
Modelling probabilistic wireless networks
(Extended Abstract)

Andrea Cerone and Matthew Hennessy

Department of Statistics and Computer Science
Trinity College Dublin

ceronea@scss.tcd.ie, Matthew.Hennessy@scss.tcd.ie,

Abstract. We propose a process calculus to model distributed wireless
networks. The calculus focuses on high-level behaviour, emphasising local
broadcast communication and probabilistic behaviour.
Our formulation of such systems emphasises their interfaces, through
which their behaviour can be observed and tested, although this com-
plicates their contextual analysis. Nevertheless we propose a novel op-
erator with which networks can be decomposed into components. Using
this operator we define probabilistic generalisations of the well-known
may-testing and must-testing preorders.
We define an extensional probabilistic labelled transition system in which
actions represent particular interactions networks support via their inter-
faces. We show that novel variations on probabilistic simulations support
compositional reasoning for these networks which are sound with respect
to the testing preorders. Finally, and rather surprisingly, we show that
these simulations turn out not to be complete.

1 Introduction

There is growing interest in the development of formal methods for the analysis
of wireless systems, and a number of process calculi have been suggested for
describing and analysing their behaviour, [10,11,13]. Our proposal focuses on
descriptions at a high-level of abstraction, where for example network nodes use
protocols at the MAC level [7] to implement reliable communication between
nodes; thus we are abstracting from collision prone behaviour. For us a wireless
system will take the formM = Γ �M where Γ describes the network topology,
a connected undirected graph of station nodes; some nodes will contain running
code, while others will be in the system interface, Int(M), through which the
system may be tested, or indeed composed with peers to form larger systems.
The running code at individual stations is described in the component M , using
essentially a broadcast version of CCS, [12,15].

However the range of a broadcast from a given station node is determined
by the underlying connectivity graph Γ . Further, we allow the code at stations
to behave probabilistically. We also assume that a fixed number of communi-
cation channels are available to stations to broadcast to their neighbours; it is
well-known that multiple access techniques such as TDMA and FDMA [17] can

2

m

o1

o2

m

n

o1

o2

M = ΓM �mJ. . .K) N = ΓN �mJ. . .K | nJ. . .K

Fig. 1. Example networks

be used to implement such virtual channels. In the literature other calculi for
modelling wireless systems have been proposed; in particular, our calculus has
been inspired by [10,11,8,13]. Recently, there has been also a growing interest in
modeling networks with probabilistic behaviour [9,5,6].

Two example systems in our calculus are given in Figure 1; here and hence-
forth we use shading to denote nodes running code in a network, with the re-
maining being in the interface. Our goal is to develop behavioural theories for
such systems, and associated proof technologies.

Using standard process-calculi techniques we can give an intensional seman-
tics to the set of such (well-formed) networks Nets thereby endowing it with the
structure of a probabilistic labelled transition system [16], a pLTS; see Section 3.
This is a significant step towards our goal as in [3] behavioural testing preorders
have been defined for arbitrary pLTSs, and forms of (probabilistic) simulations
have been shown to be both sound and complete with respect to them. However
significant problems arise when trying to adapt this approach to Nets.

In [3] a total binary operator | is assumed to exist for arbitrary systems; a
system S is tested by running the combined system S |T and observing the effect
on the testing system T ; indeed all standard process calculi come equipped with
such an operator. However there is no definitive manner in which arbitrary pairs
of wireless systems from Nets can be combined, so as to maintain consistency.
For example both S and T might expect to run their own code at a particular
station they have in common; or in the combined system natural well-formedness
conditions might be violated. Our intention with such an operator is to imple-
ment black-box testing of S by T ; so for example T should have no access to, or
indeed knowledge of, the internal stations in S. Instead interaction between T
and the system S will be restricted to what we will call the interface of S.

With this in mind, in Section 4 we propose a novel asymmetric combinator for
(well-formed) wireless networks, S ‖> T ; this in turn leads to formulations of the
standard testing pre-orders to Nets, S1 vmay

S2 and S1 vmust
S2. The asymmetry

is necessary; in Theorem 2 we show that if any reasonable symmetric combinator
were used then the resulting pre-orders would be degenerate.

3

We then give, in Section 5, an extensional pLTS in which the probabilistic
simulations are sound with respect to S1 vmay

S2. Here the extensional actions
are defined in terms of behaviour, broadcasts and reception of values, which can
be detected at the interface of systems, Int(S). However again this is not simply a
straightforward application of the simulations from [3]. A problem arises because
in certain situations the broadcast of a message to a set of interface nodes, as
might happen in M of Figure 1 from m to the pair {o1, o2}, can be simulated
by a multicast of copies of the message through a series of nodes. In N from
Figure 1 this might happen by a broadcast from m, with reaches the interface
node o1 and the internal node n, followed by a broadcast by n to the second
interface node o2.

We also provide a variation on simulations, in the same extensional pLTS,
which are sound with respect to S1 vmust S2. Again results in [3] can not be relied
upon. Instead we define a novel notion of deadlock simulation for this purpose.

