specific scheme of the target protocol, we make the
formalization of the protocol and the intruder’s behavior. Besides checking the prop-
erty of authenticity, we also define a novel collusion attack which poses a threat to the
security of the AACS protection scheme. Through the verification, we have discovered
several relevant attack instances in the original AACS drive-host authentication scheme.
In addition, a modified AACS drive-host authentication scheme, proposed in [5], also
reveals its vulnerability to the novel collusion attack in our further verification.

This paper is organized as follows. In section 2, we construct the formal model of
the target protocol, which includes the description of a variant of Dolev-Yao attacker
model. In section 3, we briefly describe the general process of verifying the target pro-
tocol using SPIN. In section 4 and section 5, we present the process of checking the
authenticity and verifying the feasibility of the newly-defined collusion attack in SPIN.

2 A Formal Model for Security Protocols

In this section, we present a formal model of the AACS drive-host authentication pro-
tocol and describe a variant of Dolev-Yao attacker model [4]. Besides, we have made
some modifications of the semantics of security protocols built in [9] to simplify the
process of modeling the target protocol. More detailed description can be found in [10].

First, we would like to discuss the occasion of generating a fresh nonce in the AACS
drive-host authentication scheme: when finish one session no matter whether it is suc-
ceed or not, both the host and the drive would call the random number generator to
acquire a fresh nonce used in a next session. But in this paper, our concern is only about
a single session. Therefore, for the purpose of simplifying the model of the AACS
drive-host authentication protocol, we define nonces as constants.

Next, we describe the definitions of several necessary terms used in the following
discussion. We start with the set of agents — Ag, which includes the intruder I and other
agents who are called honest agents. K, denotes the set of private keys which are owned
by corresponding agents, and we use k, to denote the private key belongs to agent
p. Cert, denotes the set of certificates which represent the identities of corresponding
agents, and we use Cert), to denote the certificate of p. N, denotes the set of nonces. P,
the set of parameters, is used for some particular purposes. 7, the set of basic terms,
is defined to be AgU KU Cert UN U P. T, the set of information terms, is defined to be:

T o=m| 1) | {th . (1)

where m ranges over 7, k ranges over K, t and t’ range over 7 ; and (¢, ¢’) denotes the
concatenation of 7 and ¢, and {r}; denotes using k to encrypt the term .
In addition, we define a set of actions:

2 ={A\B:t,A?B:it |A,B€ Ag, A+ B,tcT} . 2)

Using SPIN to Detect Vulnerabilities in the AACS Drive-Host Authentication Protocol 3

As we can see, there are two actions which are denoted as “Send” and “Receive”:

- Send: A!B:t, A is the sender, B is the intended receiver, and ¢ is the message.
- Receive: A?B:t, A is the receiver, B is the purported sender, and ¢ is the message.

Definition 1. A protocol is a pair Pr = (C, R), where C C T is the set of constants of
Pr, and R is the set of roles of Pr.

Definition 2. A sequent is of the form T + t where T C T and t € 7. An analz-proof
(synth-proof) = of T + t is an inverted tree whose nodes are labeled by sequents and
connected by one of the analz-rules (synth-rules) in Fig. 1, whose root is labeled T + t,
and whose leaves are labeled by instances of the AX, rule (AX; rule). For a set of terms
T, analz(T) (synth(T)) is the set of terms t such that there is an analz-proof (a synth-
proof) of T + t. For ease of notation, synth(analz(T)) is denoted by T.

The definitions of analz and synth are due to [7].

— AXa AXs
TU{t}1t T U{t} 1t
T (1, 12) THnThkn .
— spliti (i=1, 2) ————— pair
THti T (11, 12)
TH{t}tp THCerty Tt) Tt Tk
verify ———— sign
T+ true TH{t}k
analz-rules synth-rules

Fig. 1. The Modified Analz and Synth Rules

As we can see, Fig. 1 shows the modified analz and synth rules, which are based
on the variant of the Dolev-Yao model [4], consist of split, pair, verify and sign. Specif-
ically, the verify rule has its practical significance: if one knows three items — the signa-
ture {t} (denoting using k,,, the private key of p, to sign the term 1), Cert), (the certificate
of p), and the term ¢, it can confirm the validity of the signature, which means that the
signature {t}x» would be successfully decrypted by the public key extracted from Cert,,
and the decrypted term is the same with ¢.

Definition 3. An information state s is a tuple (ss)acag Where s4 C T for each agent
A. The notions of an action enabled at a state and update of a state on an action are
defined as follows:

- AlB:tisenabled at s iff t € sa.

- A?B:tis enabled at s iff t € ;.

- update(s, A!B:t) ' where s = sa, §; = s5;U {t}, and for all agents C distinct
from A and I, s;. = sc.

- update(s, A?B:r) & where sl = saU {t} and for all agents C distinct from A,
S = Sc.

