
Conformance Testing of Network Simulators
Based on Metamorphic Testing Technique

Tsong Yueh Chen, Fei-Ching Kuo, Huai Liu?, and Shengqiong Wang

Centre for Software Analysis and Testing, Swinburne University of Technology
{tychen, dkuo, hliu, shengqiongwang}@swin.edu.au

Abstract. Network simulators, which implement network protocols un-
der some simulated conditions, have been widely used to analyze the
feasibility of network protocols. Conformance testing of the simulator
against the protocol is a very important task in the community of
telecommunications. However, many current conformance testing meth-
ods face a problem of finding a systematic mechanism to verify the test
outputs. This paper proposes to use an innovative testing approach,
metamorphic testing (MT), to alleviate such a problem. We select one ad-
hoc on-demand distance vector (AODV) simulator for study and test its
conformance against the AODV protocol by the MT technique. Through
our experiments, we illustrate the applicability of MT in the protocol
conformance testing, confirm the reliability of the selected AODV simu-
lator, and demonstrate the cost-effectiveness of MT using the mutation
analysis technique.

1 Introduction

A network protocol specifies a set of mechanisms for exchanging messages among
communication entities in a network system. A protocol must be feasible and
its implementation must also conform to the protocol in order to deliver ex-
pected services in the network system [2]. Simulation is an important method
for analyzing the feasibility of a protocol [7]. The network simulator, a proto-
col implementation under simulated network environments, is particularly useful
to identify potential problems of the implemented protocol. It is important to
ensure conformance between the simulator and the protocol.

Protocol conformance testing tests a protocol entity against the protocol
specification. It aims to gain confidence in the correctness of the implemen-
tation with respect to a given specification [7]. International Organization for
Standardization (ISO) has defined a framework and common terminologies for
conformance testing of Open Systems Interconnection (OSI) systems [6]. Many
approaches have been proposed to conduct conformance testing under various
circumstances, such as unique input/output sequences generation method [7]
and model-based approaches [13].

Many current conformance testing methods only work well when the network
protocol can be modeled as a fully specified finite state machine (FSM). For such
? Corresponding author



protocols, we can always expect the correct output given any testing input [7].
For many other network protocols, which are not completely modeled by FSM,
it is normally difficult to find a systematic verification mechanism for test re-
sults [8]. Such a verification mechanism is normally called the testing oracle [4]
in the context of software testing. If there does not exist an testing oracle (known
as the oracle problem in software testing), it is then very difficult to verify the
correctness of the simulator’s output.

Metamorphic testing (MT) [4] is an innovative testing method to alleviate the
oracle problem. MT first identifies some properties from the specification of the
software under test. These properties, which are known as metamorphic relations
(MRs), are then used to generate some test cases. MT verifies the outputs of
test cases based on MRs. Besides the alternative verification mechanism, MT has
many other advantages. For example, it can be effectively applied by end users
without too much knowledge of software testing. MT can also automatically
generate a large number of test cases at a low cost, and MT test outputs can be
verified by some simple script. MT have been successfully applied to detecting
bugs in various programs [3, 9].

MT is basically a general technique used in the testing of software with any
form of specification. In other words, no matter whether the software specifica-
tion can be modeled by FSM or not, MT can always provide a mechanism to
verify the test results. MT can identify some key properties from the specifica-
tion, and generate test cases based on these properties. When a network protocol
specification or a network simulator is updated, regression testing [12, 15] is al-
ways conducted to re-run the testing to ensure the correctness of the updates.
Provided that the key properties identified by MT remain unchanged during the
updates, all associated MT test cases can be re-used in the regression testing. In
the paper, we attempt to apply MT into the conformance testing of a network
simulator against its network protocol. A case study is conducted on an ad-hoc
on-demand distance vector (AODV) simulator to illustrate the applicability and
effectiveness of MT in conformance testing.