We already know that our notion of simulations are not complete for wireless
systems; an example is given at the end of Section 5. Nevertheless we believe
that they are powerful enough to treat non-trivial case studies. In Section 6 we
provide one example which shows the way in which they can be used. In future
we intend to evaluate more fully our proposed methodology.

In this extended abstract we omit all proofs, and some technical definitions
are also elided. Full details are available in the accompanying technical report
[1], together with some more illustrative examples.

2 Background

Recall that a probability distribution ∆ over a set S is a function ∆ : S → [0, 1]
such that

∑
s∈S ∆(s) = 1. Given a set S, we use D(S) to denote the set of

probability distributions over S.

Definition 1. A probabilistic labelled transition system (pLTS) is a 4-tuple
〈S,Actτ ,→, ω〉, where

(i) S is a set of states,
(ii) Actτ is a set of transition labels with a distinguished label τ ,
(iii) the relation → is a subset of S × Actτ ×D(S),
(iv) ω : S 7→ { true , false } is a (success) predicate over the states S.

As usual, we will write s
µ−→ ∆ in lieu of (s, α,∆) ∈ −→. It is finitary if S is

finite and for every s ∈ S, the set {∆ | s µ−→∆ for some µ ∈ Actτ } is finite. ut

This definition of pLTS is slightly different from that provided in [3], for we have
introduced a success predicate ω over states, which will be used when testing
processes.

We use standard notation, borrowed from [3], for distributions and operations
on them. We use ∆, Θ to range over probability distributions; d∆e represents the
support of ∆, that is all states such that ∆(s) > 0 while s denotes the one point

4

distribution for an s ∈ S. We will also have a minor need for sub-distributions,
with Dsub(S) representing the sub-distributions over S; for ∆ ∈ Dsub(S), the
quantity

∑
s∈S ∆(s), called the size of the sub-distribution, may be strictly less

then 1.

Definition 2 (Lifted Relations). Let R ⊆ S × Dsub(S) be a relation from
states to subdistributions. Then R ⊆ Dsub(S)×Dsub(S) is the smallest relation
which satisfies

– sR∆ implies s R ∆
– If I is a finite index set and ∆i R Θi for each i ∈ I then (

∑
i∈I pi ·

∆i) R (
∑
i∈I pi ·Θi) whenever

∑
i∈I pi ≤ 1. ut

Lifting of relations can also be defined for full distributions, by simply requiring∑
i∈I pi = 1 in the last constraint of the definition above.

In a pLTS 〈S,Actτ ,→, ω〉, each transition relation
µ−→ ⊆ S × D(S) can be

lifted to (
µ−→) ⊆ D(S) × D(S). With an abuse of notation, the latter is still

denoted as
µ−→.

Lifted transition relations allow us to reason about the behaviour of pLTSs
in terms of sequences of transitions. We also need to formalise internal com-
putations, indefinite sequences of τ actions. We employ the infinitary version
∆ =⇒ ∆′ from [3], in which states from the support of ∆ may at any point
decide to stop performing τ actions; in general ∆′ may turn out to be a sub-
distribution, rather than a distribution; this is because part of a distribution
may never stop performing τ -actions. A minor variation, ∆ =⇒� ∆′, insists that
states must continue performing τ actions so long as they are able; intuitively
∆ =⇒� ∆′ may be viewed as a probabilistic version of a maximal computation
from ∆. The formal definitions are relegated to the appendix; note the presence
of the success predicate ω in a pLTS means that our formulation is a slight
generalisation from that in [3].

3 Networks and their computations

As explained in the Introduction a wireless system is represented by a pair Γ�M
where Γ is an undirected graph representing the connectivity in the underlying
network between the wireless stations and M the code running in the individual
stations. The language for code is given in Figure 2 and uses standard syntax
from process calculi. Basically a system consists of a collection of named nodes
at each of which there is some running code, nJsK. The set of nodes appearing
in a system M is denoted by nodes(M).

The process calculus operators c!〈v〉 .p, c?(x) .p will represent the broadcast
and reception of values respectively; the latter is a binding operator for the
variable x, and the standard notions of free occurrences of a variable as well as
closed system terms arise. As usual, given a list of variables x̃ and a list of closed
values ṽ of the same length, we use the notation p{ṽ/x̃} to denote process p where

5

M, N ::= Systems
nJsK Nodes
M |N Composition
0 Identity

p, q ::= (probabilistic) Processes
s
pp⊕ q probabilistic choice

s, t ::= States
c!〈e〉 .p broadcast
c?(x) .p receive
ω. 0 test
s+ t choice
if b then s else t branch
τ.p internal activities
A(x̃) calls
0 terminate

Fig. 2. Syntax

the free occurrences of a variable x appearing in x̃ is replaced with the respective
closed value v appearing in ṽ. We also assume a set of process definitions of the
form A(x̃)⇐ p, meaning that the definition A(ṽ) can be unfolded in p{ṽ/x̃}.

