Formal Software Verification:
How Close Are We?

Gerard J. Holzmann

Laboratory for Reliable Software
Jet Propulsion Laboratory, California Institute of Technology
M/S 301-230, 4800 Oak Grove Drive, Pasadena, CA 91109
gholzmann@acm.org

Abstract. Spin and its immediate predecessors were originally designed
for the verification of data communication protocols. It didn’t take long,
though, for us to realize that a data communications protocol is just a
special case of a general distributed process system, with asynchronously
executing and interacting concurrent processes. This covers both multi-
threaded software systems with shared memory, and physically distributed
systems, interacting via network channels.

The tool tries to provide a generic capability to prove (or as the case may
be, to disprove) the correctness of interactions in complex software sys-
tems. This means a reliable and easy-to-use method to discover the types
of things that are virtually impossible to detect reliably with traditional
software test methods, such as race conditions and deadlocks.

As initially primarily a research tool, Spin has been remarkably success-
ful, with well over one million downloads since it was first made available
by Bell Labs in 1989. But our goal is te development of a tool that is not
only grounded in foundational theory, but also usable by all developers
of multi-threaded software, not requiring specialized knowledge of formal
methods.

In this talk we try to answer the question how close we have come to
reach these goals, and where especially we are still lacking. We will see
that our understanding has changed of what a verification tool can do —
and what it should do.

Key words: software verification, software analysis, concurrency, model
checking, software testing, static source code analysis.