4 Wei Wang and Dongyao Ji

3 Protocol Verification Using Spin

Spin is designed to validate the logical consistency of concurrent and distributed sys-
tems, such as data communications protocols, and trace the logical design errors [11].
By constructing a LTL formula of a desired property and simulating a correct model of
the target protocol, one could easily carry out the verification on SPIN; and when de-
tecting a violation of the target property, SPIN could provide the counterexample run.
In this fragment, we will discuss the model construction process, which amounts to two
steps: the formalization of the protocol and the formalization of the intruder’s behavior.

3.1 Formalization of the Protocol

AACS Optical Drive Host
» Hn Il Heert Generate 160 bits Nonce (Hn)

Verify Heert. N
Check Host ID in the HRL.
Generate 160 bits Nonce (Dn). Dn |l Dcert .
Generate 160 bits Nonce (Dk). Verify Dcert
Calculate Dv = Dk G on the elliptic curve Check Drive ID in the DRL
where G is the Base Point of ECDSA.
Calculate Dsig = AACS_Sign (Dpriv, Hn Il Dv). Dv Il Dsig

" Verify Dsig by AACS_Verify(Dpub, Dsig, Hn Il Dv).
Generate 160 bits Nonce (Hk).

Calculate Hv = Hk G On the elliptic curve

where G is the Base Point of ECDSA.

< Hv Il Hsig Calculate Hsig = AACS_Sign (Hpriv, Dn Il Hv).
Verify Hsig by N
AACS_Verify(Hpub, Hsig, Dn Il Hv).
Calculate the Bus Key (BK) by BK = Dk Hv on Calculate the Bus Key (BK) by BK = Hk Dv on the
the elliptic curve. elliptic curve.

Fig. 2. The Simplified AACS Drive-Host Authentication Protocol

First of all, we want to simplify the original flow representation of the drive-host
authentication scheme [1] by abstracting the core steps. The simplified scheme is rep-
resented in Fig. 2.

In the model-checking approach, protocols can be described as patterns of mes-
sages exchanged between different agents, and each agent is described as a proctype in
SPIN. In the init process, we would provide a fresh instance to each proctype. Some-
times an agent may play multiple roles in the practical operation of the protocol, thus,
we need to construct multiple instances of it. In the init process of the model built
for the AACS drive-host authentication protocol, we construct four instances in all:
PHost(host, intruder, Hn, Hv, Hcert, Hsk), PHost(host, drive, Hn, Hv, Hcert, Hsk) for
the host; PDrive(drive, Dn, Dv, Dcert, Dsk) for the drive; PIntruder() for the intruder.

init{
atomic{
if

Using SPIN to Detect Vulnerabilities in the AACS Drive-Host Authentication Protocol 5

:: run PHost(host, intruder, Hn, Hv, Hcert, Hsk)
:: run PHost(host, drive, Hn, Hv, Hcert, Hsk)
fi;

run PDrive(drive, Dn, Dv, Dcert, Dsk);

run PIntruder();

In addition, we need to model the certificate used in the protocol. Instead of intro-
ducing the widely accepted format of the X.509 digital certificate, we define a new data
type — Cert. In the X.509 digital certificate, there are various fields storing necessary
information; but, among them, what matters to us are merely “Subject Distinguished
Name” and “Public Key”. So, in this model, the structure of the digital certificate is
redefined like this:

typedef Cert {
mtype identifier;
byte pk

};

We also need to model the private key. Actually, private key is the value of number
that could be worked with the corresponding public key to sign and verify a message in
order to achieve authentication: if one receives a message encrypted with a private key
and such message can be decrypted using the public key acquired from the certificate
of a particular agent — P, it could confirm that the message is sent by agent P. So
the match relation between the certificate and the private key is the key to the overall
authentication procedure, and thus it is also the focus of our modeling. In our model,
we choose to expand the data structure of the private key to abstract the match relation.

typedef Private_Key {
mtype identifier;
byte sk

};

As we can see, there are two fields in the structure of Private_Key. Obviously, the
first one, Private_Key.identifier, represents the identity of the owner. By comparing it
with the first field of Cert, we can verify the match relation and then carry out the
signature verification process. The following is the core part of the process simulating
the host, from which we can see the signature verification process more specifically.

