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Abstract. Wireless sensor networks are typically ad-hoc networks of
resource-constrained nodes; in particular, the nodes are limited in power
resources. It can be difficult and costly to replace sensor nodes, for in-
stance when implanted in the human body. Data transmission is the
major consumer of power, so it is important to have power-efficient pro-
tocols. In order to reduce the total power consumption in the network,
we consider nodes which cooperate to transmit data. Nodes which co-
operate, form a group. A mobile node may at some point be without
a group, in which case it is desirable for the node to be able to join a
group. In this paper we propose a modification of the AODV protocol to
decide whether a node should join a given group, using coalitional game
theory to determine what is beneficial in terms of power consumption.
The protocol is formalized in rewriting logic, implemented in the Maude
tool, and validated by means of Maude’s model exploration facilities.

1 Introduction

A wireless sensor network (WSN) often contains hundreds or thousands of sen-
sor nodes equipped with sensing, computing, and communication devices such
as short-range communication devices over wireless channels. These nodes may
be distributed over a large area; e.g., WSNs can do area monitoring for some
phenomenon of interest. In such an application, the main goal of the WSN is to
collect data from the environment and send it to a sink node. In many cases,
WSNs are ad-hoc networks with mobile nodes which need to self-configure.
Sensor nodes are very small and often difficult to replace. This size limitation
introduces challenges for the design and management of WSNs; in particular, re-
strictions in memory, power, and communication capacity need to be considered
in order to improve the longevity of the nodes. Power restriction is the most
remarkable of these constraints: The range of data transmission depends on the
power used by the node. Reduced power consumption is an important goal in the



design of WSN protocols. Because data transmission is expensive, the manage-
ment of communication between nodes plays a vital role for the power efficiency
of these networks. Cooperation between sensor nodes can potentially reduce the
total power consumed for data transmission in the whole network.

Grouping is a method to organize node cooperation in a WSN. A group of
nodes has a leader which receives data from the group members and communi-
cates with the outside of the group. Nodes which are close to each other, may
in principle communicate using less power. By cooperating inside a group, the
group’s members can decrease their transmission power to a minimum and still
reach the leader. However, if nodes do not have fixed locations, the network
topology can change. Nodes should compute the most efficient way to communi-
cate in the network. Consequently, the group structure of the network may need
to evolve. In a self-organizing network, a new node may want to join a group
and the group needs to decide whether to accept the node.

This paper proposes a protocol to decide whether a node should join a group.
We assume that a group leader forms and manages its group in a way that is
beneficial for the group’s members, and that a node can transmit directly to the
group leader using maximum transmission power. Our protocol uses coalitional
game theory to decide on group extensions. Adapting the AODV routing protocol
for ad-hoc networks [21], a utility function over the dynamically determined route
from the new node to the leader decides whether it is beneficial in terms of power
consumption that the new node joins the group. We develop a formal, executable
model of the proposed protocol in rewriting logic [16]. The resulting model is
validated using Maude [3], some initial results are presented here.

Related work. WSNs present interesting challenges for formal methods, due to
their resource restrictions and radio communication. This has led to research
on how to develop modeling languages or extensions which faithfully capture
typical features of sensors; e.g., mobility, location, radio communication, message
collisions. In addition, WSNs need communication protocols which take resource
usage into account. There is a very active field of research on protocol design for
WSNs. However, protocol validation is mostly done with simulation-based tools,
using NS-2, OMNeT+, and extensions such as Castalia [22] and SensorSim [20].
Formal techniques are much less explored in the development and analysis
of WSNs, but start to appear. Among automata-based techniques, the TinyOS
operating system has been modeled as a hybrid automaton [5] and UPPAAL
has been applied to the LMAC protocol [7] and to the temporal configuration
parameters of radio communication [25]. The CaVi tool combines simulation in
Castalia with probabilistic model checking [6]. A recent process algebra for active
sensor processes includes primitives for, e.g., sensing [4]. A Creol extension for
heterogeneous environments includes radio communication [12]. The Temporal
Logic of Actions has been used for routing tree diffusion protocols [18§].
Olveczky and Thorvaldsen have shown how a rich specification language like
Maude is well-suited to model WSNs, using Real-Time Maude to analyze the
performance of the OGCD protocol [19]. Their approach has also been combined
with probabilistic model-checking to analyze the LMST protocol [13]. We follow