The effect of a broadcasts is determined by the underlying network Γ . For
example if a value is broadcast from the station n then it can only be received
at stations m connected to n in Γ ; that is those m such that (n,m) ∈ ΓE where
ΓE is the set of edges of Γ . For this, and similar concepts, we tend to use more
graphic notation such as Γ ` n↔ m.

We only consider the sublanguage of well-formed terms, in which each node
name has at most one occurrence, and we use sSys to denote the set of all well-
formed terms which are closed, meaning that they have no free occurrences of
a free variables. Nodes appearing in nodes(M) in a network Γ �M are called
internal, in contrast with nodes in ΓV \ nodes(M) which are called external.
The set ΓV \ nodes(M) is also called the interface of the network, denoted as
Int(Γ �M). A network Γ �M is well-formed if:

(i) M ∈ sSys
(ii) nodes(M) ⊆ ΓV , where ΓV denotes the set of nodes in Γ

(iii) whenever k ∈ Int(Γ � M), there exists some m ∈ nodes(M) such that
Γ ` k ↔ m

(iv) whenever k1, k2 ∈ Int(Γ �M), Γ ` k1 6↔ k2.

Most of these conditions are natural; in particular, requirements (iii) and (iv)
establish that internal nodes (that is, nodes running code) in a network have

6

knowledge of the nodes in the external environment to which they are con-
nected, but they have no information about how these nodes are interconnected.
Requirement (iv) is also necessary for the soundness of our proof methodologies.
We use Nets to denote the set of well-formed networks, in the sequel ranged
over by M, N , We will also use some obvious notation, such as nodes(M)
to denote the set of nodes running code in M.

Example 1. Consider M = ΓM �M described in Figure 1, where M denotes
the code mJτ.(c!〈v〉 . 0 0.81⊕ 0)K. Intuitively in this network, the station m, after
performing some internal computation can broadcast a value v along channel c
with probability 0.81. This message can be detected by the interface nodes o1
and o2.

Consider now network N = ΓN � N , in the same figure, where N denotes
mJτ.(c!〈v〉 0.9⊕ 0)K | nJP K, and P ⇐ c?(x) .(c!〈x〉 0.9⊕ 0) + c?(x) .P . Here station
m broadcasts the value v along channel c with probability 0.9; this message can
be detected by the interface node o1 and the internal station n. Station n, upon
receiving the message, decides to forward it with probability 0.9; since the nodes
in the range of n are m and o2, these are the nodes which will detect the value
broadcast by n. Therefore, the probability of the original broadcast performed
by station m reaching both the interface nodes o1 and o2 is 0.81, the same as
in the network M.1 Note also that node n can non-deterministically decide to
ignore broadcasts along channel c which can be received either by node m or
by the interface node o2. This ensures that the network N has a computation
in which its behaviour is not affected by the external nodes o1, o2. Informally
speaking, the network N is more reliable than the network M, when the latter
is viewed optimistically. ut

Judgements in the formal intensional semantics of networks take the form

Γ �M
µ−→ ∆, where ∆ is a distribution over sSys and µ can take one of the

forms: n.τ internal computation at node n, c.n?v reception from node n of value
v or n.c!v, transmission from node n.

The rules for inferring judgements are given in Figure 3 and they rely on
a pre-semantics for the states s from Figure 4. These in turn take the form

s
µ−→ p, where s is a closed state, p is a process and µ is one of the forms

c!v, c?v, τ or ω. The deductive rules for inferring these judgements are given in
Figure 4 and should be self-explanatory. The main rules in Figure 3 also use
some standard notation from [3] for interpreting processes p from Figure 2 as
distributions over states, JpK; this has the obvious definition, namely JsK = s and
Jp1 p⊕ p2K = p · Jp1K + (1− p) · Jp2K.

Rule (b-broad) models the evolution of a node n which broadcasts value
v along channel c. Here the term nJ∆K represents a distribution over sSys, ob-
tained by extending the function nJ·K in the standard way to distributions. This
technique is also used in subsequent rules, for example extending the operator |
from one on system terms to distributions over system terms.

1 Also, the probability of message v being only by node o1 in network N is 0.9 and
0.81 in network M.

7

(b-broad)

s
c!v−→ p

Γ � nJsK c.n!v−→ nJ∆K
JpK = ∆

(b-rec)

s
c?v−→ p

Γ � nJsK c.m?v−→ nJ∆K
JpK = ∆,Γ ` n↔ m

(b-deaf)

s
c?v−→6

Γ � nJsK c.m?v−→ nJsK
Γ ` m↔ n

(b-disc)

Γ � nJsK c.m?v−→ nJsK
Γ ` n 6↔ m

(b- 0)

0
c.m?v−→ 0

(b-τ)

s
τ−→ p

Γ � nJsK n.τ−→ nJ∆K
JpK = ∆

(b-τ.prop)

Γ �M
n.τ−→∆

Γ �M |N n.τ−→∆ |N
(b-prop)

Γ �M
c.m?v−→ ∆, Γ �N

c.m?v−→ Θ

Γ �M |N c.m?v−→ ∆ |Θ

(b-sync)

Γ �M
c.m!v−→ ∆, Γ �N

c.m?v−→ Θ

Γ �M |N c.m!v−→ ∆ |Θ

Fig. 3. Intensional semantics of networks

Rules (b-rec), (b-deaf) and (b-disc) express how a node n reacts when a
message is broadcast by a sender node m; if the former is in the range of trans-
mission of the sender, and it is waiting to receive a value along the same channel
used by the sender to broadcast, then it will receive the message correctly. In
all the other cases the behaviour of node n is not affected by the broadcast
performed by m.