Proctype PHost(mtype self; mtype party; mtype nonce; mtype v; Cert
cert; Private_Key hk){
mtype gl, g2, g3; Cert c; Private_Key k;
atomic{
HostRunning(self, party);
//Host initiates a session with the corresponding party
ca! self, nonce, cert; //Host sends "Hn||Hcert"

6 Wei Wang and Dongyao Ji

atomic{
ca? eval(self), gl, c;//Host receives "Dn| |Dcert"
cb? eval(self), eval(nonce), g2, k, g3;
//Host receives "(Hn| |Dv)SK(Dsk) | |Dv"
if
::(g2 == g3 && c.identifier == k.identifier)
->HostCommit(self, c.identifier);
//Host commits the session with the corresponding party
cb! self, gl, v, hk, v;//Host sends "(Dn||Hv)SK(Hsk) | |Hv"
i:else skip
fi;

Besides, SPIN also provides a data type — chan, to simulate the synchronous chan-
nels in the system. According to the different message modes used in the protocol, we
build corresponding structure for each of them. In this protocol, there are two message
modes: X; || X, and (X; || X2)SK(x3) || X4. So the channel structures are defined as follows:

chan ca [0] of {mtype, mtype, Cert};//Message mode x1||x2
chan cb [0] of {mtype, mtype, mtype, Private_Key, mtype};
//Message mode (x1||x2)SK(x3)||x4

3.2 Formalization of the Intruder

Based on Dolev-Yao attacker model [4], the intruder could non-deterministically inter-
cept a message on some channel to update its knowledge, and generate a new message
on some channel using the known information. The intruder updates its knowledge by
using analz-rules and generates messages by using synth-rules.

In the subsequent discussion, we will describe the whole process of formalizing the
intruder’s behavior concretely, which consists of three parts: the initial knowledge, the
analz-phase and the synth-phase. We need to note that, in this model, the intruder is
a legitimate agent; in other words, the intruder is not a revoked device, and it has a
valid certificate signed by AACS LA and can thus sign and verify the digital signatures
specified in the AACS drive-host authentication protocol.

Before the commencement of the protocol, the intruder has its initial knowledge
which is the basis of the later analz-phase and synth-phase. The intruder’s initial knowl-
edge is made up of the identities of all the principles in the system, i.e. host, drive, and
intruder; moreover, the intruder also holds its private key Isk, its certificate Icert and
the generic data gD. After the protocol begins running, the intruder would start on in-
tercepting and generating messages.

In the analz-phase, the intruder breaks up a message into constituent parts and stores
them; furthermore, it also verifies the signatures included in the messages using the cer-
tificates contained in its knowledge. And by doing these jobs, the intruder could increase
its knowledge. For instance, if the intruder intercepts the message Hnl||Hcert, it could
acquire and store the nonce Hn and the certificate Hcert. In order to avoid storing redun-
dant knowledge elements, we assume that the intruder always records the learned items

Using SPIN to Detect Vulnerabilities in the AACS Drive-Host Authentication Protocol 7

in their most elementary forms. For example, if message Hn|[Icert is intercepted, what
the intruder records is Hn, rather than Icert or the whole message Hn||Icert; because
Icert is not fresh to it, and message Hn||lcert can be built from Hn and Icert, which is
not in the most elementary form. We also assume that the intruder records a complex
message in its knowledge only if it cannot build that message. Taking another case for
example, if the intruder intercepts the message (Dn||Hv)SK(Hsk)||Hv, besides recording
the parameter Hyv, it also needs to record the complex part (Dn||Hv)SK(Hsk). Since the
intruder cannot get private key of the host — Hsk, and thus cannot generate the signature,
though it might know the certificate of the host — Hcert, and decrypt that signature.

In the synth-phase, based on the synth-rules, the intruder can generate a message by
choosing the recipient and the message type and filling in each field with the appropriate
data item which is known to it; besides, the intruder also can simply replay an entire
stored message. For example, if the intruder possesses the data items Hn and Hcert, it
can concatenate them into Hn||Hcert and send it to the drive. Theoretically, the intruder
can generate whatever it wants; but, to improve the efficiency of our model, we build
a restriction in the synth-phase: the message the intruder generates should be valid
and in accordance with the corresponding message mode. Obviously, the purpose of
making this restriction is to prevent the intruder from generating invalid message. For
instance, if the intruder generates and sends a message (Hn||Hv)SK(Hsk)||Dv, none of
the agents in the system would accept it, since this message does not comply with the
message mode which requires the second parameter should be identical with the fourth
parameter (but Hv#Dv).

4 Formalization of the Authenticity Property

4.1 Formalization of the Authenticity Property

Property formalization is another essential part of verifying security protocols with
model checkers. In general, secrecy and authenticity are the properties often be checked
when analyzing security protocols, but in this paper, secrecy does not need to be con-
sidered. Since in the AACS drive-host authentication protocol, data items contained in
messages are transferred in two forms — plain text and cipher text. The plain text data
could be seen by any agent. The cipher text data, encrypted with someone’s private key,
could be decrypted by anyone who possesses the corresponding certificate; and other
agents without the proper certificate also could acquire the corresponding plain text of
all the cipher text data, since in this protocol all the cipher text data has another copy
which is transferred in the plain text. So secrecy is not the property worth verification
in this protocol. The property we choose to verify here is authenticity.