this line of research and use Maude as a tool to develop a grouping protocol [14]
for WSNs, applying coalitional game theory to estimate power consumption.
Noncooperational game theory has been used to reduce the power consumption
of sensor nodes, applying a utility function to find the Nash equilibrium [11,
17,24]. Coalitional game theory is applied to reduce the power consumption in
WSNs by [23], who propose a merge and split approach for coalition formation.
They calculate the value of the utility function for every possible permutation
of nodes and find groups with the best utility value. This is as far as we know
the only previous work that uses coalitional game theory for grouping the sensor
networks. In contrast, we develop and formalize a protocol which considers nodes
which may need to join a new group without reorganizing the entire WSN.

Paper overview. Section 2 introduces WSNs and grouping and Section 3 presents
coalitional game theory. Section 4 proposes a group membership protocol based
on coalitional game theory. Section 5 briefly summarizes rewriting logic and
Maude, used to develop a formal model of the protocol in Section 6 and for
analysis of an example topology in Section 7. Section 8 concludes the paper.

2 Grouping the Sensor Nodes

A sensor network is typically a wireless ad-hoc network, in which the sensor nodes
support a multi-hop routing algorithm. In these networks, communication be-
tween nodes is generally performed by direct connection (single-hop) or through
multiple hop relays (multi-hop). Multi-hop ad-hoc wireless networks use more
than one wireless hop to transmit information from a source to a destination.
When a large number of sensor nodes are placed in the environment, neighbor
nodes may be very close to each other. In this case, the transmission power level
for communication with a neighbor can be kept low. Since nodes can cooperate
with each other to transmit data, multi-hop communication in sensor networks
is expected to consume less power than the traditional single-hop communica-
tion [1]. Furthermore, multi-hop communication can effectively overcome some
signal propagation effects experienced in long-distance wireless communication.
Wireless sensor nodes use routing protocols to communicate with each other
and to find the path to the designated sink node (or nodes) in order to transmit
the data that is sensed from the environment. In most of these protocols, the
nodes broadcast their data to all nodes that are within their data transmission
range. This range is determined by the power used for transmission. In general,
sensor nodes use their maximum data transmission power to cover a larger area
and reach more nodes, both for data transmission and for routing. For example,
in the standard AODV protocol [21], a node that moves or enters the network
broadcasts a routing request package (hello) with maximum power to find
neighbors. Due to node mobility, a node may need a new routing path, so it
rebroadcasts a routing request to its neighbors using maximum power.

Grouping is a method for cooperation between nodes, in which nodes belong to
distinct groups [14]. When nodes form a group, they help each other to transfer



data in a more organized way. Each group has a group leader; i.e., a designated
member which receives data from the group members and communicates with
other group leaders in order to route the data to its destination. Inside the group,
it is not always necessary for a node to use its maximum transmission power.
Instead, the group members can decrease the power consumed for communica-
tion and use their minimum transmission power to reach the group leader. The
leader should be chosen carefully and this role can be exchanged between group
members at specific time intervals. In this paper we do not focus on the leader
selection issue but rather on the group management.

Sensor nodes in the real world are not designed to directly support grouping.
We therefore assume that nodes know nothing about the grouping process. In
contrast, the group leaders are special nodes that process the information of the
newly entered sensor nodes and decide about their possible group membership.
The group formation could be done by using different techniques. In general, the
grouping of nodes can be done based on special characteristics or distance. In the
first case, a special correlation among the sensors should be found by using vector
quantization [9]. For example, all the sensor nodes that have similar sensed data
could be placed in one group. In the second case, the sensor nodes are formed in
different groups based on the distance. With this technique, a node’s location is
the important factor for group formation, but to have a better grouping, other
factors such as interference could also be considered for group formation. The
location of the nodes can be determined using different methods, such as GPS.

