
Secure multi-execution
through static program transformation

Gilles Barthe1, Juan Manuel Crespo1, Dominique Devriese2, Frank Piessens2, and
Exequiel Rivas1

1 IMDEA Software Institute, Madrid, Spain
2 IBBT-DistriNet Research Group, KU Leuven, Belgium

Abstract. Secure multi-execution (SME) is a dynamic technique to ensure se-
cure information flow. In a nutshell, SME enforces security by running one ex-
ecution of the program per security level, and by reinterpreting input/output op-
erations w.r.t. their associated security level. SME is sound, in the sense that the
execution of a program under SME is non-interfering, and precise, in the sense
that for programs that are non-interfering in the usual sense, the semantics of a
program under SME coincides with its standard semantics. A further virtue of
SME is that its core idea is language-independent; it can be applied to a broad
range of languages. A downside of SME is the fact that existing implementation
techniques require modifications to the runtime environment, e.g. the browser for
Web applications. In this article, we develop an alternative approach where the ef-
fect of SME is achieved through program transformation, without modifications
to the runtime, thus supporting server-side deployment on the web. We show on
an exemplary language with input/output and dynamic code evaluation (modeled
after JavaScript’s eval) that our transformation is sound and precise. The crux of
the proof is a simulation between the execution of the transformed program and
the SME execution of the original program. This proof has been machine-checked
using the Agda proof assistant. We also report on prototype implementations for
a small fragment of Python and a substantial subset of JavaScript.

1 Introduction

Information flow policies are confidentiality and integrity policies that constrain the
propagation of data in programs. For instance, such policies can limit how public out-
puts can depend on confidential inputs, or how high integrity outputs can be influenced
by low integrity inputs. A baseline confidentiality policy for information flow security
is non-interference: given a labeling of input and output channels as either confidential
(high, or H) or public (low, or L), a (deterministic) program is non-interferent if there
are no two executions with the same public inputs (but possibly different confidential
inputs) that lead to different public outputs. This definition of non-interference gener-
alizes from two security levels H and L to an arbitrary partially ordered set of security
levels.

Enforcing non-interference and other information flow policies is a challenging
problem. Ideally, enforcement mechanisms should achieve potentially conflicting goals,
including: i. soundness: no illicit flows should arise during execution; ii. precision: the

execution of secure programs should not be prevented or altered; iii. practicality: the
cost of the mechanism should be acceptable. Costs can be incurred at development
time (for instance additional code annotations), at deployment time (for instance mod-
ifications to standard runtime environments) or at run time (for instance performance
cost). Despite substantial attention from the research community for several decades,
enforcement mechanisms achieving these goals simultaneously have remained elusive.

There are two main classes of enforcement mechanisms for information flow poli-
cies. Static mechanisms include security type systems [31,17,24], and verification-
based approaches [5]. These techniques are sound, and do not incur run time or deploy-
ment time costs. However, type-based approaches are not precise, and reject many se-
cure programs. In contrast, verification-based approaches may offer perfect precision
(modulo completeness of the underlying program logic). However, both type-based and
verification-based approaches have a substantial development time cost as they require
annotations in the code. Moreover some language idioms, such as dynamic code evalu-
ation, are not readily amenable to static information flow analysis.

Dynamic techniques, which have received renewed interest in recent years, include
run-time monitors [16,29,3,10], and more recently secure multi-execution (SME) [14,8].
The cited techniques are sound, and can be more precise than some static techniques.
For instance, run-time monitors reject fewer programs than type-based methods[29];
they also require less annotation effort. However, run-time monitors still may reject or
alter the behavior of some secure programs. In contrast, SME offers perfect precision
(at the cost of potentially modifying the behaviour of insecure programs); it is also
practical for developers, since there is no need for security annotations of the code.
However, SME is not easy to deploy, as all existing implementations of SME require
modifications to the underlying computing infrastructure (OS [8], browser [6,2], vir-
tual machine [14], trusted libraries [18]). Specifically, it is hard to deploy SME for
distributed and heterogeneous infrastructures, such as the web.

The key contribution of this paper is a new implementation technique for SME
based on static program transformation that eliminates the need to modify the comput-
ing infrastructure, while retaining its appealing theoretical properties.

A motivating example: JavaScript advertising

JavaScript code is used in web applications to perform client-side computations. In
many scenarios, the fact that scripts run with the same privileges as the website loading
the script leads to security problems. One important example are advertisements; these
are commonly implemented as scripts and in the absence of security countermeasures,
such scripts can leak any information present in the web page that they are part of.

JavaScript advertisements are a challenging application area for information flow
security, as they may need some access to the surrounding web page (to be able to
provide context-sensitive advertising), and as they can use all of JavaScript’s features,
including dynamic code evaluation, e.g. in the form of JavaScript’s eval function,
which Richards et al.[25] have shown to be widely used on the web. The following
code snippet shows a very simple context-sensitive advertisement in JavaScript:

1 var keywords = document.getElementById("keywords").textContent;
2 var img = document.getElementById("adimage");
3 img.src = ’http://ads.com/SelectAd.php?keywords=’+keywords

Line 1 looks up some keywords in the surrounding web page; these keywords will
be used by the ad provider to provide a personalized, context-sensitive advertisement.
Line 2 locates the element in the document in which the advertisement should be loaded,
and finally line 3 generates a request to the advertisement provider site to generate an
advertisement (in the form of an image) related to the keywords sent in the request.