The rules (b-τ) and (b-τ.prop) model internal activities performed by some
node of a system term. Finally, rules (b-sync) and (b-prop) describe how com-
munication between nodes of a network is handled; these rules have been defined
to model broadcast communication. See [1] for more discussion and some sanity

checks on the rules. For example one can show that if Γ � M
µ−→ ∆ can be

inferred from the rules then every N in the support of ∆ has exactly the same
set of node station names as M .

4 Testing Networks

As discussed in the Introduction, in order to test networks we need to be able
to compose the network to be tested, say M, with the network performing the
test, say N . A natural definition would be to define

(ΓM �M) 9 (ΓN �N) = (ΓM ∪ ΓN) � (M |N) (1)

where the combined connectivity graph ΓM ∪ ΓN is obtained set theoretically,
by the point-wise union of the individual node sets and edge sets. However in

8

(s-Snd)

c!〈e〉 .p c!v−→ p
val(e) = v

(s-ω)

ω. 0
ω−→ 0

(s-Rcv)

c?(x) .p
c?v−→ p{v/x}

(s-τ)

τ.p
τ−→ p

(s-Suml)

s
α−→ p

s+ t
α−→ p

(s-SumR)

t
α−→ p

s+ t
α−→ p

(s-then)

s
α−→ p

if b then s else t
α−→ p

val(b) = true

(s-else)

t
α−→ p

if b then s else t
α−→ p

val(b) = false

(s-Unfold)

A(x̃)⇐ p

A〈ẽ〉 τ−→ p{ẽ/x̃}

Fig. 4. Pre-semantics of states

general this will lead to ill-defined networks. Therefore we have to be satisfied
by partial composition operators; moreover we should only use a composition
operators which reflect in some way the practical manner in which the tester N
can realistically interact with the testee M.

Definition 3 (Network Extension). The operator ‖> is the partial operator
between pairs of networks defined by letting (ΓM �M) ‖> (ΓN � N) = (ΓM ∪
ΓN) � (M |N) if nodes(M) ∩ (ΓN)V = ∅, undefined otherwise. ut

This operator is associative but in general not symmetric. InM ‖> N the system
N is only allowed to place code at interface ofM. In particular it has no access
to the internal nodes ofM; on the other handM can place no code at any node
in N . These restrictions are natural if we view N as testing M in a black-box
manner.
Proposition 1 (Interface Preservation). If Int(M) = Int(N), and L is a
network such that both M ‖> L and N ‖> L are defined then Int(M ‖> L) =
Int(N ‖> L). ut

The operator ‖> is also a universal constructor for (well-formed) networks:

Proposition 2. Every well-formed network Γ�M such that M is different from
0 can be written2 in the form Γ �M = (Γ ′ �M ′) ‖> (Γ ′′ � nJsK). ut
2 modulo a simple structural equivalence

9

m

n

o1

o2

m

o1

o2

M = ΓM �mJc!〈v〉 . 0K | nJc!〈v〉 . 0K N = ΓN �mJc!〈v〉K

Fig. 5. Broadcast vs. Multicast

We test network M by considering maximal computations of the composite
systems M ‖> T , where T is a system designed to elicit certain behaviour from
M. This composite testing harness should run in isolation from its environment,
for example by ignoring possible broadcasts either M or T might receive at
their interfaces. So we define a reduction relation _ for networks, by letting

(Γ �M) _ ∆ whenever (Γ �M)
m.τ−→∆ or Γ �M

c.m!v−→ ∆.
We also define a success predicate ω(·) for networks by letting ω(M) = true

whenever M = Γ � (nJsK |M) for some state s such that s
ω−→. Thus we have

defined a particular pLTS, as in Definition 1, with a unique transition action
τ−→, which we take to be _; such simple pLTSs we refer to as testing structures,

TSs.

Definition 4 (Tabulating results). The value of a sub-distribution in a TS is
given by the function V : Dsub(S)→ [0, 1], defined by V(∆) =

∑
{∆(s) | ω(s) =

true }. Then the set of possible results from a state s is given by R(s) = { V(∆′) |
∆ =⇒� ∆′ }. Recall from page 4 that s =⇒� ∆′ represents a (probabilistic)
maximal computation from s. ut

Definition 5 (Testing networks). We write

(i) M v
may
N if for every system T such that both M ‖> T and N ‖> T

are well-defined, and every outcome p ∈ R(M ‖> T) there exists p′ ∈
R(N ‖> T) such that p ≤ p′.

