
Beyond Lassos: Complete SMT-Based Bounded Model
Checking for Timed Automata

Roland Kindermann, Tommi Junttila, and Ilkka Niemelä

Aalto University
Department of Information and Computer Science

P.O.Box 15400, FI-00076 Aalto, Finland
{Roland.Kindermann, Tommi.Junttila, Ilkka.Niemela}@aalto.fi

Abstract. Timed automata (TAs) are a common formalism for modeling timed
systems. Bounded model checking (BMC) is a verification method that searches
for runs violating a property using a SAT or SMT solver. Previous SMT-based
BMC approaches for TAs search for finite counter-examples and infinite lasso-
shaped counter-examples. This paper shows that lasso-based BMC cannot detect
counter-examples for some linear time specifications expressed, e.g., with LTL or
Büchi automata. This paper introduces a new SMT-based BMC approach that can
find a counter-example to any non-holding Büchi automaton or LTL specification
and also, in theory, prove that a specification holds. Different BMC encodings
tailored for the supported features of different SMT solvers are compared exper-
imentally to lasso-based BMC and discretization-based SAT BMC.

1 Introduction

Timed automata, see, e.g., [1–3], are a convenient formalism for describing and model
checking finite state systems augmented with real-valued clocks. There are many tools,
Uppaal [4] to name just one, for timed automata and model checking algorithms for
timed automata have been studied quite a lot during the last two decades. For verifica-
tion, Uppaal treats the discrete part of a timed automaton’s state in an explicit state fash-
ion while using a symbolic representation for the time-related part. Other approaches
use decision diagrams for the verification of timed automata [5, 6].

Bounded model checking (BMC) [7] is a symbolic model checking method that
has been shown very efficient in bug hunting (i.e., finding counter-examples to speci-
fications) for finite-state systems during the last ten years. Being fully symbolic, it can
handle systems with high degree of non-determinism in data and input signals more nat-
urally than explicit-state model checking methods. The basic idea behind BMC is, given
a system, a specification, and an integer bound k, to build a propositional logic formula
such that the formula is satisfiable if and only if the system has a counter-example of
length at most k violating the specification. The bound is incremented until a satisfi-
able formula is found (implying that the specification does not hold for the system) or
a completeness threshold is reached without finding any satisfiable formulas (imply-
ing that the specification holds for the system). Infinite runs are handled in BMC by
considering finitely representable lasso-shaped infinite runs consisting of a finite prefix
followed by a finite loop. In addition to finite state systems, BMC has also been applied

to timed automata [8–11]. When a propositional logic encoding is used (as e.g. in [8,
11]), the infinite state space of a timed automaton has to be reduced into a finite one;
this can be achieved by using the region abstraction [1], see e.g. [8, 12] for two different
propositional logic encodings of regions. A direct benefit of using the region abstraction
is that the resulting BMC method can indeed detect whether a propositional ω-regular
specification (expressed, e.g., with propositional linear time temporal logic LTL) holds
on the system or not by considering lasso-shaped infinite runs only.

Propositional encodings of regions can be rather complicated and large for systems
with many clocks with wide ranges. The introduction of Satisfiability Modulo Theories
(SMT, see e.g. [13]) solvers with built-in support for reasoning over real and integer
arithmetics has made it possible to devise BMC approaches for timed automata without
using the region abstraction [9, 10]. In these approaches, the transition relation of the
automaton is directly expressed as a propositional logic formula augmented with linear
arithmetic constraints. In this paper we show that these previous SMT-based BMC ap-
proaches for timed automata are actually incomplete in the sense that for some timed
automata they cannot find (a representative of) any infinite run despite such runs exist.
This is basically caused by the fact that they search for lasso-shaped infinite runs (of
the automaton, not of its region abstraction) but, unlike in the context of finite state
systems, some timed automata have only non-lasso-shaped infinite runs. We propose
an alternative region-based SMT BMC encoding for timed automata; in contrast to the
propositional encoding, only the loop-detection part of the SMT encoding has to deal
with regions but the rest of the encoding remains rather simple. We prove that (i) it
can find a representative of an infinite run for any a timed automaton having an in-
finite run, and (ii) there is a completeness threshold, i.e., an integer such that there
is an infinite run representative of at most that length unless there is no infinite run.
Therefore, the encoding can be used to build an SMT-based BMC approach for model
checking propositional LTL specifications on timed automata which is capable of find-
ing counter-examples to all non-holding specifications and, in theory, also of proving
that no counter-examples exist. Due to the use of the region abstraction, the formulas in
the region-based BMC encoding are more complicated and may contain mixed integer
/ real expressions that are not supported by all current SMT solvers. We thus provide
some alternative encodings and experimentally evaluate the efficiency of these.