Obviously, a malicious advertisement can easily leak any information in the sur-
rounding page to the ad provider or to any third party. Here is a simple malicious ad
that leaks the contents of a password field to the ad provider:

1 // Malicious: steal a password instead of keywords
2 var password = document.getElementById("password").textContent;
3 var img = document.getElementById("adimage");
4 img.src = ’http://ads.com/SelectAd.php?keywords=’+password

Information flow security enforcement can mitigate this threat: if one labels the
keywords as public information and the password as confidential information, then
(treating the network as a public output) enforcing non-interference will permit the
non-malicious ad, but block the malicious one.

The example ad script above loads an image from a third-party server. Instead
of loading an image, it could also load a script from the server that can then render
the ad and further interact with the user (e.g. make the advertisement react to mouse
events). In the example below, we illustrate the essence of this technique using the
XMLHttpRequest API and JavaScript eval.

1 var keywords = document.getElementById("keywords").textContent;
2 var xmlhttp = new XMLHttpRequest();
3 xmlhttp.open(’GET’, ’http://ads.com/getAd.php?keywords=’+keywords, false);
4 xmlhttp.send(null);
5 eval(xmlhttp.responseText)

Lines 2-4 send the keywords to the ad provider, and expect a (personalized) script
in response. Line 5 then evaluates the script that was received – and this script could of
course be malicious too and try to leak information. Dealing with dynamic generation
or loading of new code and its on the fly evaluation further complicates the enforcement
of information flow security policies. In particular, since the code to be executed is not
available offline, static techniques do not apply.

The enforcement mechanism we develop in this paper will provide effective pro-
tection against these security problems of malicious scripts. We propose a program

transformation that transforms any script into a script that (1) is guaranteed to be non-
interferent, and (2) behaves identically to the original script if that script was non-
interferent to begin with.

Summary of contributions

In summary, the main contributions of this paper are:

– We show that standard SME [14] is sound and precise for a language including
dynamic code evaluation.

– We propose a program transformation for sequential programs that simulates the
effect of SME, and provide a machine-checked correctness proof.

– We report on two prototype implementations of this program transformation.
– We define a variant of the transformation that targets a concurrent programming

language, and prove it correct.

The paper is organized as follows: Section 2 introduces our programming language
and defines non-interference. Section 3, 4, 5 and 6 each cover one of the contributions
above. Related work is discussed in Section 7.

2 Setting

Syntax. Following [14], a program P is simply a command to be executed by the sys-
tem. The syntax of commands is defined as follows:

c ::= x := e | input x from ic | output e to oc | c; c
| if b then c else c | while b do c | skip | eval(e)

Most commands are standard, with the exception of input x from ic, that assigns
the next input from the input channel ic to x, and output e to oc, that outputs the
value of the expression e to the output channel oc—we assume that input and output
channels are disjoint. The main extension w.r.t. [14] is the instruction eval(e), which
takes an integer encoding e of a program (in a real language this would be the usual
string encoding), decodes it and evaluates it.

Example 1. The command below models a program that exhibits both of the attacks
presented in the introduction: the script sends private information (the password) across
a public channel (the network) to the ad provider and then receives a (possibly mali-
cious) script which is executed with the same privilege.

input keys from LKeys;
input pass from HPass;
output keys+ pass to LReq;
input res from LReq′;
eval(res)

Semantics For simplicity, we assume that expressions are side-effect free, and that they
are used with their correct types—e.g. guards of branching statements and loops are
boolean expressions. The semantics of expressions is defined as a mapping from mem-
ories to values or bottom, where a memory is a (well-typed) mapping from variables to
values. Formally, we let JeK m be the evaluation of e in memory m.

The operational behavior of programs is modelled as a transition relation be-
tween configurations. Formally, a configuration is a 5-tuple 〈c,m, p, I, O〉, where c is
a command, m is a memory, I and O are program inputs and outputs, i.e. mappings
from input and output channels respectively to lists of values, and p is an input pointer,
i.e. a mapping from input channels to natural numbers, that points to the next input to
be consumed. A configuration is initial if it is of the form 〈c,m0, p0, I, O0〉, where m0

maps every variable to a default value, e.g. 0 for integer variables, p0 maps every input
channel to 0, and O0 maps every output channel to the empty list.

Fig. 1 provides an excerpt of the transition rules that define the operational seman-
tics.The rules make use of an operation decode that turns an integer into a command,
and of primitive operations for reading and writing from a channel (we use the notation
l1 ++l2 for appending two lists):

read(I, ic, p) = I(ic)(p(ic)) write(O, oc, v) = O[oc 7→ O(oc) ++[v]]

We say that an execution of the program P with input I terminates with input
pointer p and program output O, and write 〈P, I〉 ∗ 〈p,O〉, iff 〈P,m0, p0, I, O0〉 ∗
〈skip,m, p, I, O〉 for some memory m.