The AODV Routing protocol. The Ad-hoc On-Demand Distance Vector (AODV)
routing protocol [21] is a reactive protocol; i.e., routes are created at need. It
uses traditional routing tables, one entry per destination, and sequence numbers
to decide if the routing information is up-to-date and to avoid loops. Note that
AODV maintains time-based states in each node; if a routing entry has not been
used recently, it expires and the node’s neighbors are notified. Route discovery
is based on query and reply cycles, and route information is stored in all nodes
along the route as routing table entries. The AODV protocol works as follows:

1. Nodes broadcast hello messages to detect and monitor links to neighbors.

2. The route discovery process starts when a node which requires a route to
another node, broadcasts a rreq message.

3. If the neighbor which receives this message has no route entry for the desti-
nation, or this entry is not up-to-date, the rreq is re-broadcasted with an
incremented hop count which shows the length of the path.

4. While the rreq message is broadcasting through the network, each node
remembers the reverse path to the source node.

5. If the receiver node is the destination or it has a routing path to the des-
tination with a sequence number larger or equal to that of rreq, a rrep
message is sent back to the source. The route to the destination is established
when a rrep message is received by the original source node.

6. A source node may receive multiple rrep messages with different routes. It
then updates its routing entries if the information is new in the sense that
the rrep has a greater sequence number.



3 Coalitional Game Theory

Game theory [8] can be used to analyze behavior in decentralized and self-
organizing networks. Game theory models the actions and choice of strategies
of self-interested players, in order to capture the interaction of players in an
environment such as a communication network. A game consists of

— aset of players N ={1,2,....n}.

— an indexed set of possible actions A = Ay X Ay X ... X A,, where A; is the
set of actions of player i (for 0 < i < n).

— a set of utility functions, one for each player. The utility function u assigns
a numerical value to the elements of the action set A; for actions x,y € A if
u(x) > u(y) then x must be at least as preferred as y.

Game theory can be divided into noncooperative [2] and cooperative game the-
ory [8]. Noncooperative game theory studies the interaction between competing
players, where each player chooses its strategy independently and each player’s
goal is to improve its utility or reduce its cost [23]. In contrast, cooperative (or
coalitional) game theory considers the benefit of all the players. In coalitional
games, players choose the strategies to maximize the utility for all players. In
these games, cooperating groups of players are formed, called coalitions. Coali-
tional games are useful to design fair, robust, and efficient cooperation strategies
in communication networks [23].

In a coalitional game (N,v) with N players, the utility of a coalition is
determined by a characteristic function v : 2 — R which applies to coalitions
of players. For a coalition S C N, v(S) depends on the members of S, but not
on the structure of the players. Most coalitional games have transferable utility
(TU); i.e., the utility of a coalition can be distributed between the coalition
members according to some notion of fairness. However, for many scenarios a
coalition’s utility cannot be captured by a single real value, or rigid restrictions
are needed on the distribution of the utility. These games are known as coalitional
games with nontransferable utility (NTU). In an NTU game, the payoff for each
player in a coalition S depends on the actions selected by the players in .S. The
core of the coalitional game (N, v) is the set of payoff allocations that guarantees
that no player has an incentive to leave N to form another coalition [23].

4 A Protocol for Deciding Group Membership

Consider the grouping problem for wireless sensor networks as a coalitional game.
The sensor nodes are the players and the game is concerned with whether a node
should join a group or not. The goal is to reduce the total power consumption
in the network, so we need a utility function which reflects the power consumed
for data transmission and signal interference. The utility function proposed by
Goodman et al. [10] appears to be a suitable choice when power consumption is
an important factor of the model [15]:

u(P;,65) = (2)(1 e 0L, 1)



When applying u to a node j, P; is the power used for message transfer by j and
d; is the signal to interference and noise ratio (SINR) for j. In addition, R is the
rate of information transmission in L bit packets in the WSN. For simplicity, we
assume that the SINR is fixed and the same for all the nodes.