During the verification, we firstly build three roles involved — Host, Drive and In-
truder; then, we define six global Boolean variables:

bit HostRunningHD = 0, HostCommitHD = ®, HostKnowDv = 0;
bit DriveRunningHD = 0, DriveCommitHD = 0, DriveKnowHv = 0;

HostRunningHD is true iff Host takes apart in a session with Drive. DriveRun-
ningHD is true iff Drive takes apart in a session with Host. HostCommitHD is true iff

8 Wei Wang and Dongyao Ji

Host commits to a session with Drive. DriveCommitHD is true iff Drive commits to a
session with Host. HostKnowDv is true iff Host knows the parameter Dv. DriveKnowHv
is true iff Drive knows the parameter Hv.

The authentication of Host to Drive can be expressed as that HostRunningHD must
become true before the DriveCommitHD becomes true, whereas the converse authen-
tication of Drive to Host is that DriveRunningHD must become true before the Host-
CommitHD becomes true. These properties can be expressed in the LTL formalism:

O(a!DriveCommitHD) || (!DriveCommitHD U HostRunningHD)) . 3)
O(O!'HostCommitHD) || (!HostCommitHD U DriveRunningHD)) . 4

Equation (3) means that the protocol suffices to the authentication of Host to Drive; (4)
means that the protocol suffices to the authentication of Drive to Host.

4.2 The Experimental Result

After the verification on SPIN, we discover two attack instances (Attack 1 & Attack
2) violating (3) and two attack instances (Attack 3 & Attack 4) violating (4). Those
instances are shown in Fig. 3, and the relevant experimental data is list in Table 1.

Table 1. Attack and Relevant Data

Attack [Attack 1[Attack 2[Attack 3[Attack 4]
HostRunningHD 0 0 1 1
HostCommitHD
DriveRunningHD
DriveCommitHD
HostKnowDv
DriveKnowHv

— = =] = o

0
1
1
0
1

(el Rl Nl Reol B

1
0
0
1
1

Here, we want to make some notations about those attacks shown in Fig. 3. In
Attack 1 and Attack 2, Host initially sends its random nonce Hn and certificate Hcert
to Intruder rather than Drive, in order to initiate a session with Intruder; in Attack 3 and
Attack 4, Host intends to send its random nonce Hn and certificate Hcert to Drive to
initiate a session with Drive, but this message is intercepted by Intruder. In addition, in
Attack 1 and Attack 4, Host and Drive can negotiate a shared Bus Key when the session
finished; however, they cannot get the shared Bus Key in Attack 2 and Attack 3, since
Host has no way to get Drive’s parameter Dv in Attack 2 and Drive cannot get Host’s
parameter Hv in Attack 3 during the whole session.

5 Formalization of the Collusion Attack

5.1 Introduction of the Collusion Attack

AACS is applicable to a PC-based system. In such a system, a drive and PC host act
together as the Recording Device and/or Playback Device for AACS protected content.

Using SPIN to Detect Vulnerabilities in the AACS Drive-Host Authentication Protocol 9

Attack 1: Attack 3:

Drive Intruder Host Drive Intruder Host

Hn || Heert Hn || Heert
Hn || Heert Hn | Icert

Dn || Deert Dn || Deert

Dn || Deert

Dn | Icert

(Hn || Dv)SK(Dsk) || Dv

(Hn || Dv)SK(Dsk) || Dv

(Hn || Dv)SK(Isk) || Dv (Dn || gD)SK(Isk) || gD

(Hn || Dv)SK(Dsk) || Dv

(Dn || Hv)SK(Hsk) || Hv

(Dn || Hv)SK(Hsk) || Hv (Dn || Hv)SK(Hsk) || Hv
Attack 2: Attack 4:
Drive Intruder Host Drive Intruder Host

Hn || Heert Hn || Heert

Hn || Heert Hn || Icert

Dn || Deert Dn || Deert
Dn || Icert Dn || Dcert

(Hn || gD)SK(Isk) Il gD (Hn || Dv)SK(Dsk) || Dv

(Hn || Dv)SK(Dsk) || Dv

(Dn || Hv)SK(Hsk) || Hv
(Hn | Dv)SK(Dsk) || Dv (Dn | Hv)SK(Hsk) || Hv
(Dn || Hv)SK(Isk) || Hv

(Dn || Hv)SK(Hsk) || Hv

Fig. 3. The Attack Instances

Mutual authentication is the initial procedure in the whole system, by which the drive
and the PC host verify each counterpart is an AACS compliant device which has a valid
certificate signed by the AACS LA and can sign and verify digital signatures specified
in the AACS drive-host authentication protocol.

In the AACS drive-host authentication scheme, the host’s process of verifying the
drive’s legitimacy consists of three steps: first, the host verifies the signature of the
Drive Certificate using the AACS LA Public Key; next, it checks the Drive Revocation
List to ensure that the Drive ID of the Drive Certificate has not been revoked; then it
verifies the second message sent by the drive to check whether the drive pass the nonce-
challenging procedure or not. If the above verifications succeed, the host could confirm
the validity of the drive, and exchange parameters with it to negotiate a shared Bus Key.