〈input x from ic,m, p, I, O〉 〈skip,m[x 7→ read(I, ic, p)], p[ic 7→ p(ic) + 1], I, O〉

〈output e to oc,m, p, I, O〉 〈skip,m, p, I,write(O, oc, JeKm)〉

〈c1,m, p, I, O〉 〈c′1,m
′
, p
′
, I, O

′〉
〈c1; c2,m, p, I, O〉 〈c′1; c2,m

′
, p
′
, I, O

′〉

〈skip; c2,m, p, I, O〉 〈c2,m, p, I, O〉

〈while b do c,m, p, I, O〉 〈c;while b do c,m, p, I, O〉
JbKm

〈while b do c,m, p, I, O〉 〈skip,m, p, I, O〉
¬JbKm

〈eval(e),m, p, I, O〉 〈decode(JeKm),m, p, I, O〉

Fig. 1: Operational semantics (excerpt).

Security The notion of program security is defined relative to a partially ordered set
(L,≤) of security levels, and mappings σin and σout from input and output channels to
security levels. The mappings induce equivalence relations on inputs, outputs, and input
pointers; informally, two inputs, outputs, and input pointers are equal w.r.t. a security
level l if they cannot be distinguished by an adversary that has access to channels of
level l and lower. Formally, two program inputs I and I ′ are equal up to l (written

I =l I
′) iff I(i) = I ′(i) for all input channels i such that σin(i) ≤ l. Likewise, two

program outputs O and O′ are equal up to l (written O =l O
′) iff O(o) = O′(o) for all

output channels o such that σout(o) ≤ l. Finally, two input pointers p and p′ are equal
up to l (written p =l p′) iff p(i) = p′(i) for all input channels i such that σin(i) ≤ l.

Definition 1 (Non-interference). A program P is non-interferent with respect to an
execution relation⇒∗ (mapping programs and inputs to input pointers and outputs) if
for all security levels l ∈ L, for all l-equal inputs I and I ′, i.e. I =l I

′, we have that
(P, I)⇒∗ (pf , Of) if and only if (P, I ′)⇒∗ (p′f , O′f) and pf =l p

′
f and Of =l O

′
f .

Note that this definition is termination-sensitive: it does not allow termination to de-
pend on information at non-minimal levels. The definition of non-interferent program
is obtained by instantiating⇒∗ to ∗. Example 1 is clearly not non-interferent.

3 Secure Multi-Execution: the operational approach

We extend the theoretical results of [14] and show that SME remains sound and precise
in the presence of dynamic code evaluation.

SME by Example The central insight of SME is that non-interference can be enforced
by executing programs once per security level. In order to guarantee non-interference,
the execution at security level l only performs inputs and outputs to channels at level l;
moreover, inputs from channels with security levels l′ such that l′ 6≤ l are replaced by
default values and inputs from channels of security levels l′ such that l′ < l are delayed
until the execution corresponding to security level l′ reads from them—the result is then
available to be reused at security level l.

The precision of SME intuitively follows from the fact that for non-interferent pro-
grams, the behavior of the program visible at a level l is by definition not influenced by
changes to information at levels not lower than l. Therefore, the execution at any level l
will still produce the same behavior at level l as the standard execution of the program,
since it receives the same input on all levels lower than l.

Figure 2 illustrates the effect of SME on the malicious script from Section 1 and the
two-points lattice of security levels {L,H}, with L ≤ H . We treat reading the content
of the password textbox as input at security levelH and setting the URL of the image
as output at level L. Hence, the SME execution of the program at level L will receive a
default value rather than the real content of the password textbox. Subsequently, the
execution at level Lwill compute as URL of the image a value that does not contain any
information about the real user password. On the contrary, the execution of the script
at security level H does receive the real input, and further computations at level H will
be performed based on the password; however, the execution does not output to low
channels.

Operational semantics of SME. Secure multi-execution is described formally through
an operational semantics, and is parametrized by a lattice of security levels L, and map-
pings σin and σout associating input and output channels to security levels respectively.

Execution at L security level.

1 // Malicious: steal a password instead of keywords
2 var password = document.getElementById("password").textContent undefined;
3 var img = document.getElementById("adimage");
4 img.src = ’http://ads.com/SelectAd.php?keywords=’+password

Execution at H security level.

1 // Malicious: steal a password instead of keywords
2 var password = document.getElementById("password").textContent
3 var img = document.getElementById("adimage");
4 img.src = ’http://ads.com/SelectAd.php?keywords=’+password

Fig. 2: Secure Multi-Execution of malicious JavaScript program from Section 1.

The operational semantics combines a local semantics, and a global semantics. The
initial configuration includes a local configuration per security level; each local con-
figuration runs independently of the other, except for input/output operations, where
synchronization is needed. The global semantics capture the synchronization enforced
by SME, and are defined relative to a scheduler select that, given a set of local config-
urations, picks the next one to execute. In their work, Devriese and Piessens [14] focus
on a scheduler selectlowprio which picks the local configuration corresponding to the
lowest security level; other schedulers are considered in [19].