Wireless sensor nodes can transfer data with different amounts of power. Let
P denote the maximum transmission power and Pj"”” the minimum power
for each node j, such that 0 < ijm < P When a node j cooperates in a
group, it uses P™" for message transmission, and otherwise P, Consider a
network of nodes N = {1,...,n}. When there is no coalition between nodes in

N, we have
n

> u(Py,6) =Y u (P9,
j=1 j=1
In contrast, if all the nodes in IV cooperate, we have:

n

> u(Py,8) = u(Pn,6).

j=1 j=1

Observe that if this utility function were applied naively, it would always be
beneficial for nodes to form a coalition, as the result of decision making is the
same for every topology of the network and every group:

However, in reality all the cooperating nodes use power in order to transmit
data to the group leader, so it is not sufficient to only consider the power con-
sumption of the original sender of data in the utility function. Although each
node uses its minimum power to transmit data, the node’s total power usage
depends on the number of messages it needs to transmit. Each node on the
route between the original sender and the leader, needs to send its own data
as well as the data that it has received from the previous node. In general, the
power consumption for the intermediate nodes will increase. We modify the util-
ity function (Formula 1) to capture the overall power usage needed to transmit
the data from the node to the leader following a given path:

R

min
ETLERPj,Lcadcr P’I’L

where the set RPj rcader contains all nodes in the routing path between node
j and the leader. This utility function is similar to Formula 1 except that the
power that is applied is the sum of the powers consumed by all the nodes in the
routing path through which data is transmitted from the sender to the leader.
Using this utility function, the leader can decide about the membership of a
new node more precisely and with more realistic estimations. The result of this
utility function depends on the specific topology, so coalition is not always ben-
eficial. Depending on the value calculated using Formula 2, node j will become

)(1—e %)t (2)

u(Py,65) = (



a member of the group or not. According to the utility function it is more ben-
eficial for the node to follow a path through the group than to act individually,
if the following formula holds:

R min)(l _ 670.56]')11'

U(Pmax’é') < U(P,(S) = (
Y ZTLGRPj,Leader Pn

We adapt the AODV protocol to find the cheapest routing path between the
new node and the leader in terms of power usage. In AODV, each node uses its
maximum power to send all its messages, including hello, rreq, and rrep
messages. In order to faithfully capture the real environment, the leader and
the node should be in the signal range of each other. Consequently, the node
can communicate directly with the leader by using its maximum transmission
power. However, inside the group it is sufficient to use the minimum power for
data transmission. Consequently, we let nodes transmit messages with minimum
power when running the AODV routing protocol. In this situation, AODV can
only find the routing path between the new node and the group leader in the
case where coalition is possible. However, the shortest path in terms of hops
is not necessarily the cheapest path when the minimum transmission power of
nodes may vary. Therefore, we modify the AODV protocol to accumulate the
needed power consumption along the path instead of the number of hops. The
details are given in Section 6.

5 Rewriting Logic and Maude

The formal model of the protocol is defined in rewriting logic (RL) [16] and can
be analyzed using Maude [3|. A rewrite theory is a 4-tuple (X, E, L, R) where the
signature Y defines the function symbols, E defines equations between terms,
L is a set of labels, and R is a set of labeled rewrite rules. Rewrite rules apply
to terms of given sorts. Sorts are specified in (membership) equational logic
(X, E). When modeling computational systems, different system components
are typically modeled by terms of suitable sorts defined in the equational logic.
The global state configuration is defined as a multiset of these terms. RL extends
algebraic specification techniques with transition rules: The dynamic behavior of
a system is captured by rewrite rules supplementing the equations which define
the term language. From a computational viewpoint, a rewrite rule ¢ — '
may be interpreted as a local transition rule allowing an instance of the pattern
t to evolve into the corresponding instance of the pattern #. When auxiliary
functions are needed in the semantics, these are defined in equational logic, and
are evaluated in between the state transitions [16]. If rewrite rules apply to non-
overlapping sub-configurations, the transitions may be performed in parallel.
Consequently, concurrency is implicit in RL. Conditional rewrite rules ¢ —
t' if cond are allowed, where the condition cond is a conjunction of rewrites
and equations that must hold for the main rule to apply. In Maude, equations are
denoted by eq, labeled rules by r1 [name], conditional ones by ceq and crl,
respectively, and variable names are capitalized. Given an initial state of a model,



Maude supports simulation as well as breadth-first search through reachable
states and model checking of finite reachable states for desired properties.

6 Modeling and Validation

In this section, we define a formal model of the group membership protocol in
rewriting logic. In the model, we assume that there is no message loss in the
protocol and that the topology of the network consists of a fixed number of
nodes, but nodes can move and messages do not expire.