From the above analysis, we think of a special kind of attack aiming at offering a
revoked drive the opportunity to bypass the authentication procedure, negotiate a shared
Bus Key with a legal host and use this key to exchange necessary information with the
host in order to play/record the protected content in the disc. And this attack could be
successfully carried out by hiring a third party — a legitimate drive; obviously, this kind
of attack, launched by a revoked drive and a hired drive, is what we called “the collusion
attack”. But the relationship between them is not mutual trust but mutual utilization. To
the revoked drive, the hired drive is a lessor who leases out its legitimate identity; and
to the hired drive, the revoked drive is just one of the lessees who pay for the use of its
identity.

10 Wei Wang and Dongyao Ji

Therefore, there is a restriction lies in this attack mode: Bus Key is the secret merely
known to the host and the revoked drive, which implies the hired drive cannot acquire
it. Bus Key, in the AACS system, is used for message authentication in the subsequent
interaction between the host and the drive, after the authentication protocol is over.
Accordingly, in this attack mode, Bus Key is used for messages authentication between
the host and the revoked drive after the authentication protocol completed running. Once
the hired drive possesses Bus Key, it has the ability to tamper the messages, obstruct
the host from acquiring parameters necessary to decrypt the encrypted content in the
disc and prevent the revoked drive from playing/recording the disc, which contravenes
the goal of the collusion attack. So the purpose of setting the restriction is to make the
lessee (the revoked drive) get rid of the influence of the third party (the hired drive) after
the authentication protocol completed running, and successfully interact with the host.

Considering the AACS adopts the technique of Elliptic Curve Cryptographic Sig-
nature Algorithm (ECDSA) in the key agreement procedure, the crucial factor of im-
plementing the restriction specified above is the parties participating in the Bus Key
negotiation. In this attack mode, besides the host and the revoked drive, there should
not be a third party participating in the Bus Key negotiation. That is to say, the hired
drive should not replace the revoked drive’s parameter Dv by its own parameter in order
to negotiate the Bus Key with the host itself; and the revoked drive should participate in
the negotiation itself, rather than simply obtain a Bus Key generated by the hired drive.

5.2 Formalization of the Collusion Attack
There are three parties in this attack mode: Host, Drive-R and Drive-L.

- Host is just a legal host in the PC-based system;
- Drive-R is a revoked drive whose ID is in the Drive Revocation List located in Host;
- Drive-L is a legitimate drive.

Remarkably, in this attack mode, Drive-R plays the role of Drive and Drive-L plays
the role of Intruder. The details about this attack are described as follows:

- If Drive-R wants to interact with Host, it hires Drive-L as its accomplice to employ
the attack.

- During the protocol running, Host only can see the certificate of Drive-L and does
not know the existence of Drive-R in the whole process of interaction.

- The parameter Dv, calculated by Drive-R based on its 160 bits nonce DK, the elliptic
curve and the Base Point G of ECDSA, could be finally acquired by Host in order
to calculate the Bus Key.

- The parameter Hv, calculated by Host based on its 160 bits nonce HK, the elliptic
curve and the Base Point G of ECDSA, could be finally known by Drive-R for the
purpose of calculating the Bus Key.

- Because Drive-L is the device hired by Drive-R, Drive-R can pick up necessary
information from Drive-L. That is to say, the fact Drive-L knows the parameter Hv
is equivalent to the fact that Drive-R knows Hv.

- During the whole process, Drive-L cannot get the Bus Key.

Based on the above analysis, we define eight global Boolean variables:

Using SPIN to Detect Vulnerabilities in the AACS Drive-Host Authentication Protocol 11

bit HostRunningHD = 0, HostCommitHD = 0O, HostKnowDv = 0;
bit DriveRunningHD = 0, DriveCommitHD = 0, DriveKnowHv = 0;
bit IntruderKnowHv = 0, HostKnowDcert = 0;

HostRunningHD is true iff Host takes apart in a session with Drive. DriveRun-
ningHD is true iff Drive takes apart in a session with Host. HostCommitHD is true iff
Host commits to a session with Drive. DriveCommitHD is true iff Drive commits to a
session with Host. HostKnowDv is true iff Host knows the parameter Dv. DriveKnowHv
is true iff Drive knows the parameter Hv. IntruderKnowHpyv is true iff Intruder knows the
parameter Hv. HostKnowDcert is true iff Host knows Dcert, the certificate of Drive.

The property we want to check could be expressed in the LTL formalism:

o (HostKnowDv&&(DriveKnowHYyv || IntruderKnowHv)&&
'HostKnowDcert&&!HostRunningH D& & !HostCommitHD) . (5)

If there is an instance existing in the protocol running that could suffice (5), we
could confirm the feasibility of this collusion attack.