The local semantics are defined as a relation between pairs of local configurations
and global states. Local configurations are of the form 〈c,m, p〉l, where c is a command,
m is a memory and p is a local input pointer and l is the security level associated to the
local configuration. Global states consist of a global input pointer r, a program input I
and a program output O. The global input pointer r tracks actual input consumption.
I.e. for an input channel ic, r(ic) equals p(ic) where p is the local input pointer of the
execution at level σin(ic). For details about the semantics, we refer the reader to the
original SME paper [14]. The only novelty is the rule in the local semantics for eval:

JeKm = v decode(v) = c

〈eval(e),m, p〉l, r, I, O=. 〈c,m, p〉l, r, I, O

The global semantics are defined as a relation between configurations. The latter
are of the form 〈L,wq, r, I, O〉, where r, I, O form the global state, L is a set of local
configurations, and wq is a queue that maps input channels and message numbers to
local configurations waiting for that message to be input. Again, the details are in [14].

We say that a set of local configurations C with input I terminates with final input
pointer rf and program output Of , and write 〈C, I〉=.∗〈rf , Of 〉, if

〈C,wq0, r0, I, O0〉=.∗〈[], wqf , rf , I, Of 〉

for some final waiting queue wqf and where r0 is the global input pointer mapping all
input channels to position 0.

The secure multi-execution of a program P is defined using the global semantics;
specifically, we introduce for every program P and security level l the local configura-
tion Pl = 〈P,m0, p0〉l, wherem0 is the default memory—as defined in Section 2—and
p0 maps all input channels to 0. Then, we introduce the set of local configurations
Plcinit = [Pl1 , . . . , Plk] where l1 . . . lk is an enumeration of the security levels. Then,
we say that the secure multi-execution of the program P with input I terminates with
final input pointer rf and final program output Of , and write 〈P, I〉=.∗〈rf , Of 〉 iff
〈Plcinit, I〉=.∗〈rf , Of 〉.

Soundness and precision SME provides strong security and operational guarantees.

Theorem 1 (Soundness of SME). For a totally ordered L, any program P is non-
interferent under SME, using the selectlowprio scheduler.

The selectlowprio scheduler requires a total ordering on security levels. If L is not to-
tally ordered, then it can be extended to a total order in order to apply SME with
the selectlowprio scheduler. In that case execution of P under SME is termination-
insensitively non-interferent, but termination information may leak between non-com-
parable levels of L [19].

Theorem 2 (Precision of SME). Let P be a non-interferent program. Then, for all
program input I , input pointer pf and program output,Of , 〈P, I〉 ∗ 〈pf , Of 〉 implies
〈P, I〉=.∗〈pf , Of 〉.

The proofs follow along the lines of [14]; additional cases for eval follow by a direct
argument.

4 Secure Multi-Execution by program transformation

The instrumented semantics of Section 3 provides a direct, operational interpretation
of the effect of secure multi-execution on programs. In this section, we explore an al-
ternative approach in which a program P of the source language is transformed into a
program P ′ whose behavior matches the behavior of P under SME execution. Our re-
sults show that one can achieve soundness and precision without modifying the runtime
environment.

Informally, one defines for each program P and security level l a transformed
program Tr(P, l) and defines Tr(P) as the sequential composition of the commands
Tr(P, l), where l ranges over security levels from low to high. This mimicks execution
under the SME semantics with the selectlowprio scheduler. We assume that this sequen-
tial composition is done in the same order as the order in which the selectlowprio sched-
uler selects executions. For a totally ordered L, this order is fixed, but non-comparable
levels can be scheduled in different ways.

SME requires the buffering of inputs so that these inputs can be reused by executions
running at higher security levels. We implement these buffers as global lists (listic) and

the global input pointer as well as local input pointers are represented as global integer
variables (countic and countic,l respectively).

For commands that do not perform input/output operations, the command Tr(P, l)
executes P “locally”. Specifically, for each variable x of the source program, we intro-
duce variables xl, where l ranges over security levels; informally, xl is the local copy
of x for the execution corresponding to security level l. Then, we ensure that Tr(P, l)
reads and writes only from/to variables indexed by l. For instance, the transformation
of an assignment is defined by the clause:

Tr(x := e, l) = xl := [e]l

where [e]l is obtained by replacing occurrences of each variable (say x) by its l-indexed
variant (say xl). The definition of the transformation extends recursively to sequences,
branching statements, and loops. In the case of dynamic code evaluation, Tr(eval(e), l)
should informally compute the value of e locally at level l, decode the resulting value
into a command c, compute c′ = Tr(c, l), encode c′ into an integer n′, and return
eval(n′). Hence, Tr(eval(e), l) should intuitively be of the form:

n := [e]l; c := decode(n); c′ := Tr(c, l);n′ := encode(c′); eval(n′)

The code snippet is ill-typed and ill-defined in our exemplary language. In a full-fledged
language such as JavaScript, one can make the above snippet meaningful, by imple-
menting encoding and decoding functions from strings and abstract syntax trees, and
the transformation given by the rules of Fig. 3. For the purpose of this section, we gloss
over the details of such implementations and assume the existence for each security
level l of a unary operator transl from integers to integers, and define

Tr(eval(e), l) = eval(transl([e]l))

Moreover, we assume that transl is correct, i.e. for every integer value k,

decode(transl(k)) = Tr(decode(k), l)

The most interesting cases of the transformation are for input and output commands.
For the latter, Tr(P, l) is defined by case analysis on the security level of the output
channel: a command output e to oc is transformed into output [e]l to oc if oc has
security level l, and into a skip statement otherwise. Similarly, for input statements, we
define the transformation by case analysis on the security level l′ of the input channel—
as in the definition of SME. If l′ 6≤ l, then the input statement is transformed into an
assignment of a default value. If l = l′, then the transformed command performs the
input statement and updates the list of available inputs and the counter representing the
number of messages already read from this channel. Finally, if l′ < l, the transformed
command reuses a buffered input value and updates the corresponding counter. Exe-
cuting the programs Tr(P, l) sequentially in the order from low to high in an initial
memory in which every count variable has value 0 and every list variable is associated
with the empty list, will simulate SME execution under the selectlowprio scheduler.