A system configuration is a multiset of objects and messages inside curly
brackets. Following RL conventions, whitespace denotes the associative and com-
mutative constructor for configurations. The term (O : Node | Attributes)
denotes a Node object, where O is the identifier and Attributes is a set of
attributes of the form Attr : X. Here, Attr is an attribute name and X the asso-
ciated value. Node objects have the following attributes: the Boolean leader?
indicates if the node is a leader, 1eader is a list that stores the information of
the node’s leader, the set neighbors contains the neighbor nodes, and the set
members contains the group members of a leader node. The natural numbers
xLoc and yLoc contain the horizontal and vertical position of the node, respec-
tively. The natural number power stores the current sending power level of the
node. The routes is a list of routes; i.e., of lists consisting of a destination ID,
the next node in the path to the destination and the accumulated power that is
required to send data to the destination. The natural number reqid stores the
identifier of the last received message and pred the identity of the last neighbor
that communicated with the node (the predecessor in the protocol).

We now explain the rules and equations modeling wireless message passing,
node movement, the routing protocol, and the evaluation of the utility function.

6.1 TUnicast and Broadcast

Unicast messages have the form (M from O X Y P to 0’) where M is the
messages body (possibly with parameters), O the source with current location
(X,Y), O’ the destination, and P the sending power used. A message will not
reach its destination unless it is within the range. This is modeled by the equation
ceq (M from O X Y P to 0") (O’": Node|xLoc: X, xLoc: Y', A)
=(0": Node | xLoc: X°, xLoc: Y, A)if not inrange(X,Y,X ,Y’,P).

where inrange is a Boolean function checking that the two locations (X, Y)
and (X’,Y’) are in range of each other with power P (using the calculated
distance and the network parameters including the interference level). Note that
this equation removes a message which cannot reach its destination, depending
on the location values at sending time.

Transmission is modeled by a rule which creates a message, the equation
above (if enabled) and a rule consuming the message if it is in range. This
reflects the time when a message is queued for sending, the transmission time
(immediate for wireless communication) and the queued at the destination, and



the time the message is taken out of the destination queue. Thus it models the
immediate transmission mode of wireless communication, and it allows several
nodes to move around at the same time.

Multicasting is modeled by allowing a multiset of destinations and the fol-
lowing equations which expand the destination list:
eq (M from O X Y P to noneOids) = none .

eq (M from O X Y P to O’; Os) =
(M from O X Y P to O’) (M from O X Y P to Os).

Here, Os denotes a multiset of object identities (with “;” as multiset constructor).

Wireless broadcasting uses messages (M from O X Y P to all) where
all is a constructor indicating that it is sent to all nodes within range. The use
of all is defined by the equation

eq {C (M from O X Y P to all)} ={C (M from O X Y P to nodes (C)-0)}

Here, nodes (C) gives the multiset of all node identities in the configuration C.
Thus broadcasting is reduced to multicasting. Due to the first equation above
only nodes in the range can receive the message. This equation models the un-
derlying network and therefore applies to the whole system.

6.2 Node Movements

In most WSNs, nodes can move and change their location. Therefore, a WSN
model should provide suitable rules for changing the position of nodes. We have
modeled three different methods for node movement. In the first method, the
node can move freely everywhere, captured by rules that non-deterministically
change the location of the node. In the second one, a node can move directly to a
desired location. A rule will change the location of the node in one step. In the last
method, a node can move to a desired location through a non-deterministic path,
there are rules that determine the final destination and do non-deterministic but
finite steps toward it. In each step, the vertical or horizontal location of the node
is decreased or increased by one unit, but rules always check that the new location
is closer to the desired location before the node moves.