2 AODV protocol and its simulator

Ad-hoc on-demand distance vector (AODV) routing protocol [14] is a reactive
protocol, that is, it establishes a route from a source node to a destination node
only “on demand”. AODV avoids the counting-to-infinity problem by using “se-
quence numbers” mechanism on route updates. It also uses a so-called “black-
list” mechanism to avoid invalid connection attempt. Concer [5] has developed
an AODV simulator based on OMNeT++ [11], a discrete event simulation en-
vironment. One of us has worked on this simulator and has extensive domain
knowledge of it, so we selected this specific simulator as the target program of
our case study. The simulator depicts the AODV protocol with a number of
nodes in a simulated field without obstacles. Each node in the field is comprised
of five layers, namely, the application, network, date link, physical, and mobility
layers. Inside a node, a higher layer (such as the application layer) consumes



certain services offered by the lower layer (such as the network layer), but all
layers is designed to be invisible to the implementation details of other layers.

Network simulators usually return some outputs relating to network protocol
attributes, which are generally presented as the forms of network performance,
such as, latency and throughput. Latency in a packet switched network is mea-
sured by the time from the source node sending a packet to the destination node
receiving it, and throughput is the amount of digital data per time unit that
pass through a certain node in the network. However, it is difficult to verify
the correctness of these outputs, because the values of these outputs depend on
various simulation environments, such as CPU and memory.

3 Metamorphic testing

Most software testing techniques (such as random testing and branch test-
ing [10]) assume that the oracle exists. However, the oracle may not exist in
some practical situations. For example, given a program for finding the shortest
path in an undirected graph, when the graph is nontrivial, there is no oracle
to effectively verify whether the returned outcome is really the shortest path
between two nodes.

Metamorphic testing (MT) was proposed to test programs when oracle prob-
lem occurs [4]. MT requires domain knowledge to identify some important prop-
erties from the specification. These properties are called metamorphic relations
(MRs). Some traditional testing techniques are first used to generate some source
test cases. MRs are then applied to construct some follow-up test cases from
source test cases. Both source and follow-up test cases are executed on the pro-
gram under test. The test results are checked against MRs. If a relation is vio-
lated, a fault is said to be detected. For example, in the shortest path program,
there is a permutation property: the program can produce the same outcome for
a graph and the graph’s permutation. Let a graph G be the source test case. We
can generate G′, a permutation of G, as the follow-up test case. The MR is that
the program should produce the same output for G and G′.

4 Metamorphic testing on AODV simulator

As mentioned in Section 2, it is very difficult to verify the correctness of the test
outputs of the AODV simulator. In this study, we attempt to use MT to test
the conformance between the simulator and the AODV protocol. Our testing
is mainly focused on two main outputs, latency and throughput, and two key
mechanisms, the “sequence numbers” and “black-list” mechanisms. In the case
study, in order to simplify the testing environment, we have modified the source
codes in the application and mobility layers of the AODV simulator. Since the
AODV protocol is implemented in the network layer, the modifications will not
affect the conformance testing. The simplified testing environment we use in this
study is a simulated network which contains a fixed number of nodes. Our testing
is conducted mainly on a pair of randomly selected nodes (denoted by A and



B), which are randomly moving inside the network. We identify the following
11 MRs. Among them, MRs 1 to 7 have an additional prerequisite that there is
always a connection between A and B; while MRs 1 to 5 and 8 to 10 further
requires that the network’s topology remains unchanged.
MR1: The source test case is that A sends a data packet P to B. The resultant
latency and throughput are l1 and r1, respectively. The follow-up test case is
that the locations of A and B are changed, and then A sends the same packet
P to B. The resultant latency and throughput are l2 and r2, respectively. We
should have the relations l2 ≈ l1 and r2 ≈ r1.
MR2: The source test case is that A sends a data packet P to B. The resultant
latency and throughput are l1 and r1, respectively. The follow-up test case is that
B sends the same data packet P to A. The resultant latency and throughput
are l2 and r2, respectively. We should have the relations l2 ≈ l1 and r2 ≈ r1.
MR3: The source test case is that A sends a data packet P to B with channel
delay c1. The resultant latency is l1. The follow-up test case is that A sends the
same data packet P to B with a different channel delay c2. The resultant latency
is l2. We should have the relation l1

c1
≈ l2

c2
.