Tr(P) = # {Tr(P, l) | l ∈ L}

Example 2. We apply the transformation to Example 1. The sequential program ob-
tained is shown in Fig. 4.

Formally, we can prove the following theorems.

Theorem 3. For every program P and program input I:

1. if 〈Tr(P), I〉 ∗ 〈p,O〉 then 〈P, I〉=.∗〈p,O〉;
2. if P is non-interferent and 〈P, I〉=.∗〈p,O〉 then 〈Tr(P)〉 ∗ 〈p,O〉.

We have developed a mechanized proof using Agda, a proof assistant based on the
Curry-Howard isomorphism. We refer the reader to the extended version of this pa-
per [4].

The following is an easy corollary of Theorem 3.

Corollary 1. Statically enforced sequential SME is sound and precise.

Proof. Soundness follows from Theorem 3, first part and Theorem 1. Precision follows
from Theorem 3, second part and Theorem 2. ut

5 Implementation

In order to validate our approach, we have developed two prototype implementations.
Our first implementation considers a restricted fragment of Python; the fragment essen-
tially corresponds to our exemplary language, with I/O functions input and print
added as built-in functions. It does not support any of Python’s more advanced features,
but was useful to provide a baseline implementation.

Our second implementation supports a fragment of JavaScript including eval().
Both implementations were tested for security and for precision by means of small test
scenarios.

We briefly comment on some aspects of the implementations.

Aliasing The soundness of our transformation relies on applying specific rules for I/O
operations. In richer languages such as Python or JavaScript, aliasing becomes a ma-
jor problem as one cannot statically determine where such operations will be called.
To avoid this issue, and to be able to identify I/O operations, we proceed in two steps:
first, we wrap primitive I/O functions upfront, i.e. the wrapped function will behave
according to the security level associated to the context in which is called. Second, pro-
grams are only given access to these wrapped functions. This is achieved using Google
Caja [23], which guarantees that the translated program only gets access to properly
wrapped APIs. Google Caja will rewrite (“cajole”) a program in such a way that it can
be guaranteed capability secure, i.e. the modified program will only be able to call API
functions which it is passed a reference to and otherwise be isolated from other code.

Tr(x := e, l) = xl := [e]l

Tr(output e to oc, l) =

{
output [e]l to oc if σout(oc) = l

skip otherwise

Tr(input x from ic, l) =



xl := dv if σin(ic) 6≤ l

input x from ic;
listic := listic ++[xl]; if σin(ic) = l
countic := countic + 1

xl := listic[countic,l];
countic,l := countic,l + 1} if σin(ic) < l

Tr(c1; c2, l) = Tr(c1, l);Tr(c2, l)

Tr(if b then c1 else c2, l) = if [b]l then Tr(c1, l) else Tr(c2, l)

Tr(while b do c, l) = while [b]l do Tr(c, l)

Tr(skip, l) = skip

Tr(eval(e), l) = eval(transl([e]l))

Fig. 3: Syntactic program transformation.

input keysL from LKeys;
listLK := listLK ++[keysL];
countLK := countLK + 1;
passL := dv;
output keysL + passL to LReq;
input resL from LReq′;
listLR′ := listLR′ ++[resL];
countLR′ := countLR′ + 1;
eval(transL(resL));
keysH := listLK [countLK,H];
countLK,H := countLK,H + 1;
input passH fromHPass;
listHP := listHP ++[passH];
countHP := countHP + 1;
resH := listLR′ [countLR′,H];
countLR′,H := countLR′,H + 1;
eval(transH(resH))

Fig. 4: Static transformation applied to malicious ad.

Dynamic code evaluation Our prototype supports an eval function (JavaScript’s well-
known dynamic code evaluation primitive). Since Google Caja does not support dy-
namic code evaluation, we have developed our own ad hoc solution. Our eval takes
as input a string of code, and sends it to a remote Caja cajoling service; the trans-
formed code is then executed with the same wrapped APIs as the calling code. This
proof-of-concept implementation is admittedly inefficient but arguably secure (assum-
ing the calls to Google’s cajoling service are reliable) and supports the entire subset of
JavaScript that Google Caja supports.

Document Object Model (DOM) The Document Object Model (DOM) APIs that a
browser exposes to scripts is structured as a tree corresponding to the HTML structure
of the document. The DOM tree can be inspected and modified from within JavaScript.
Our prototype supports a limited, read-only, version of the DOM. In particular, it al-
lows the hosting page to assign security levels to parts of the document. The scripts can
access the hosting document according to this policy and perform synchronous XML-
HttpRequests. Our coverage of the DOM is sufficient for our examples.