6.3 The Regrouping

Each node should inform neighboring leader nodes about its movements. This
is done by broadcasting a hello message with maximum power when it has
changed position. The following rule represents the hello broadcasting:

rl [moving-done] :(movemsg Xn Yn from O X Y P to O)

(O :Node | xLoc: Xn, yLoc: Yn, neighbors: N, power: P, A)

— (0 :Node | xLoc: Xn, yLoc: Yn, neighbors: N, power: P, A)
(hello from O X Y Pmax to all)

When a neighboring group leader receives this hello message, a new node
has entered the group’s signal range. The leader will then start the process to
decide whether the new node should be accepted as a group member based on
the power information in the result path. The leader first runs the modified



AODV protocol (presented below in Section 6.4) with minimum power to find
the cheapest path to the new node. If a path is found, the modified AODV
protocol ends by letting the leader send a message membershipMsg to itself.
This message starts the decision making process about the node’s membership,
which is captured by the following rules:
crl [Membershipdecision] :(membershipMsg Oc from O’ X’ Y’ P’ to O)
<O :Node\leader?: true, members: Os, xLoc: X, yLoc: Y, routes: RT,

power: P, A) —
(O :Node | leader?: true, members: (Oc ; Os), xLoc: X, yLoc: Y,

routes: RT, power: P, A) (join from O X Y P to Oc)
if joinGroup (findPower (RT)) .

rl [Join] :(join from O X Y P to Oc) (Oc: Node|leader: [ O’ X’ Y’ ], A)
— (Oc: Node|leader: [ O X Y 1, A).

where the function findPower extracts the value of required power for data
transmission from the routing table, and the function joinGroup represents
the computation of the utility function (Formula 2), formalized as follows:

op joinGroup : Nat — Bool .

eq joinGroup (P) = (RATE quo P * ((1 - 2.71 ~ (0.5 % I)) ~ PACK)
> (RATE quo Pmax) * ((1 - 2.71 ~ (0.5 * I)) ~ PACK).

Here, P is the total power consumed in the routing path, and Pmax, I, RATE,
and PACK, are constants reflecting the maximum sending power, the signal in-
terference level, the transmission rate, and the packet size, respectively. These
constants can be seen as network parameters, and suitable values given as pa-
rameters to the initial configuration. The output of joinGroup is a Boolean
value. The leader uses this function to decide if a new node should be added as
a member. The Join rule may be adjusted to enable optimal selection in case
of multiple group membership offers.

6.4 The Routing Protocol

The routing protocol discussed in Section 4 is now formalized. The main differ-
ence between our protocol and AODV is that we find the cheapest path instead
of the shortest one. In the model, each node has its own routing table that stores
the path to each destination. For each destination, the routing table stores the
following information: the next node on the path to the destination and the re-
quired power to send data to the destination. When the node finds a cheaper
path to a destination (a path which requires less power), it updates its routing
table and replaces the old path with the cheaper one. The neighbors of a node
are stored in a list neighbors. Fig. 2 shows a simplified graph of our model.
All the messages in the routing protocol are modeled as messages in Maude
and behave as explained in Section 6.1. The rules in Fig. 1 control the mes-
sage propagation in the model by receiving a route request or a route reply
message and sending a new message which is either a reply or a request. The
rule dest-rec-rreq is enabled when the node that has received the request
is the final destination. The next two rules, both named rec—rreq, are related
and require that the receiver of the request message is not the destination. In



crl [dest-rec-rreq] :(singlerreq SID DID ID P from O X Y PJ to O')
<O’ :Node\reqid: I, power: POW, xLoc: X’, yLoc: Y, A)

— (0’ :Node|regid: ID, power: POW, xLoc: X', yLoc: Y', A)

(rrep SID DID ID POW from O’ X’ Y’ POW to O) if O’ =DID

crl [rec-rreql] :(singlerreq SID DID ID P from O X Y Pj to 0O')
<O’ :Node\pred: 01, neighbors: N, reqgid: I, power: POW, xLoc: X',
yLoc: Y', A)
—>(O’ :Node|pred: O, neighbors: N, reqgid: ID, power: POW, xLoc: X',
yLoc: Y', A> (rreq SID DID ID (P +POW) from O’ X’ Y’ POW to N)
if (0’ #DID) A (I < ID)

crl [rec-rreqg2] :(singlerreq SID DID ID P from O X Y Pj to 0O)
(0’ :Node|pred: 01, neighbors: N, reqgid: I, A)