We experimentally compare region-based SMT BMC against a traditional lasso-
based SMT BMC encoding. We also compare our prototype implementation of SMT
BMC methods against the highly optimized SAT BMC engine NuSMV [14] using
a region-based propositional logic encoding [12]. The results show that region-based
SMT BMC performs very good and is, in fact, sometimes significantly faster as it can
find shorter counter-examples than the other methods tested.

2 Timed automata

We first give basic definitions for timed automata (see e.g. [1–3]). For the sake of sim-
plicity, we use the very basic timed automata defined below in the theoretical parts of
the paper. However, in practice (and also in the experimental part of the paper) one
usually defines a network of timed automata that can also have (shared and local) finite

l0 l1 l2 l3

x > 2

y < 1x := 0 y := 0

1

0

0 1 2

y

x

(a) automaton (b) regions

Fig. 1. A timed automaton and its regions

domain non-clock variables manipulated on the edges. The symbolic bounded model
checking encodings presented later in the paper can be extended to handle both of these
features, see, e.g., [9, 10] for how to handle synchronization in a network of timed au-
tomata. Similarly, we do not define any property description language in the theoretical
part but consider the reachability problem for timed automata and the non-emptiness
problem for timed automata extended with Büchi acceptance conditions (like in [1]).
We then later study how bounded model checking can be used to solve these problems.
Concerning practical model checking, solving the reachability problem corresponds to
finding whether a timed automaton (or a network of such) can reach a bad state. Simi-
larly, bearing in mind that linear-time temporal logic (LTL) properties can be translated
into Büchi automata (see e.g. [15]), non-emptiness checking of timed Büchi automata
corresponds to checking whether a timed automaton can violate an LTL specification.
In the experimental part symbolic encodings for LTL model checking [16] are applied.

LetX be a set of real-valued clock variables. Then, a clock valuation v is a function
v : X → R≥0 and v+δ for a δ ∈ R≥0 is the valuation for which ∀x ∈ X : (v+δ)(x) =
v(x) + δ. The set of clock constraints over X , C(X), is defined by the grammar C ::=
true | x ./ n | C ∧ C where x ∈ X , ./ ∈ {<,≤,=,≥, >} and n ∈ N. A valuation v
satisfies a clock constraint C, denoted by v |= C, if it evaluates C to true.

A timed automaton (TA) is a tuple 〈L, linit, X,E, I〉 where

– L is a finite set of locations,
– linit ∈ L is the initial location of the automaton,
– X is a finite set of real-valued clock variables,
– E ⊆ L× C(X)× 2X × L is a set of edges, each edge 〈l, g, R, l′〉 ∈ E specifying

a guard g and a set R of clocks to be reset, and
– I : L→ C(X) assigns an invariant to each location.

As an example, Fig. 1(a) shows a timed automaton (from [1]). It has four locations
l0, . . . , l3, l0 being the initial one, and two clocks, x and y. The edge 〈l0, true, {x}, l1〉
from l0 to l1 resets the clock x and the edge 〈l2, x < 1, ∅, l3〉 has the guard x < 1. The
invariants of all locations are true.

A state of a timed automaton A = 〈L, linit, X,E, I〉 is a pair 〈l, v〉, where l ∈ L is
a location in A and v is a clock valuation over X . A state 〈l, v〉 is (i) initial if l = linit
and v(x) = 0 for each x ∈ X , and (ii) valid if v |= I(l). Let 〈l, v〉 and 〈l′, w〉 be states
of A. There is a time elapse step from 〈l, v〉 to 〈l′, w〉, denoted by 〈l, v〉 e−→ 〈l′, w〉, if
(i) l = l′, (ii) w = v + δ for some δ ∈ R>0, and (iii) 〈l′, w〉 is a valid state. Intuitively,
there is a time elapse step from a state to another if the second state can be reached

from the first one by letting a certain amount of time pass. There is a discrete step from
〈l, v〉 to 〈l′, w〉, denoted by 〈l, v〉 d−→ 〈l′, w〉, if there is an edge 〈l, g, R, l′〉 ∈ E such
that (i) v |= g, (ii) 〈l′, w〉 is a valid, and (iii) w(x) = 0 for all x ∈ R and w(x) = v(x)
for all x ∈ X \R. That is, discrete steps can be used to change the current location as
long as the guard and the target location invariant are satisfied. A discrete step resets
some clocks and leaves the other’s values unchanged, i.e., a discrete step does not take
any time. For situations in which the type of step between two states is insignificant, we
define that 〈l, v〉 −→ 〈l′, w〉 iff 〈l, v〉 e−→ 〈l′, w〉 or 〈l, v〉 d−→ 〈l′, w〉.

