Dynamic Symbolic Execution
of Distributed Concurrent Objects *

Andreas Griesmayer !, Bernhard Aichernig 2,
Einar Broch Johnsen 3, and Rudolf Schlatte !+2

! International Institute for Software Technology, United Nations University
(UNU-IIST), Macao S.A.R., China

{agriesma,bka,rschlatte}@iist.unu.edu

2 Institute for Software Technology, Graz University of Technology, Austria
{aichernig, rschlatte}@ist.tugraz.at

3 Department of Informatics, University of Oslo, Norway
einarj@ifi.uio.no

Abstract. This paper extends dynamic symbolic execution to distri-
buted and concurrent systems. Dynamic symbolic execution is used to
systematically identify equivalence classes of input values and has been
shown to scale well to large systems. Although mainly applied to se-
quential programs, this scalability makes it interesting to consider the
technique in the distributed and concurrent setting as well. In order to
extend the technique to concurrent systems, it is necessary to obtain
sufficient control over the scheduling of concurrent activities to avoid
race conditions. Creol, a modeling language for distributed concurrent
objects, solves this problem by abstracting from a particular scheduling
policy but explicitly defining scheduling points. This provides sufficient
control to apply the technique of dynamic symbolic of interleaved pro-
cesses. The technique has been formalized in rewriting logic and executes
in Maude.

1 Introduction

Distributed and concurrent systems, e.g. web services, are becoming increas-
ingly important for long-running infrastructure and applications. They typically
consist of loosely coupled components which communicate asynchronously, po-
tentially running on different hardware systems. For critical distributed systems,
the use of formal methods, both for design and verification, remains a challenge.
In the general case, the complexity of such systems makes full verification seem
impossible, even for medium sized examples.

The challenge is to find a verification technique that scales to the combi-
natorial explosion in the number of possible runs in such models. A promising

* This research was carried out as part of the EU FP6 project Credo: Modeling and
analysis of evolutionary structures for distributed services (IST-33826).

technique that seems to scale well to large systems is dynamic symbolic execu-
tion [1,4,9]. The idea is to calculate a symbolic execution in parallel with the
concrete test run of a given formal model. The result is a set of conditions over
symbolic input values representing the path of the last run.

The problem is that dynamic symbolic execution is of limited use with the
concurrency models of today’s programming languages. The reason is that dy-
namic symbolic execution does not work in settings where the execution of ex-
pressions is not atomic. Hence, its main application so far has been limited to
single-threaded programs and to client-server applications with simple serial-
ized communication flows. In this work we overcome this limitation by choosing
a modeling language that provides the appropriate level of concurrency con-
trol: Creol [6], an executable object oriented modeling language whose execution
model was designed to assist in the development of distributed systems.

We have implemented the dynamic symbolic execution technique in Maude [2],
which is the execution platform of Creol, allowing us to perform the symbolic
run dynamically while the concrete run is executed. The tool, and an application
to testing, is covered in more detail in [5].

1.1 Related Work

Symbolic execution is a widely used program analysis technique that represents
the values of variables as symbolic expressions instead of concrete data. An
execution of a program is performed by manipulating those expressions instead
of computing concrete values.

Application of symbolic execution to verification was already proposed in
1976 by King [7], who shows symbolic execution for a simple sequential language
and presents an interactive tool EFFIGY to traverse the execution tree. However,
there are limits to the feasibility of this technique, due to the sheer number
of possible execution paths induced by non-determinism. To make the process
feasible for large systems one can either reduce the amount of information that
is tracked, or the number of paths to search. An example for the first kind are
static analysis tools like ARCHER from Engler et al. [10], which concentrate
on certain properties of interest for the analysis. In this paper, we reduce the
number of paths that are searched at a time by dynamic symbolic execution. In
[1], Boyer et al. show the interactive tool SELECT that computes input values
for a run selected by the user. One of the first automated tools was DART
from Godefroid et al. [4], which automatically extracts a program’s interface
and generates a test driver to perform random testing. Several extensions to
these approaches exist, among the most notable the PEX tool from Tillmann et
al. [9] for creating parameterized unit tests for single-threaded .NET programs.
We extend dynamic symbolic execution to Creol’s concurrency model, including
the treatment of local scheduling points in the distributed objects.

2 The Modeling Language Creol

Creol is a high-level executable modeling language targeting distributed sys-
tems in which concurrent objects communicate asynchronously [6]. The lan-

guage decouples communication from synchronization. Furthermore, it allows
local scheduling to be left underspecified but controlled through explicitly de-
clared process release points. The language has a formal semantics defined in
rewriting logic [8] and executes on the Maude platform [2]. In the remainder of
this section, we present Creol and point out its essential features for DSE.