— (0’ :Node |pred: O, neighbors: N, regid: ID, A)

if (0’ #DID) A (I >ID)

crl [rec-rrepl] :(rrep SID DID ID P from O X Y Pj to 0O')
(0’ :Node | routes: RT, pred: Ol, neighbors: N, power: POW,
xLoc: X', ylLoc: Y', A)
— (O’ :Node|routes: RT, pred: 01, neighbors: N, power: POW, xLoc: X',
yLoc: Y’, A) (rrep SID DID ID (P +POW) from O’ X’ Y’ POW to O1l1)
if (0’ #SID) A (findPower (RT, DID) > P)

crl [rec-rrep2] :(rrep SID DID ID P from O X Y Pj to 0O')
(0" :Node|routes: (RT [ DID X Y ] RT’), pred: Ol, neighbors: N,
power: POW, xLoc: X', yLoc: Y’, A)
— (0’ :Node|routes: (RT [ DID O P ] RT’), pred: Ol,
neighbors: N, power: POW, xLoc: X', yLoc: Y', A)
(rrep SID DID ID (P +POW) from O’ X’ Y’ POW to 01l) if (O’ #SID)
A (findPower ((RT [ DID X Y ] RT’), DID) < P)A(findPower (RT, DID) # 0).

crl [rec-rrep3] :(rrep SID DID ID P from O X Y Pj to 0O’)

(0" :Node|routes: RT, pred: Ol, neighbors: N, power: POW,
xLoc: X', ylLoc: Y', A)

— (rrep SID DID ID (P +POW) from O’ X’ Y’ POW to O1l1)

(0" :Node|routes: (RT [ DID O P ]), pred: O1,
neighbors: N, power: POW, xLoc: X', yLoc: Y', A)
if (0’ #SID) A (findPower (RT, DID) < P) A (findPower (RT, DID) =0)

crl [src-rec-rrep] :(rrep SID DID ID P from O X Y Pj to 0O)

(0" :Node | routes: RT, pred: Ol, neighbors: N, power: POW,
xLoc: X', ylLoc: Y', A)

— (membershipMsg DID from O’ X’ Y’ POW to O’)

(0" :Node|routes: (RT [ DID O P ]), pred: Ol, neighbors: N,
power: POW, xLoc: X’, yLoc: Y’, A)if (0’ = SID)

Fig. 1. Rules for message propagation.

the first rule, the request message’s ID is greater than previously seen by the
receiver so the message is fresh. In the second rule the message has been seen
before because the ID of the request message is less than the current message ID,
so the message will be ignored. The three following rules represent the situation
that the receiver of the reply message is not the original sender of the request.
Note that in these rules the estimated power consumption is accumulated in
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Fig. 2. The graph of the model. Fig. 3. The topology of the case study.

the request messages by P + POW. In rule rec-rrepl, the routing table re-
mains unchanged because the current route to the destination is cheaper (the
smaller power value in the table). Rule rec—rrep2 changes the existing row in
the routing table because the new path to the destination is cheaper than the
the current one. In rule rec—rrep3, no previous path to the destination exists.
Therefore, a new row is added to the routing table. The rule src-rec-rrep is
enabled when the original sender of the request message has received the reply
message. This rule sends a message membershipMsg that enables a rule that
make decisions about node’s membership in the group (see Section 6.3).

7 Analysis of the Case Study

Maude provides different tools for testing and validation of the model. It can run
the model through just one path of the state space like a simulator (using the
rewrite command rew), which gives us the result of a single run of the model. As
a case study, we consider a topology with six nodes such that one of the nodes
moves to the range of a group. The topology is shown in Fig. 3. In this topology,
the nodes b and f are leaders of different groups. Nodes a, d, and e are the
members of the group with leader a, and node c is the member of the group
with leader £. We consider the scenario in which node ¢ changes its location such
that it comes within the range of the leader b. As group leader, node b decides
about the membership of ¢ in the group. The property that we expect from the
system is beneficial membership; i.e., the membership of the node in the group is
accepted by the leader b only when this membership is beneficial for the group.
We first use Maude to check this property by simulating the model. The result
of the simulation is given in Fig. 4. By inspecting the members attributes of
leaders b and f, we see that node c now is a member of b’s group, while that
of f is empty.