Many DOM APIs allow web applications to register callback functions, which will
be executed when certain (network, user or other) events occur; Bielova et al. [6] discuss
how events and callbacks can be supported under secure multi-execution. Extending our
transformation to address events and callbacks, and provide support for the full DOM
is a significant engineering challenge, which we regard as future work.

6 Transformation to a concurrent language

The transformation defined earlier simulates SME with the selectlowprio scheduler.
Kashyap et al. [19] have shown that other scheduling strategies can be useful too. In
this section, we present a variant of our transformation towards a language that sup-
ports concurrency in order to enable the use of more scheduling strategies.

This revised transformation still takes programs in the sequential subset of the lan-
guage as input. The concurrency features are only used in the output of the transforma-
tion.

Target language. We extend our command language with the following syntax:

c ::= . . . |await b then c
P ::= ‖ (id, c)∗

Intuitively, the command await b then c executes c atomically, provided b holds, and
blocks otherwise. Then, a program is simply a set of threads; for convenience, we as-
sume that each thread is tagged with a unique identifier. In what follows, we write
atomic c as a shorthand for await true then c.

The operational behavior of programs is modelled as a transition between config-
urations. A configuration is a 5-tuple consisting of a program P , a waiting queue wq
mapping guards to commands, an input pointer p, a program input I and a program
output O. Figure 5 presents the semantics of the language. The thread-local semantics
is similar to our sequential language; note however that we introduce another rule for

sequence in order to propagate the emission of signals induced by await commands.
The rules for the latter are standard; if the guard holds, then the body of the command
is executed atomically. Otherwise, the command blocks and emits a signal, namely the
guard in which its blocked. Upon the emission of a signal, the global semantics then
inserts the blocked thread associated with the guard into the waiting queue. Further
changes in global state trigger the re-evaluation of guards, and threads associated with
guards that become true are moved back to the ready list.

We say that an execution of the program P with input I terminates with input
pointer p and program output O, and write 〈P, I〉 ∗ 〈p,O〉, if there exists some
memory m such that

〈P,wq0,m0, p0, I, O0〉 ∗ 〈[], wq0,m, p, I, O〉

〈c1,m, p, I, O〉
b
 〈c′1,m, p, I, O〉

〈c1; c2,m, p, I, O〉
b
 〈c′1; c2,m, p, I, O〉

〈c,m, p, I, O〉 ∗ 〈skip,m′, p′, I, O′〉
〈await b then c,m, p, I, O〉 〈skip,m′, p′, I, O′〉

JbKm

〈await b then c,m, p, I, O〉 b
 〈await b then c,m, p, I, O〉

¬JbKm

(a) Thread-local semantics (excerpts)

select(P) = (id, skip)

〈P,wq,m, p, I, O〉 〈P\{(id, skip)}, wq,m, p, I, O〉

select(P) = (id, c) 〈c,m, p, I, O〉 b
 〈c,m, p, I, O〉

〈P,wq,m, p, I, O〉 〈P\{(id, c)}, wq ∪ {(b, (id, c))},m, p, I, O〉

select(P) = (id, c) 〈c,m, p, I, O〉 〈c′,m′, p′, I, O′〉
P
′
= P\{(id, c)} ∪ {(id, c′)} ∪ {(id∗, c∗)|(b, (id∗, c∗)) ∈ wq ∧ JbKm′}

wq
′
= {(b, (id∗, c∗))|(b, (id∗, c∗)) ∈ wq ∧ ¬JbKm′}
〈P,wq,m, p, I, O〉 〈P ′, wq′,m′, p′, I, O′〉

(b) Global semantics

Fig. 5: Extended semantics.

The transformation. Adapting our transformation to target the concurrent case requires
only two changes. First, input will now perform synchronization:

Trcon(input x from ic, l) =



xl := dv if σin(ic) 6≤ l
atomic (input xl from ic;
listic := listic ++[xl]; countic := countic + 1) if σin(ic) = l

await countic,l < countic then
(xl := listic[countic,l]; countic,l := countic,l + 1) if σin(ic) < l

Second, instead of defining the overall transformation as a sequential composition,
we define it as a parallel one, i.e. Trcon(P) =‖ {(l,Trcon(P, l)) | l ∈ L}.

Example 3. Consider our running example, the malicious ad. Applying the transforma-
tions to the example w.r.t. security levels L and H yields the two programs shown in
Fig. 6a and Fig. 6b respectively.

atomic {
input keysL from LKeys;
listLK := listLK ++[keysL];
countLK := countLK + 1};

passL := dv;
output keysL + passL to LReq;
atomic {

input resL from LReq′;
listLR′ := listLR′ ++[resL];
countLR′ := countLR′ + 1};

eval(transL(resL));

(a) Security level L.

await countLK,H < countLK then {
keysH := listLK [countLK,H];
countLK,H := countLK,H + 1};

atomic {
input passH fromHPass;
listHP := listHP ++[passH];
countHP := countHP + 1};

await countLR′,H < countLR′ then {
resH := listLR′ [countLR′,H];
countLR′,H := countLR′,H + 1};

eval(transH(resH));

(b) Security level H .