A concurrent object in Creol executes a number of processes that have ac-
cess to its local state. Each process corresponds to the activation of one of the
object’s methods; a special method run is automatically activated at object cre-
ation time, if present, and captures the object’s active behavior. Objects execute
concurrently: each object has a processor dedicated to executing the processes
of that object, so processes in different objects execute in parallel. In contrast
to, e.g., Java, each Creol object strictly encapsulates its state; i.e., external ma-
nipulation of the object state happens via calls to the object’s methods only.
Only one process can be active in an object at a time; the other processes in the
object are suspended. A process can be released using Creol’s await statement,
in which case another proces may be activated.

Communication in Creol is based on method calls. These are a priori asyn-
chronous; method replies are assigned to labels (also called future variables,
see [3]). There is no synchronization associated with calling a method. Reading
a reply from a label, however, is a blocking operation and allows the calling ob-
ject to synchronize with the callee. A method call that is directly followed by a
read operation models a synchronous call. Thus, the calling process may decide
at runtime whether to call a method synchronously or asynchronously.

The language syntax of the subset of Creol used in this paper is presented in a
Java-like style. We omit some features of Creol, including interfaces, inheritance,
non-deterministic choice and many built-in data types and their operations. For
a full overview of Creol, see for example [6].

2.1 Representation of a Run

A run of a Creol system captures the parallel execution of processes in differ-
ent concurrent objects. Such a run may be perceived as a sequence of execution
steps where each step contains a set of local transitions on a subset of the sys-
tem’s objects. However, only one process may be active at a time in each object
and different objects operate on disjoint data. Therefore, the transitions in each
execution step may be performed in a truly concurrent manner or in any se-
quential order, as long as all transitions in one step are completed before the
next execution step commences. For the purposes of dynamic symbolic execution
the run is represented as a sequence of statements which manipulate the state
variables, together with the conditions which determine the control flow. Due
to space restrictions, we concentrate on statements for the concurrency model,
namely asymchronous method calls and await statements. The representation of
the other statements is straight forward and can be studied in more detail in [5].

An asynchronous method call in the run is reflected in four execution steps
(the label value [uniquely identifies the steps that belong to the same method

call): 0; AN 02.m(€) represents the call of method m in object o2 from object
01 with arguments €; o, 4 02.m(7T) represents when the called objects starts

. _ l _
execution, where T are the local names of the parameters for m; 01 < 09.m(€)
represents the emission of the return values from the method execution; and

01 L 02.m(T) represents the corresponding reception of the values. These four
events fully describe method calling in Creol. In this execution model the events
reflecting a specific method call always appear in the same order, but they can
be interleaved with other statements.

Conditional statements in Creol are side effect free and therefore only rep-
resented in form of the statements of the branch that was actually executed.
For the sake of computing the input values, however, the condition of the taken
branch is recorded as (g). Remark that statements await g requires careful
treatment: if it evaluates to false, no code is executed. To reflect the information
that the interpreter failed to execute a process because the condition g of the
await statement evaluated to false, the negated condition (—g) is recorded.

3 Dynamic Symbolic Execution of Distributed Objects

Conventional symbolic execution uses symbols to represent arbitrary values dur-
ing execution. When encountering a conditional branch statement, the run is
forked. This results in a tree covering all paths in the program. In contrast, dy-
namic symbolic execution calculates the symbolic execution in parallel with a
concrete run that is actually taken, avoiding the usual problem of eliminating
infeasible paths. Decisions on branch statements are recorded, resulting in a set
of conditions over the symbolic values that have to evaluate to true for the path
to be taken. We call the conjunction of these conditions the path condition; it
represents an equivalence class of concrete input values that could have taken
the same path. Note, in the case of non-determinism, there is no guarantee that
all inputs will take this path.

We extend this method to the concurrency model of Creol and define the
rules to actually compute the symbolic values for a given run. The formulas
given in this section very closely resemble the rewrite rules of Creol’s simulation
environment [6], defined in rewriting logic [8] and implemented in Maude [2]. The
rules are presented here in a slightly simplified manner to improve readability.

Denote by s the representation of program statements. Let o = (v > e, v >
€9,...U,>e,) = (U>€) be a map which records key—value entries v > e, where a
variable v is bound to a symbolic value e. The value assigned to key v is accessed
by vo. For an expression e and a map o, define a parallel substitution operator
eo which replaces all occurrences of every variable v in e with the expression vo
(if v is in the domain of ¢). For simplicity, let €0 denote the application of the
parallel substitution to every expression in the list €. Furthermore, let the oper-
ator o1 Woo combine two maps o1 and oy such that, when entries with the same
key exist in both maps, the entry in o is taken. These operators are defined
as equations in rewriting logic and are evaluated in between the rewrite steps.

In the symbolic state o, all expanded variable names are bound to symbolic ex-
pressions. However, operations for method calls do not change the value of the
symbolic state, but generate or receive messages that are used to communicate
actual parameter values between the calling and receiving objects. Similar to the
expressions bound to variables in the symbolic state o, the symbolic representa-
tions of these actual parameters are bound in a map © to the actual and unique
label value [provided for each method call by Creol’s operational semantics. Fi-
nally, the conditions of control statements along an execution path are collected
in a list C; the concatenation of a condition ¢ to C is denoted by Cc.