(ii) M v
must
N if for every T such that both M ‖> T and N ‖> T are well-

defined and for every p′ ∈ R(M ‖> T) there exists p ∈ R(N ‖> T) such that
p ≤ p′. ut

Example 2 (Broadcast vs Multicast). Consider the networks M and N in Fig-
ure 5. Intuitively in N the value v is (simultaneously) broadcast to both nodes
o1 and o2 while in M there is a multicast. More specifically o1 receives v from
mode m while in an independent broadcast o2 receives it from n.

This difference in behaviour can be detected by testing network

T = ΓT � o1Jc?(x) .c!〈0〉 . 0K | o2Jc?(x) .c?(y) .if y = 0 then 0 else ωK

10

assuming v is different than 0; here we assume ΓT is the simple network which
connects o1 with o2. Both M ‖> T and N ‖> T are well-formed and note that
they are both non-probabilistic.

Because N simultaneously broadcasts to o1 and o2 the second value received
by o2 is always 0 and therefore the test never succeeds; V(N ‖> T) = {0}. On
the other-hand there is a possibility for the test succeeding when applied toM,
1 ∈ V(M ‖> T). This is because in M node m might first transmit v to o1 after
which n transmits 0 to o2; now node n might transmit the value v to o2 and
assuming it is different than 0 we reach a success state. It follows thatM 6vmay N .

One might also think it possible to use the difference between broadcast and
multicast to design a test which N passes and M does not. However this is not
possible, and in Example 3 we show that N v

may
M; that is multicast can be

implemented by broadcast. ut

Theorem 1 (Compositionality). Suppose Int(M1) = Int(M2). Then
M1 vmay

M2 implies M1 ‖> N vmay
M1 ‖> N , whenever the composite networks

are well-defined. The same result holds for v
must

. ut

The testing preorders over networks can be defined using any (partial) binary
constructor ‖ over networks, although we would only want to use constructors
which are in some sense reasonable, which we define as follows.

Let us say that the partial constructor is a merge operator if whenever it
is defined the result coincides with the definition in (1) above. We say it is
invariant under renaming, if whenever M ‖ N is well-defined then so is Mσ ‖
N , where σ is an aribitrary renaming of nodes which leaves both Int(M) and
nodes(N) unchanged, and whose range does not intersect nodes(N); intuitively
this means that the well-definedness of the composite M ‖ N is not affected by
a re-organisation of the internal nodes ofM. Then we say ‖ is reasonable if it is
a merge operator, it preserves interfaces, and is invariant under renaming ; note
that ‖> is reasonable. Let us denote the resulting testing pre-orders by valt

may
, valt

must

respectively.

Theorem 2. If the constructor ‖ is reasonable and symmetric then the resulting
testing preorders are degenerate; that is M1 valt

may
M2 and M1 valt

must
M2, for all

networks M1,M2 such that Int(M1) = Int(M2). ut

5 Proof techniques for the testing preorders

Motivated by [3], our intention is to define simulations over a pLTS to provide
reasonable proof techniques for inferring Mv

may
N and Mv

must
N . The pLTS

induced by the intensional semantics in Figure 3 is much too coarse for this
purpose. Instead we need to define extensional actions, which capture more
closely the manner in which the behaviour of wireless systems can be detected
at their interfaces. The following remarks are relevant.

(i) A node m which receives a value v has no information about the name of
the node, internal or external, which is responsible for the broadcast; it can
only check the content of the value.

11

(b-Tau)

Γ �M
m.τ−→∆

Γ �M
τ−→ Γ �∆

JpK = ∆

ω(Γ �M) = false

(b-In)

Γ �M
c.m?v−→ ∆

Γ �M
c.m?v−→ Γ �∆

m ∈ Int(Γ �M)

ω(Γ �M) = false

(b-Shh)

Γ �M
c.m!v−→ ∆

Γ �M
τ−→ Γ �∆

{m ∈ Int(ΓM �M) | Γ ` m ↔ n } = ∅

ω(Γ �M) = false

(b-Out)

Γ �M
c.m!v−→ ∆

Γ � nJsK c!v�η−→ Γ �∆

η := {m ∈ Int(ΓM �M) | Γ ` m ↔ n }

η 6= ∅

ω(Γ �M) = false

Fig. 6. Extensional semantics of networks

(ii) On the other hand, the set of nodes in the interface of a networkM which
are affected by a broadcast performed by a node m ∈ nodes(M) is relevant;
these are the only nodes at the external environment which can detect the
broadcast.

(iii) As a consequence, if a broadcast originated by a node inM does not affect
any node in its interface, then this activity cannot be observed by the
external environment of M.

(iv) The effect on a networkM by external activity can be captured adequately
by broadcasts fired from nodes in the interface of M.

(v) Since we are not interested in the behaviour of a network after it has
reached a successful configuration, we require that extensional transitions
can be performed only by non-successful network.

These observations motivate the definition of external actions in Figure 6. Note
that these actions endow a network with the structure of a pLTS; we say that
a network is finitary if so is the pLTS it generates via the transitions defined in
Figure 6. Henceforth in this Section we always assume that a network is finitary.
The extension to weak actions is also non-standard:

Definition 6 (Weak extensional action). Let ∆,Θ be network sub-distributions
over Nets. We say that

(i) ∆
τ

=⇒ Θ if ∆=⇒ Θ in the pLTS induced by the extensional transitions of
Figure 6.