Fig. 6: Static transformation applied to malicious ad.

The revised transformation again yields executions equivalent to secure multi-ex-
ecution, now for any scheduling strategy. The proof relies on a simulation result and
hinges on the assumption that (informally) schedulers pick the same threads to execute.

Theorem 4. For every program P , and program input I:

1. if 〈Trcon(P), I〉 ∗ 〈p,O〉 then 〈P, I〉=.∗〈p,O〉;
2. if 〈P, I〉=.∗〈p,O〉 then 〈Trcon(P), I〉 ∗ 〈p,O〉.

For the proof, we refer to the extended version of this paper [4].

7 Related work

The work reported on in this paper is related to information flow security, a research
area that has received significant attention for many decades. We point the reader to two
broad surveys, and then zoom in to recent research that is closely related to our work.
Sabelfeld and Myers [28] give an excellent survey on static techniques for information
flow enforcement. Le Guernic’s PhD thesis [16] surveys dynamic techniques.

Dynamic techniques for information flow security Several recent works propose run
time monitors for information flow security, often with a particular focus on JavaScript,
or on the Web context. These include monitoring algorithms that can handle DOM-like
structures [27], dynamic code evaluation [1] and timeouts [26]. Austin and Flanagan [3]
develop alternative, more permissive techniques. These run time monitoring based tech-
niques are likely more efficient than the technique proposed in this paper, but they lack
the precision of secure multi-execution: such monitors will block the execution of some
non-interferent programs.

The idea underlying secure multi-execution was developed independently by sev-
eral researchers. Capizzi et al. [8] propose shadow executions: they propose to run two
executions of processes for the H (secret) and L (public) security level to provide strong
confidentiality guarantees. Cristiá and Mata [12] independently formalize and proto-
type a similar system for secure multi-execution at operating system level. Devriese
and Piessens [14] were the first to prove the strong soundness and precision guaran-
tees that SME offers. They also report on a JavaScript implementation that requires a
modified virtual machine. In a somewhat related line of work, Cavadini[9] proposes a
technique based on program slicing to obtain secure fragments of insecure programs.

Several authors have improved on these initial results. Kashyap et al. [19], general-
ize the technique of secure multi-execution to a family of techniques that they call the
scheduling approach to non-interference, and they analyze how the scheduling strategy
can impact the security properties offered. Jaskelioff and Russo [18] propose a monadic
library to realize secure multi-execution in Haskell. Bielova et al. [6] propose a variant
of secure multi-execution suitable for reactive systems such as browsers. Finally, Austin
and Flanagan [2] develop a more efficient implementation technique.

Finally, some other authors have considered program transformations for informa-
tion flow security. Chudnov and Naumann [10] propose an inlined information flow
monitor, and Birgisson et al. [7] propose a transformation towards a capability secure
target language. Both approaches share the advantage of not requiring modifications to
the operating system or virtual machine, but as with other classical run time monitors,
they lack the precision of SME based approaches. In a sense, the approach proposed
in this paper combines the advantages of these existing program-transformation based
approaches with the advantages of SME (at the same performance cost as SME).

Other security techniques for JavaScript A motivating example for the technique pro-
posed in this paper is providing security for JavaScript script inclusion. Many authors
have proposed alternative security mechanisms. Chugh et al.[11] develop a novel multi-
stage static technique for enforcing information flow security in JavaScript.

Most authors focus on isolation or sandboxing rather than information flow secu-
rity: how can scripts be included in web pages without giving them full access to the
surrounding page and the browser APIs. Several practical systems have been proposed,
including ADSafe [13], Caja [23] and Facebook JavaScript [15]. Maffeis et al. [21]
formalize the key mechanisms underlying these systems and prove they can be used to
create secure sandboxes. They also discuss several other existing proposals; we point
the reader to their paper for a more extensive discussion of work in this area.

The capability security approach is of particular relevance to this paper, as we build
on the isolation provided by a capability secure language to develop our prototype im-

plementation for JavaScript. Maffeis et al. [22] formalize capability safety, and prove
a Caja-like subset of JavaScript capability safe. Taly et al. [30] propose an approach to
verify if APIs offered to sandboxed code are secure.

Ter Louw et al. propose AdJail [20], targeted at sandboxing advertisements by iso-
lating them in a separate iframe, and by providing a stub in the original web page that
communicates in a controlled way with the sandboxed advertisement.

8 Conclusion

Secure multi-execution is an appealing approach to enforce information flow policies: it
is sound and precise, and can be applied to a variety of programming languages. In this
paper, we have shown that the effect of SME can be achieved through program trans-
formation, and without the need to modify the underlying computing infrastructure.

Acknowledgments This research is partially funded by the Research Fund K.U.Leuven,
by the IWT-SBO project SPION, and by the EU-funded FP7-projects HATS and Web-
Sand. Dominique Devriese holds a Ph. D. fellowship of the Research Foundation -
Flanders (FWO).

The authors are grateful to the anonymous reviewers for their useful and detailed
comments on the paper.

References

1. Aslan Askarov and Andrei Sabelfeld. Tight enforcement of information-release policies for
dynamic languages. In CSF, pages 43–59, 2009.