5.3 The Experimental Result

Using SPIN, we have found five attack instances shown in Fig. 4 and Fig. 5, and the
relevant experimental data is list in Table 2.

Table 2. Attack and Relevant Data

Attack [Attack 1]Attack 2[Attack 3[Attack 4|Attack 5]

HostRunningHD 0 0 0 0 0
HostCommitHD 0 0 0 0 0
HostKnowDv 1 1 1 1 1
HostKnowDcert 0 0 0 0 0
DriveRunningHD| 0 1 1 0 1
DriveCommitHD 0 1 0 0 0
DriveKnowHv 1 1 1 0 0
IntruderKnowHyv 1 1 1 1 1

First, let us focus on Attack 1 and Attack 2. In these two attack instances, the proto-
col could be successfully completed. In the end of the session, Drive (Drive-R) acquires
Hv, and Host gets Dv. (Attack 2 has already been found by J.Sui and D.R. Stinson by
simulating the “Unknown Key-Share Attack™ in [5].)

In Attack 3, the session does not proceed well. The last message Drive (Drive-R)
received has an improper data item: when verifying the signature (Dn||Hv)SK(Isk) by
using Hcert received in the first message, Drive (Drive-R) would detect the invalidity
of the signature. According to the rule of this protocol, if the verification fails, Drive
(Drive-R) will determine the counterpart is not compliant and abort this session. But in
this model, Drive (Drive-R) is not a good boy but a revoked drive. So, after the failure

12 Wei Wang and Dongyao Ji

of the signature verification, it would not only keep the session, but also pick up the
parameter Hv from the last message, regardless of the validity of the signature. For
the purpose of checking the authenticity of the parameter Hv, Drive (Drive-R) is still
required to check the validity of the signature using the certificate of Intruder Icert,
which could be got from Intruder before the protocol running, since they are partners.
From the analysis of Attack 3, we can conclude that, in this attack mode, Drive
(Drive-R) does not care the rule of the protocol; what it actually cares is whether or not
it can get the parameter Hv. And this conclusion could also explain the feasibility of
Attack 5, in which Drive (Drive-R) encounters the same problem as in Attack 3.

Attack 1: Attack 2:
Drive Intruder Host Drive Intruder Host
gD |l Icert Hn || Heert
Dn || Deert Hn || Heert
(gD || Dv)SK(Dsk) || Dv Dn || Deert
Hn || Heert Dn || Icert
Dn || Icert (Hn || Dv)SK(Dsk) Il Dv
(Hn || Dv)SK(Isk) || Dv (Hn || Dv)SK(Isk) || Dv
(Dn || Hv)SK(Hsk) || Hv (Dn || Hv)SK(Hsk) || Hv
(Dn || Hv)SK(Isk) || Hv (Dn |l Hv)SK(Hsk) || Hv
Attack 3:
Drive Intruder Host
Hn || Heert
Hn || Heert
gD || Icert
Dn || Dcert
(Hn || Dv)SK(Dsk) || Dv
(Hn || Dv)SK(Isk) || Dv
(gD || Hv)SK(Hsk) || Hy
(Dn || Hv)SK(Isk) || Hv

Fig. 4. The Attack 1 & Attack 2 & Attack 3

Moreover, we want to discuss the instances of Attack 4 and Attack 5. It is easy
to discover that Drive (Drive-R) could not obtain the parameter Hv at the end of the
protocol running; whereas Intruder (Drive-L) has already got Hv at this time. Thus, what
Drive (Drive-R) needs to do is just asking Intruder (Drive-L) to send Hv to it. And for the
convenience of checking the authenticity of the parameter Hv sent by Intruder (Drive-
L), this additional message, written in italics in both attack instances shown in Fig. 5, is
requested to follow one of the message modes in the protocol as (Dn||Hv)SK(Isk)||Hv.
After receiving this additional message, Drive (Drive-R) would check the validity of the

Using SPIN to Detect Vulnerabilities in the AACS Drive-Host Authentication Protocol 13

Attack 4: Attack 5:
Drive Intruder Host Drive Intruder Host
gD || Icert Hn || Heert
Hn |l Heert

Dn || Dcert gD |l Icert
Dn || Deert

(gD |l DV)SK(Dsk) | Dy

(Hn || Dv)SK(Dsk) || Dy

(Dn || gD)SK(Isk) || gD

Hn || Heert (Dn || gD)SK(Isk) || gD

Dn || Icert (Hn || Dv)SK(Isk) || Dv
(Hn || Dv)SK(Isk) || Dv (gD Il Hv)SK(Hsk) || Hv
(Dn || Hv)SK(Hsk) || Hv (Dn /| Hv)SK(Isk) /| Hv

(Dn || Hv)SK(Isk) /| Hv

Fig. 5. The Attack 4 & Attack 5

signature using Intruder’s certificate Icert which it can get before the protocol running,
and pick up the parameter Hv.