(ii) ∆
c.m?v
=⇒ Θ if M τ

=⇒ c.m?v−→ τ
=⇒Θ

(iii) ∆
c!v�η
=⇒ Θ if either ∆

τ
=⇒ c!v�η−→ τ

=⇒Θ or ∆
c!v�η1
=⇒ c!v�η2

=⇒ Θ, where η1, η2 are
two non-empty sets of nodes which constitute a partition of η. ut

The non-standard (iii) is motivated in Example 3.
These weak actions endow the set of networks Nets with the structure of

another pLTS, called the extensional pLTS and denoted by pLTSNets. It is in
this pLTS that we give our definitions of simulations.

12

The first one is based on the simulation preorder from [3]; for reasons best
explained there it is defined as a relation from states to distributions, rather
than the more standard states to states.

Definition 7 (Simulation preorder). In pLTSNets we let �
sim

denote the
largest relation in Nets×D(Nets) such that if s �

sim
Θ then:

– if ω(s) = true, then Θ
τ

=⇒Θ′ such that for every t ∈ dΘ′e, ω(t) = true

– otherwise, whenever s
µ

=⇒∆′, for µ ∈ Actτ , then there is a Θ′ ∈ D(S) with

Θ
µ

=⇒Θ′ and ∆′ �
sim
Θ′. ut

Our second proof technique is a variation on the failure simulation preorder
of [3]. Unlike in that more general framework we have no need of acceptance
sets. Instead it is sufficient to consider the ability of systems to deadlock. See
[4] for details. We say that a networkM is deadlocked, denotedM 6→ whenever

ω(M) = false and M τ−→6 ,Mc!v�η−→6 for any c, v, η. A sub-distribution ∆ over
Dsub(Nets) is deadlocked if any network in its support is deadlocked.

For reasons explained in [3] it is more straightforward to express this form
of simulation as a relation from sub-distributions to sub-distributions.

Definition 8 (Deadlock Simulations). In pLTSNets we let w
DS

denote the
largest relation in Dsub(Nets)×Dsub(Nets) such that if ∆ w

DS
Θ then:

– whenever ∆
µ

=⇒
∑
i∈I(pi ·∆′i), where I is an index set such that

∑
i∈I pi ≤ 1,

then there are Θ′i ∈ Dsub(Nets) such that Θ
µ−→

∑
i∈I(pi · Θ′i) and, for any

i ∈ I, ∆′i wDS
Θ′i

– whenever ∆=⇒−→6 then Θ =⇒−→6 . ut

Theorem 3 (Proof methods for the testing preorders). Let M,N be two
networks such that Int(M) = Int(N). Then

– if M �
sim
N then Mv

may
N

– if Mw
DS
N then Mv

must
N . ut

Thus in order to relate two wireless systems it is sufficient to exhibit an appro-
priate simulation relation.

Example 3. Consider again the networks M and N in Figure 5. It is easy to

show that both of them can perform the weak extensional action
c!v�{o1,o2}

=⇒ .
However, the inference of this action is different for the individual networks;
while in network N it is implied by the execution of a single broadcast action,
detected by both nodes o1 and o2 simultaneously, in M this is implied by a

sequence of weak extensional actions M c!v�{o1}
=⇒ c!v�{o2}

=⇒ .
It is therefore possible to exhibit a simulation between N andM, thus show-

ing that N �
sim
M; By Theorem 3 it follows that N v

may
M. Similarly, it is

possible to prove that Mw
DS
N , and therefore Mv

must
N .

Now suppose that we employed a standard definition of weak extensional
actions, and that the simulation preorder had been defined according to this

13

Nc = ΓNc �m1JPmK |m2JPmK

m1o1 n1 n2 m2 o2

Fig. 7. The network Nc

notion. In this case it would not be possible to exhibit a simulation between N
and M, and thus it would not be possible to prove that N v

may
M. The same

applies for the v
must

testing preorder and deadlock simulations. ut

Although simulations provide a sound proof technique for vmay and vmust, in
general they are not complete. For example one can show, referring to Example 1,
thatMv

may
N butM 6�

sim
N . It remains to be seen if our notions of simulation

can be further adapted so as to provide complete proof methodologies.

6 An application: probabilistic routing

M = ΓM �mJP K

mo1 o2

Sequential routing means that a network can only
route one message per time; if a message is re-
ceived by the network while another one is being
routed, then it is ignored. A simple specification
(or model) network M that can be used for such
routing in networks is depicted on the left, where
P ⇐ c?(x) .c!〈x〉 .P . It is trivial to see that, when-
ever node m in M receives a message from o1, it

will be forwarded to nodes o1 and o2; that is, the message has been routed from
the external node o1 to the external node o2. The model also routes messages
from o2 to o1 in a symmetric fashion. We provide a possible implementation of
this specification as a probabilistic (and nondeterministic) network N such that
Mv

may
N ; this means that N will include all the possible behaviour ofM, such

as the sequential routing between the interface nodes o1, o2, but may also have
additional behaviour.