MR4: The source test case is that A sends a data packet P1 with packet size s1

to B. The resultant throughput is r1. The follow-up test case is that A sends a
different data packet P2 with packet size s2 to B. The resultant throughput is
r2. We should have the relation r1

s1
≈ r2

s2
.

MR5: The source test case is that the routing table of A contains the route p1

to B. The follow-up test case is that all route entries in A’s routing table are
deleted, and then A requests to identify a new route p2 to B. We should have
the relation p1 = p2.
MR6: The source test case is that A sends a data packet P to B via a route
with h1 hops. The resultant latency is l1. The follow-up test case is that the
route from A to B is changed to a new one with h2 hops, and then A sends
the same data packet P to B. The resultant latency is l2. We should have the
relation that if h1 > h2, then l1 > l2.
MR7: The source test case is that A sends a data packet P to B via a route
with h1 hops. The resultant sequence number is q1. The follow-up test case is
that the route from A to B is changed to a new one with h2 hops, and then A
sends the same data packet P to B. The resultant sequence number is q2. We
should have the relation that if h1 > h2, then q1 > q2.
MR8: The source test case is that A requests to transmit a data packet P to B
(first transmission). The follow-up test case is that after a while, A requests to
transmit the same packet P to B again (second transmission). We should have
the relation (1) if the first transmission is successful, the second transmission
should also be successful, or (2) if A only broadcasts a Route Request (RREQ)
packet for searching a route to B but does not forward the packet at the first
transmission, A should buffer the data packet at the second transmission.
MR9: The source test case is that A requests to transmit a data packet P
to B (first transmission). The follow-up test case is that A’s neighbor node C
requests to transmit the same packet P to B (second transmission). We should



have the relation (1) if the first transmission is successful, A should reply to
C a Route Reply (RREP) packet at the second transmission, or (2) if A only
broadcasts RREQ for searching a route to B but does not forward P at the first
transmission, it should broadcast RREQ again for searching a route to B at the
second transmission.
MR10: The source test case is that A’s neighbor node C requests to transmit a
data packet P to B (first transmission). The follow-up test case is that A requests
to transmit the same packet P to B (second transmission). We should have the
relation (1) if A replies to C an RREP packet at the first transmission, the second
transmission should be successful, or (2) if A only broadcasts RREQ for searching
a route to B and C does not forward the packet at the first transmission, A should
broadcast RREQ again for searching a route to B at the second transmission.
MR11: The source test case is that A is put into the black list of B, and then A
requests to transmit a data packet P to B. B will reply with a certain number
(n1) of RREP packets to A. The follow-up test case is that A is deleted from
the black list of B, and then A requests to transmit the same packet P to B. B
will reply with a certain number (n2) of RREP packets to A. We should have
the relation n1 < n2.

For each MR, we generated a certain number of source test cases by random
testing technique [10], and at least one follow-up test case is generated based
on the source test case and according to MR. In our experiment, we applied all
these MT test cases to test the original version of the AODV simulator. In order
to further investigate the effectiveness of MT in protocol conformance testing,
we also used mutation analysis technique [1] to randomly seed some faults into
the target program. We generated six mutants whose faults are related to key
attributes of the simulator. All MT test cases were also applied to test these
mutants. The experimental results showed that MT did not detect any fault
in the original simulator, but the fault in each mutant has been revealed by
at least one MR. With respect to the effectiveness of MT technique, we found
that the success rates in detecting faults of our MRs and MT test cases are
about 26% and 17%, respectively. Such results are very impressive in terms of
the cost-effectiveness of a testing method.