5.4 The Modified Scheme

So far, there are several papers about the AACS drive-host authentication protocol.
Particularly, a modified scheme has been advanced, which is declared to be competent
of resisting the Unknown Key-Share attack and the Man-In-The-Middle attack in [5].

Drive Host
Hv || Heert Hv=Hk G
Dv=Dk G (IDhost || Dv || Hv)SK(Dsk) |l Dv | Deert |
(IDdrive || Hv [l Dv) SK(Hsk)
Bk =Dk Hv Bk = Hk Dv
=Dk Hk G =Hk Dk G

Fig. 6. The Modified Scheme

The modified version is shown in Fig. 6.

Compared with the original one, this modified scheme has two remarkable features:
first, Hv and Dv play the role as random challenges, instead of Hn and Dn; second, the
ID of the message receiver has been added into the signature.

In this paper, we also carry out an experiment on this modified scheme, and find out
that this scheme cannot resist the collusion attack either. In our experiment, in order to
check the effectiveness of the modified scheme, we construct a corresponding model on
SPIN, and make use of (5) to verify the feasibility of the collusion attack. During the
process of verification, we have found four attack instances. These instances are shown
in Fig. 7 and Fig. 8, and the relevant experimental data is list in Table 3.

14 Wei Wang and Dongyao Ji

Drive

Hv || Tcert

(intruder || Dv || Hv)SK(Dsk) || Dv || Dcert

(drive Il Hv [l Dv)SK(Isk)

Drive

Hyv || Heert

(host || Dv || Hv)SK(Dsk) || Dv || Dcert

(drive |l Hv || Dv)SK(Isk)

Drive
gD || Icert

(intruder || Dv || gD)SK(Dsk) || Dv || Dcert

(drive || gD |l Dv)SK(Isk)

(drive /| Hv /| Dv)SK(Isk) /| Hv /| Icert

Attack 1:
Intruder Host
Hv [l Heert
(host || Dv || Hv)SK(Isk) || Dv || Icert
(intruder || Hv || Dv)SK(Hsk)
Attack 2:
Intruder Host
Hyv || Heert
(host || Dv || Hv)SK(Isk) || Dv | Icert
(intruder || Hv || Dv)SK(Hsk)
Fig.7. The Attack 1 & Attack 2
Attack 3:
Intruder Host
Hv || Heert
(host || Dv || Hv)SK(Isk) || Dv || Icert
B (intruder || Hv || Dv)SK(Hsk)
Attack 4:
Intruder Host

Drive

gD || Heert

Hv || Heert

(host || Dv || gD)SK(Dsk) |l Dv || Dcert

(drive |l gD |l Dv)SK(Isk)

(drive /| Hv /| Dv)SK(Isk) /| Hv /| Icert

(host || Dv || Hv)SK(Isk) || Dv | Icert

(intruder || Hv || Dv)SK(Hsk)

Fig. 8. The Attack 3 & Attack 4

Using SPIN to Detect Vulnerabilities in the AACS Drive-Host Authentication Protocol 15

As mentioned earlier, Drive (Drive-R) and Intruder (Drive-L) are allies in the col-
lusion attack, and the purpose of the attack is to let Drive (Drive-R) and Host exchange
the parameters Hv and Dv and prevent Host from knowing the existence of Drive in the
whole process of the protocol running. In Attack 1 and Attack 2, this purpose could be
successfully reached; and in Attack 3 and Attack 4, though failing to get Hv at the end
of the protocol, Drive (Drive-R) could get it from Intruder (Drive-L). Similarly, for the
convenience of checking the parameter Hv, the additional message, written in italics in
both attack instances shown in Fig. 8, is still required to comply with one of the message
modes used in the modified scheme — (drive||Hv||Dv)SK(Isk)||Hv||Icert.

Table 3. Attack and Relevant Data

Attack [Attack 1]Attack 2[Attack 3[Attack 4|

HostRunningHD 0 0 0 0
HostCommitHD 0 0 0 0
HostKnowDv 1 1 1 1
HostKnowDcert 0 0 0 0
DriveRunningHD 0 1 0 1
DriveCommitHD 0 0 0 0
DriveKnowHyv 1 1 0 0
IntruderKnowHv 1 1 1 1

5.5 Relevant Analysis

Apparently, the collusion attack would make a revoked drive bypass the authentica-
tion procedure, negotiate a shared Bus Key with a legitimate host and use this key to
exchange necessary information with the host in order to play/record the protected con-
tent in the disc released by AACS LA after the drive is revoked. All this work could be
done with the assistance of a valid drive with a legitimate certificate. This situation is
just like once getting the valid serial number and password from a licensed user, one
can install and use an unauthorized copy of a legally released software, downloaded
from the internet illegally or obtained from illegal DVD/VCD duplicators, unless the
software releaser detects this improper action and locks that compromised serial num-
ber. Similarly, with the help of a legitimate drive, one could freely use a revoked drive
along with a PC host to play/record discs until the AACS LA detects this illegitimate
action, which has threatened the security offered by the AACS system seriously.