In fact we design an entire class of networks N with this property. Each will
have the structure N = Nc ‖> C, where Nc is the network depicted in Figure 7.
This acts as a connector between the interface nodes o1, o2 and the internal router
which it accesses via the nodes n1, n2; here Pm ⇐ c?(x) .c!〈x〉 .Pm + c?(x) .Pm.

The network C = ΓC � C, on the other hand, is defined parametrically. It
can be any network that satisfies the following requirements:

1. n1, n2 ∈ nodes(ΓC � C). For the sake of simplicity, we also assume that
nodes(ΓC � C) = (ΓC)V = {n1, · · · , nk} for some k > 2.

2. The connectivity graph ΓC contains a single connected component.

14

3. Every node ni, i = 1, · · · , k is associated with a channel ci and a probability
distribution Λi : {1, · · · , k} → [0, 1]. The latter are defined so that dΛie =
{j | ΓC ` ni ↔ nj}, for any i = 1, · · · , k. That is, if node ni is connected to
node nj , then Λi(j) > 0.

4. C =
∏
i∈I niJPiK, where

Pi = c?(x) .

 k⊕
j=1

Λi(j) · cj !〈x〉 .Pi

 + c?(x) .Pi +

+ ci?(x) .

 k⊕
j=1

Λi(j) · cj !〈x〉 .Pi

 + ci?(x) .c!〈x〉 .Pi, i = 1, 2

Pi = ci?(x) .(
k⊕
j=1

Λi(j) · cj !〈x〉 .Pi), i > 2

Here the derived construct
⊕

i∈I pi ·Pi is interpreted in the obvious manner
as a probability distribution.

Let us explain, informally, one of the possible behaviours of a typical network N .

n1

n3

n4

n2

The connectivity of one possible C, with
only two extra nodes n3, n4, is given on
the left. Upon receiving a message along
channel c from the external node o1, node
m1 will forward it to the node n1; here
note that the external node o1 also de-
tects the broadcast. Node n1 forwards the
message again to one of its neighbours nj
with a strictly positive probability. Here
nj is selected as the next hop in the rout-
ing path by forwarding the message along
channel cj . In fact, node cj is the only
one which can detect messages broadcast
along such a channel.

This procedure is iterated until the message v is forwarded to node n2, at least
with some probability, which in turn will forward it to node m2; a final broadcast
from the latter node will cause the message to be detected by the external node
o2. Since the connectivity graph of C has a single connected component, it is
possible to show that, upon being received by node n1, a message v eventually
is delivered to node n2 almost surely, i.e. with probability 1.

This informal line of reasoning can be used to provide a simulation between
the networksM andN ; we can construct a simulation in the extensional pLTSNets
containing the pair (M,N), for any N whose internal component C satisfies the
four constraints given above; thus for any such Nc we have M v

may
N . The

details may be found in [1]
We finish with three remarks about this example. First note that it is neces-

sary to employ our non-standard definition of weak output actions, for a broad-

15

cast of networkM to the nodes o1, o2 can only be simulated by N via a sequence
of two broadcasts. The first, fired by node m1, can be detected only by o1; the
second one, fired by node m2, can be detected only by node o2, and this only in
a probabilistic limit, for which we require the infinitary version of probabilistic
weak actions. Secondly note that the network N implements sequential routing
because the nodes m1,m2 in N can non-deterministically decide to ignore a
broadcast performed by o1, o2 respectively. Finally note that this example em-
phasises the fact that our formalism can in principle be employed to examine
practical routing algorithms. Routing protocols in which the next-hop in a rout-
ing path is determined via a probability distribution, as in our example, are of
practical significance; see for example, [2].

7 Conclusions

To the best of our knowledge, we believe that our work is the first to apply testing
theories to wireless systems, and in particular probabilistic wireless systems.
One major strand of research into calculi based on broadcast communications
starts with CBS from [15]; here behaviour is defined in terms of various forms
of bisimulations. Later developments include local broadcast communication in
the Extended CBS of [13] and the use of connectivity graphs in the CBS# of
[14].

In [11] a different attempt to formalize wireless networks is made. The au-
thors develop a calculus CWS, where the concepts of node names and location
are differentiated; thus, a process is associated both with a node name and a
location. Also, every process has a positive real value associated to it, denoting
the radius of transmission. The network topology is determined by a metric on
locations and a transmision radius. It is worth mentioning that in this calculus
the communication between nodes consists of two phases, one to start it and one
to end it. The authors also model the possibility of a message whose transmission
has started to be corrupted by another transmission, thus modeling collisions.

In [10], a descrete timed calculus for wireless systems (TCWS) is presented;
in this case, the authors address the problem of representing collisions in wireless
networks, suggesting that formal tools for dealing with interferences in wireless
networks can aid in the development of MAC level protocols. The topology of
the wireless networks here is described by associating every node a semantic
tag representing its set of neighbours. The authors propose a compositional
theory for wireless networks based on the notion of reduction barbed congruence;
further, they develop a sound proof methodology based on bisimulations over an
extensional lts. It is of considerable interest that, despite their targeting at low-
level collision prone behaviour, the set of extensional actions they propose (and
the activities that can be detected by the external environment) is very similar
to those we have suggested.