Simulation can not prove the correctness of the model because it just checks
one path in the system’s state space, to prove the validity of the model all the
possible paths of the state space should be checked for failure. To prove the valid-
ity of the model, we search for all possible final states of our model using Maude’s



{( "a" :Node|leader?: false, leader: [2 1 1], neighbors:

("b"™ ; "c" ; "d"), members: noneOids, xLoc: 1, yLoc: 1,
routes: ([0 O 0] [3 3 1]), regid: 1, pred: "d", power: 2)
("b" :Node | leader?: true, leader: [2 1 1], neighbors:
("an ; "en ; "d"), members: (navv ; nen H ngn ; ue"), xLoc: 2[
yLoc: 2, routes: ([0 O 0] [3 1 2]), regid: 1, pred: "d", power: 2)
("c" :Node|leader?: false, leader: [2 2 2], neighbors:
("a" ; "e"), members: noneOids, xLoc: 6, yLoc: 8, routes:

[0 0 0], regid: 1, pred: "a", power: 2)

("d" :Node |leader?: false, leader: [2 1 1], neighbors:
("a" ; "b"), members: noneOids, xLoc: 4, yLoc: 3, routes:
[0 0 0], regid: 1, pred: "b", power: 1)

("e" :Node|leader?: false, leader: [2 1 1], neighbors:
"c", members: noneOids, xLoc: 9, yLoc: 11, routes: [0 0 0],
regid: 0, pred: "a", power: 2)

("f" :Node | leader?: true, leader: [6 20 20], neighbors:
"c", members: noneOids, xLoc: 9, yLoc: 11, routes: [0 0 0],
reqgid: 0, pred: "a", power: 2) }

Fig. 4. Final state of the protocol for the case study.

search command. The syntax search initState =>! C:Configuration
indicates that we search through all final states C reachable from the initial con-
figuration initState. The result of this search is the same as for the simulation
(cf. Fig. 4). Furthermore, the search shows that there is no other solution.

In order to validate the model, we use a correctness function. This is the
function joinGroup that we used in the model to decide about membership
of a node. We now search for a final state of the model such that node c is a
member of the group of leader b, but such that the membership of this node
is not beneficial for the group. In this case the function joinGroup should
decide not to add the node to the group. We define a function findCheapest
which statically finds the cheapest path from a node j to the leader in a given
configuration C. Thus we compare the statically identified cheapest route with
the result of running the protocol. If this search finds a state, it means that the
model is not correct because a violation of the desired property has occurred.
We do this analysis by a search command using a such that clause to specify the
desired property.

search initState —» ! {C:Configuration ("b" :Node|routes: RT:ListListNat,
members: ("c" ; ML:0idSet), ATTS:AttributeSet)} such that
joinGroup (findCheapest (c,b, C:Configuration ("b" :Node|routes:
RT:ListListNat, members: ("c" ; ML:0idSet), ATTS:AttributeSet)))
= false

Maude checks all final states, but finds no solution to this search. This analysis
demonstrates how Maude can be used to check the correctness of the protocol,
limited to one initial state at the time. For a more in-depth analysis of the
correctness of the protocol, we need to generate a set of initial states reflecting
representative scenarios. However, how to generate such a set is beyond the scope
of this paper and isleft for future work.



8 Conclusion

In this paper, we propose a protocol to decide on group membership for WSNs
with mobile nodes. This work is done in the context of a cooperation project
with the national hospital of Norway, where wireless technology is developed
for medical applications. This paper addresses a subproblem which is common
to several grouping protocols. Group members cooperate with each other to
transmit data, in order to decrease the total power consumption of the group.
When a node moves, it may need to join a new group and coalitional game theory
is applied to find the best groups with respect to the total power consumption.
The protocol we propose combines a modified version of the AODV protocol
with coalitional game theory in order to find the cheapest route in a group with
respect to power consumption. We have formalized the protocol in rewriting
logic and used Maude to analyze its behavior for an example scenario.

In future work, we intend to refine the utility function used in this paper, in
particular to capture the interference of the transmission signals. Other interest-
ing extensions of our current work are criteria for the dynamic merging of groups
and topologies in which the leader may change. For these problems, we intend to
build on our current Maude model and to extend the model to capture real-time
aspects of WSNs. Orthogonally to these extensions, we plan to strengthen our
analysis by developing a broader base of representative WSN scenarios.
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