6 Conclusion

Through the strict model-checking analysis of the AACS drive-host authentication pro-
tocol, depending on the variant of the Dolev-Yao attacker model [4], we have discovered
a few weaknesses of the target protocol in providing authenticity. Besides, we have ad-
vanced a novel collusion attack and found several corresponding attack instances in the
original scheme of the target protocol and a modified scheme [5].

16 Wei Wang and Dongyao Ji

In this paper, we have not yet advanced a new scheme to resist that collusion attack.
Future work might focus on the modification of the AACS drive-host authentication
protocol by introducing the threshold decryption scheme which is mainly used to pre-
vent the collusion attack.

7 Acknowledgement

This research was funded by grant 90604010 from the National Nature Science Founda-
tion and grant 2007BC311202 of the National Key Foundation Research Plan of China.

References

1. Intel et al. Advanced Access Content System (AACS) — Introduction and Common Crypto-
graphic Elements. Revision 0.91, pages 32-34 (2006)

2. A.S. Khan, M. Mukund and S.P. Suresh. Generic Verification of Security Protocols. Technical
Report, Chennai Mathematical Institute (2005)

3. D. Basin et al. An On-the-fly Model-Checker for Security Protocol Analysis. Proc. ESORICS
2003, pp.253-270. (2003)

4. D. Dolev and A.C. Yao. On the security of public key protocols. IEEE Transactions on Infor-
mation Theory, 29(2):198C208, 1983. (1983)

5. J. Sui and D.R. Stinson. A Critical Analysis and Improvement of AACS Drive-Host Authen-
tication. Centre for Applied Cryptographic Research (CACR) (2007)

6. Kevin Henry, J. sui, G. Zhong. An Overview of the Advanced Access Content System
(AACS). Centre for Applied Cryptographic Research (CACR), 2007 April 12 (2007)

7. Lawrence C. Paulson. The inductive approach to verifying cryptographic protocols. Journal
of computer security, 6:85C128, 1998. (1998)

8. P.Maggi and R. sisto. Using SPIN to Verify Security Properties of Cryptographic Protocols. In
Proceedings of the 9th International SPIN Workshop on Model Checking of Software, number
2318 in Lecture Notes in Computer Science, pages 187-204 (2002)

9. R. Ramanujam and S.P. Suresh. A decidable subclass of unbounded security protocols. In
Proc. IFIP Workshop on Issues in the Theory of Security (WITS03), pages 11C20, Warsaw
(Poland) (2003)

10. R. Ramanujam and S.P. Suresh. Decidability of context-explicit security protocols. Journal
of Computer Security, 13(1):135C165, 2005. (2005)

11. Spin Workshop. Spin-Formal Verification, http://spinroot.com/spin/whatispin.html (2008)

Appendix: The Sequence Charts of Attack Instances in SPIN

Using SPIN to Detect Vulnerabilities in the AACS Drive-Host Authentication Protocol
Attack 1 Attack 3
4—€ycle/Waiting yole Maiting
Attack 2 Attack 4
56
R'host ,Dn7 253 Hy|
5
ycle/Waiting A 1 4+——€ycle/Waiting
; e I
| | | BB | |

Fig. 9. The Attack Instances Violating the Property of Authenticity

17

18 Wei Wang and Dongyao Ji

2 Attack 1 Attack 2

br 254, Wy

[35] 4—€yclefMaiting ‘yole/Maiting

yole/Waiting

Attack 5

yelefUaiting yole/Waiting

| |

shnit:clo

Fig. 10. The Collusion Attack Instances in the AACS Drive-Host Authentication Scheme

Using SPIN to Detect Vulnerabilities in the AACS Drive-Host Authentication Protocol 19

fHost : 3 A B
‘E_ Attack 1 Attack 2
14005 M bost e 5
[35 |
1
21ative, intrudef, Dy, ive 252 Dy, drive,k3 ive, i i 52 Dy, drive,3
Fldrive ruder , 254
55
21host, hosk Dy, My, inbeltss 251, By habruder, 1
56
ég::
3Thbst, intr - 5 P
[¢ |
yole fWaiting yole fWaiting
10
camat: o mit
| [)
ProfEruact 3
Attack 3 Attack 4
21dgive, in 252,Dv, drive, 3
31arive axfve gpsfv Enkrader, 250
52 Dy drive,3
54
11hosET
57
21host fintruder, 1
- Dv, host 253
{63]
12z +—<€ycle/VWaiting yclefWaiting
dimit:]
72 |

Fig.11. The Collusion Attack Instances in the Modified AACS Drive-Host Authentication
Scheme