The configurations of the rewrite system for dynamic symbolic execution are
given by 5[0, 5,C|, where 5 is a run represented as a sequence of statements, ©
and o are the maps for messages and symbolic variable assignments as described
above, and C is the list of conditions. The run 3§ (as described in Section 2.1)
is generated on the fly by the concrete rewrite system for Creol. Again, we
concentrate on the statements for method calls and process release. A method
call emits a message with the expressions for the method:

01 KN 02.m(é);§[9,a, C] = 3[9 W (l>eo),o, C]

Because of the asynchronous behavior of Creol, the call might be received
at a later point in the run (or not at all if the execution terminates before the
method was selected for execution) by another rule, that handles the binding
of a call to a new process and assigns the symbolic representation of the actual
parameter values to the local variables in the new process (o W (v > 10)). The
emission and reception of return values are handled similarly to call statements
and call reception.

For conditionals, the local variables in the condition are replaced by their
symbolic values ((g);E[@, o, C] = 5[(9, o, CA<gJ>}). This process is identical for
the different kinds of conditional statements (if, while, await). The state-
ment itself acts as a skip statement; it changes no variables and does not pro-
duce or consume messages. The resulting expression go directly characterizes
the equivalence class of input values that reach and fulfill the condition.

3.1 Application to Testing

Approaches to test case generation for structural coverage intend to find test
sets that perform runs in the system for a specific coverage criterion. Two runs
that cover the same parts of a system can be considered equivalent. A good test
set should maximize the coverage, while minimizing the number of equivalent
runs in order to avoid superfluous efforts in executing the tests.

Dynamic symbolic execution on a run gives the set of conditions that are
combined to the path condition C = A, _,,, ¢; (for n conditions), characterizing
exactly the equivalence class of tg that can repeat the same execution path.
Only one test case that fulfills C is required. A new test case is then chosen to
specifically avoid that a particular branch is taken by violating the respective c;.
To maximize decision coverage (DC), for instance, test cases have to be created

such that for each of the conditions ¢;, there is also a test case that violates this
condition. The process of generating new test cases ends after all combinations
required for the coverage criteria are explored.

More details and examples on how to use DSE to generate test cases in
distributed systems can be found in the technical report to this paper [5].

4 Conclusions

The main contribution of this work is the novel extension of dynamic symbolic
execution to non-trivial distributed and concurrent object models. This has been
achieved by exploiting the properties of the Creol modeling language; in particu-
lar local scheduling control of the processes and strict encapsulation of the object
state. This paper demonstrates how dynamic symbolic execution, combined with
the executable architectural models of Creol, can be used to systematically derive
equivalent input values, while avoiding the combinatorial explosion inherent in
distributed concurrent systems. Our approach has been formalized in rewriting
logic and implemented in Maude.

References

1. R. S. Boyer, B. Elspas, and K. N. Levitt. Select-A formal system for testing and
debugging programs by symbolic execution. SIGPLAN Not., 10(6):234-245, 1975.

2. M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer, and J. F.
Quesada. Maude: Specification and programming in rewriting logic. Theoretical
Computer Science, 285:187-243, Aug. 2002.

3. F. S. de Boer, D. Clarke, and E. B. Johnsen. A complete guide to the future. In
R. de Nicola, editor, Proc. 16th European Symposium on Programming (ESOP’07),
volume 4421 of LNCS, pages 316-330. Springer, Mar. 2007.

4. P. Godefroid, N. Klarlund, and K. Sen. DART: directed automated random testing.
In PLDI °05: Proceedings of the 2005 ACM SIGPLAN conference on Programming
language design and implementation, pages 213-223. ACM, 2005.

5. A. Griesmayer, B. Aichernig, E. B. Johnsen, and R. Schlatte. Dynamic symbolic
execution of distributed concurrent objects. Technical Report No. 408, UNU-IIST,
March 2009.

6. E. B. Johnsen and O. Owe. An asynchronous communication model for distributed
concurrent objects. Software and Systems Modeling, 6(1):35-58, Mar. 2007.

7. J. King. Symbolic execution and program testing. Communications of the ACM,
19(7):385-394, 1976.

8. J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theo-
retical Computer Science, 96:73-155, 1992.

9. N. Tillmann and J. de Halleux. Pex - white box test generation for .NET. In Proc.
of the 2nd International Conference on Tests and Proofs (TAP’08), volume 4966
of LNCS, pages 134-153. Springer, 2008.

10. Y. Xie, A. Chou, and D. Engler. Archer: using symbolic, path-sensitive analysis to
detect memory access errors. In ESEC/FSE-11: Proceedings of the 9th European
software engineering conference held jointly with 11th ACM SIGSOFT interna-
tional symposium on Foundations of software engineering, pages 327-336. ACM,
2003.