16

References

1. Andrea Cerone and Matthew Hennessy. A simple probabilistic broadcast language.
Technical Report, Trinity College Dublin, (CS-TR-2012-02), 2012. Available at
http://www.scss.tcd.ie/~ceronea/works/simpleProbabilisticNetworks.pdf.

2. Eoin Curran and Jim Dowling. Sample: Statistical network link modelling in an
on-demand probabilistic routing protocol for ad hoc networks. In WONS, pages
200–205. IEEE Computer Society, 2005.

3. Yuxin Deng, Rob van Glabbeek, Matthew Hennessy, and Carroll Morgan.
Testing finitary probabilistic processes. In Proceedings of the 20th Interna-
tional Conference on Concurrency Theory, volume 5710 of Lecture Notes in
Computer Science, pages 274–288. Springer, 2009. Full-version available from
http://www.scss.tcd.ie/Matthew.Hennessy/onlinepubs.html.

4. Cristian Ene and Traian Muntean. Testing theories for broadcasting processes.
Sci. Ann. Cuza Univ, 11:214–230, 2002.

5. Fatemeh Ghassemi, Wan Fokkink, and Ali Movaghar. Verification of mobile ad hoc
networks: An algebraic approach. Theor. Comput. Sci, 412(28):3262–3282, 2011.

6. Jens Chr. Godskesen. Observables for mobile and wireless broadcasting systems. In
Dave Clarke and Gul A. Agha, editors, COORDINATION, volume 6116 of Lecture
Notes in Computer Science, pages 1–15. Springer, 2010.

7. Raja Jurdak, Cristina Videira Lopes, and Pierre Baldi. A survey, classification
and comparative analysis of medium access control protocols for ad hoc networks.
IEEE Communications Surveys and Tutorials, 6(1-4):2–16, 2004.

8. Ivan Lanese and Davide Sangiorgi. An operational semantics for a calculus for
wireless systems. Theor. Comput. Sci, 411(19):1928–1948, 2010.

9. Ruggero Lanotte and Massimo Merro. Semantic analysis of gossip protocols for
wireless sensor networks. In Joost-Pieter Katoen and Barbara König, editors,
CONCUR, volume 6901 of Lecture Notes in Computer Science, pages 156–170.
Springer, 2011.

10. Massimo Merro and Eleonora Sibilio. A timed calculus for wireless systems. In
Farhad Arbab and Marjan Sirjani, editors, FSEN, volume 5961 of Lecture Notes
in Computer Science, pages 228–243. Springer, 2009.

11. Nicola Mezzetti and Davide Sangiorgi. Towards a calculus for wireless systems.
Electr. Notes Theor. Comput. Sci, 158:331–353, 2006.

12. R. Milner. A calculus of communicating systems. LNCS, 92, 1980.
13. Sebastian Nanz and Chris Hankin. Static analysis of routing protocols for ad-hoc

networks, March 25 2004.
14. Sebastian Nanz and Chris Hankin. A framework for security analysis of mobile

wireless networks. TCS: Theoretical Computer Science, 367, 2006.
15. K. V. S. Prasad. A calculus of broadcasting systems. Science of Computer Pro-

gramming, 25(2–3):285–327, December 1995.
16. Roberto Segala and Nancy Lynch. Probabilistic simulations for probabilistic pro-

cesses. Nordic J. of Computing, 2:250–273, June 1995.
17. Andrew S. Tanenbaum. Computer networks. PTR Prentice-Hall.

http://www.scss.tcd.ie/~ceronea/works/simpleProbabilisticNetworks.pdf

17

Appendix: Some definitions

Definition 9 (Hyper-derivations). In a pLTS a hyper-derivation consists of
a collection of sub-distributions ∆,∆→k , ∆

×
k , for k ≥ 0, with the following prop-

erties:
∆ = ∆→0 + ∆×0
∆→0

τ−→ ∆→1 + ∆×1
...

∆→k
τ−→ ∆→k+1 + ∆×k+1
...

If ω(s) = false for each s ∈ d∆→k e and k ≥ 0 we call ∆′ =
∑∞
k=0∆

×
k a hyper-

derivative of ∆, and write ∆=⇒∆′. ut

In maximal computations, we require the computation to proceed as long as
some internal activity can be performed. To this end, we say that ∆ =⇒� ∆′ if

– ∆=⇒∆′,
– for every s ∈ d∆×k e, s

τ−→ implies ω(s) = true. ut

This is a mild generalisation of the notion of extreme derivative from [3]. Note
that the last constraint models exactly the requirement of performing some in-
ternal activity whenever it is possible; In other words extreme derivatives corre-
spond to a probabilistic version of maximal computations.

	Modelling probabilistic wireless networks (Extended Abstract)
	Andrea Cerone (Trinity College Dublin), Matthew Hennessy (Trinity College Dublin)