5 Conclusion

Network simulator is an important tool for analyzing the network protocol. It is
critical to ensure the conformance between the simulator and the protocol. How-
ever, protocol conformance testing is sometimes faced with an oracle problem,
that is, there does not exist a systematic mechanism to verify the correctness of
the test output given any possible program input. We are not aware of any sys-
tematic work dealing with the oracle problem in protocol conformance testing.
In this paper, we proposed to apply metamorphic testing (MT), an innovative
approach to alleviating the oracle problem, into the protocol conformance testing
of network simulators. We selected ad-hoc on-demand distance vector (AODV)
protocol and one of its simulators as our case study. Some key attributes are



identified from the AODV protocol, and 11 metamorphic relations (MRs) are
defined based on these attributes. We generated a large number of MT test
cases based on these MRs, and checked the test results against these MRs. Our
experimental results showed that the selected simulator conforms to the AODV
protocol with respect to the chosen MRs and the used MT test cases. We also
used MT to test some fault-seeded mutants of the simulator. The results of the
mutation analysis showed that MT is very effective in detecting faults.

In this pilot study, we only conducted MT under a simplified testing environ-
ment. Some of our MRs may not be valid when the testing environment becomes
more complicated. It is of great importance to identify more MRs that can be
used in more general scenarios. It is also worthwhile to apply MT to test various
applications of different network protocols.

Acknowledgment

This project is supported by an Australia Research Council grant (DP0771733).
We are grateful to Chi Zhang for conducting some preliminary experiments.

References

1. J. H. Andrews, L. C. Briand, and Y. Labiche. Is mutation an appropriate tool for
testing experiments? In Proc. of ICSE2005, 402–411, 2005.

2. T. P. Blumer, D. Sidhu, and A. Chung. Experience with formal methods in protocol
development. ACM Comput. Commun. Rev., 21(2):81–101, 1991.

3. T. Y. Chen, J. W. H. Ho, H. Liu, and X. Xie. An innovative approach for testing
bioinformatics programs using metamorphic testing. BMC Bioinform., 10:24, 2009.

4. T. Y. Chen, T. H. Tse, and Z. Q. Zhou. Fault-based testing without the need of
oracles. Inform. Softw. Tech., 45(1):1–9, 2003.

5. N. Concer. Ad-hoc network simulator. http://www.omnetpp.org/filemgmt/

singlefile.php?lid=87, 2005.
6. ISO. Information technology - open systems interconnection - conformance testing

methodology and framework. ISO/IEC 9646.
7. R. Lai. A survey of communication protocol testing. Journ. Syst. Softw., 62(1):21–

46, 2002.
8. P. D. L. Machado and W. L. Andrade. The oracle problem for testing against

quantified properties. In Proc. of QSIC2007, 415–418, 2007.
9. C. Murphy, G. Kaiser, L. Hu, and L. Wu. Properties of machine learning applica-

tions for use in metamorphic testing. In Proc. of SEKE2008, 867–872, 2008.
10. G. J. Myers. The Art of Software Testing. John Wiley and Sons, 2004.
11. OMNeT Community. OMNeT++ system. http://www.omnetpp.org.
12. A. K. Onoma, W.-T. Tsai, M. H. Poonawala, and H. Suganuma. Regression testing

in an industrial environment. Commun. ACM, 41(5):81–86, 1998.
13. A. M. Paradkar. Towards model-based generation of self-priming and self-checking

conformance tests for interactive systems. In Proc. of SAC2003, 1110–1117, 2003.
14. C. Perkins, E. Belding-Royer, and S. Das. Ad hoc on-demand distance vector

routing. RFC3561, 2008.
15. G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold. Prioritizing test cases for

regression testing. IEEE Trans. Softw. Eng., 27(10):929–948, 2001.