2. T. Austin and C. Flanagan. Multiple facets for dynamic information flow. In POPL, 2012.
3. T. H. Austin and C. Flanagan. Permissive dynamic information flow analysis. In PLAS,

2010.
4. Gilles Barthe, Juan Manuel Crespo, Dominique Devriese, Frank Piessens, and Exequiel Ri-

vas. Secure multi-execution through static program transformation: extended version. Tech-
nical Report CW620, Department of Computer Science, Katholieke Universiteit Leuven,
2012.

5. Gilles Barthe, Pedro R. D’Argenio, and Tamara Rezk. Secure information flow by self-
composition. In CSFW, pages 100–114, 2004.

6. N. Bielova, D. Devriese, F. Massacci, and F. Piessens. Reactive non-interference for a
browser model. In NSS, 2011.

7. Arnar Birgisson, Alejandro Russo, and Andrei Sabelfeld. Capabilities for information flow.
In PLAS, 2011.

8. R. Capizzi, A. Longo, V. N. Venkatakrishnan, and A. Prasad Sistla. Preventing information
leaks through shadow executions. In ACSAC, 2008.

9. Salvador Cavadini. Secure slices of insecure programs. In ASIACCS, pages 112–122, 2008.
10. Andrey Chudnov and David A. Naumann. Information flow monitor inlining. In CSF, pages

200–214, 2010.
11. R. Chugh, J. A. Meister, R. Jhala, and S. Lerner. Staged information flow for Javascript. In

PLDI, 2009.
12. Maximiliano Cristiá and Pablo Mata. Runtime enforcement of noninterference by duplicat-

ing processes and their memories. In WSEGI 2009, 2009.

13. Douglas Crockford. Adsafe. http://www.adsafe.org/, December 2009.
14. Dominique Devriese and Frank Piessens. Noninterference through secure multi-execution.

In IEEE Symposium on Security and Privacy, pages 109–124, 2010.
15. Facebook. Fbjs. http://developers.facebook.com/docs/fbjs/, 2011.
16. G. Le Guernic. Confidentiality Enforcement Using Dynamic Information Flow Analyses.

PhD thesis, Kansas State University, 2007.
17. N. Heintze and J. G. Riecke. The SLam calculus: programming with secrecy and integrity. In

Proc. ACM Symp. on Principles of Programming Languages, pages 365–377, January 1998.
18. Mauro Jaskelioff and Alejandro Russo. Secure multi-execution in haskell. In PSI, 2011.
19. Vineeth Kashyap, Ben Wiedermann, and Ben Hardekopf. Timing- and termination-sensitive

secure information flow: Exploring a new approach. In Proceedings of the 2011 IEEE Sym-
posium on Security and Privacy, SP ’11, pages 413–428, Washington, DC, USA, 2011. IEEE
Computer Society.

20. Mike Ter Louw, Karthik Thotta Ganesh, and V. N. Venkatakrishnan. Adjail: Practical en-
forcement of confidentiality and integrity policies on web advertisements. In USENIX Secu-
rity Symposium, pages 371–388, 2010.

21. Sergio Maffeis, John C. Mitchell, and Ankur Taly. Isolating javascript with filters, rewriting,
and wrappers. In ESORICS, pages 505–522, 2009.

22. Sergio Maffeis, John C. Mitchell, and Ankur Taly. Object capabilities and isolation of un-
trusted web applications. In IEEE Symposium on Security and Privacy, pages 125–140,
2010.

23. M. S. Miller, M. Samuel, B. Laurie, I. Awad, and M. Stay. Caja: Safe active con-
tent in sanitized javascript. http://google-caja.googlecode.com/files/
caja-spec-2008-01-15.pdf, January 2008.

24. A. C. Myers. JFlow: Practical mostly-static information flow control. In Proc. ACM Symp.
on Principles of Programming Languages, pages 228–241, January 1999.

25. G. Richards, C. Hammer, B. Burg, and J. Vitek. The eval that men do. In ECOOP, 2011.
26. Alejandro Russo and Andrei Sabelfeld. Securing timeout instructions in web applications.

In CSF, pages 92–106, 2009.
27. Alejandro Russo, Andrei Sabelfeld, and Andrey Chudnov. Tracking information flow in

dynamic tree structures. In ESORICS, pages 86–103, 2009.
28. A. Sabelfeld and A. C. Myers. Language-based information-flow security. JSAC, 21:5–19,

2003.
29. Andrei Sabelfeld and Alejandro Russo. From dynamic to static and back: Riding the roller

coaster of information-flow control research. In Ershov Memorial Conference, pages 352–
365, 2009.

30. Ankur Taly, Ulfar Erlingsson, Mark S. Miller, John C. Mitchell, and Jasvir Nagra. Automated
analysis of security-critical javascript apis. In IEEE Symposium on Security and Privacy,
2011.

31. D. Volpano, C. Irvine, and G. Smith. A sound type system for secure flow analysis. Journal
of computer security, 4(2/3):167–188, 1996.

http://www.adsafe.org/
http://developers.facebook.com/docs/fbjs/
http://google-caja. googlecode. com/files/caja-spec-2008-01-15. pdf
http://google-caja. googlecode. com/files/caja-spec-2008-01-15. pdf

	Secure multi-execution through static program transformation