A run of A is a finite or infinite sequence π = 〈l0, v0〉〈l1, v1〉 . . ., such that (i)
〈l0, v0〉 is a valid initial state, and (ii) 〈li, vi〉 −→ 〈li+1, vi+1〉 for each consecutive
pair of states in the sequence. As an example, the automaton in Fig. 1(a) has the run
〈l0, (0, 0)〉〈l0, (0.7, 0.7)〉〈l1, (0, 0.7)〉〈l2, (0, 0)〉〈l3, (0, 0)〉 where each clock valuation
{x 7→ v, y 7→ w} is abbreviated to (v, w). An infinite run is (i) non-zeno if the sum
of time passed in time elapse steps in it is infinite, and (ii) lasso-shaped if it can be
written as 〈l0, v0〉 . . . 〈li−1, vi−1〉

(
〈li, vi〉 . . . 〈lk, vk〉

)ω
for some 0 ≤ i ≤ k. In the con-

text of BMC we sometimes consider k the length of the lasso-shaped run, as it is the
length needed to represent the run. The automaton in Fig.1(a) has a lasso-shaped non-
zeno run 〈l0, (0, 0)〉

(
〈l0, (2.1, 2.1)〉〈l1, (0, 2.1)〉〈l2, (0, 0)〉〈l3, (0, 0)〉〈l3, (2.1, 2.1)〉

)ω
.

While it does not have any zeno runs, the automaton obtained by removing the guard
x > 2 has the lasso-shaped zeno run

(
〈l0, (0, 0)〉〈l1, (0, 0)〉〈l2, (0, 0)〉〈l3, (0, 0)〉

)ω
.

2.1 Model Checking Problems

As said earlier, we study two model checking problems for timed automata. Firstly,

Definition 1 (Reachability problem). Given a timed automaton A and a location l,
does A have a finite run 〈l0, v0〉〈l1, v1〉 . . . 〈lk, vk〉 with lk = l?

Secondly, we define a timed Büchi automaton to be a tuple B = 〈L, linit, X,E, I, F 〉
such that (i) 〈L, linit, X,E, I〉 is a timed automaton, and (ii) F ⊆ L is the set of accept-
ing locations. States, steps, and runs are defined as for timed automata. A run of B is
accepting if it is infinite and a location l ∈ F occurs infinitely many times in it.

Definition 2 (Non-emptiness problem). Given a timed Büchi automaton B, does it
have an accepting run?

For example, consider the timed Büchi automaton obtained from the timed automa-
ton in Fig. 1(a) by letting F = {l3}. It has a lasso-shaped, non-zeno accepting run
〈l0, (0, 0)〉〈l1, (0, 0)〉

(
〈l2, (0, 0)〉〈l3, (0, 0)〉〈l3, (3, 3)〉〈l0, (3, 3)〉〈l1, (0, 3)〉

)ω
. Both the

reachability and non-emptiness problems are PSPACE-complete [1].

2.2 The Region Abstraction

We will also need the classic concepts of regions and region automata [1] later in the
paper. Assume a timed automaton A = 〈L, linit, X,E, I〉. For each clock x ∈ X ,
let mx be the largest constant n occurring in any atom of form x ./ n on the guards
and invariants of the automaton. For each v ∈ R≥0, let bvc ∈ N be the integral and

fract(v) ∈ [0, 1[the fractional part of v, i.e., v = bvc+fract(v). Two valuations, v and
w, over X are equivalent, denoted by v ∼ w, if all the following conditions hold:

1. For each clock x ∈ X , either bv(x)c = bw(x)c or (v(x) > mx) ∧ (w(x) > mx).
2. For all pairs of clocks x, y ∈ X with v(x) ≤ mx and v(y) ≤ my , it holds that

fract(v(x)) ≤ fract(v(y)) iff fract(w(x)) ≤ fract(w(y)).
3. For all clocks x ∈ X with v(x) ≤ mx it holds fract(v(x)) = 0 iff fract(w(x)) = 0.

A region is an equivalence class of valuations induced by the relation ∼, and the region
of a valuation v is denoted by [v]. The set of all regions is denoted by regions(A) and
it contains at most |X|! · 2|X| ·∏x∈X(2mx + 2) regions [1].

As an example, Fig. 1(b) graphically illustrates the regions of the timed automaton
in Fig. 1(a); the 28 regions are the thick black dots and lines as well as the gray areas.

The region automaton of a timed automaton A is the finite state automaton

AR = 〈Q, qinit, ∆〉,

where (i)Q = L× regions(A) is the set of states, (ii) qinit = 〈linit, [v0]〉 with v0(x) = 0
for all x ∈ X is the initial state, and (iii) ∆ ⊆ Q×Q is the transition relation with
〈〈l, r〉, 〈l′, r′〉〉 ∈ ∆ iff ∃v, v′ : 〈l, v〉 −→ 〈l′, v′〉 ∧ [v] = r ∧ [v′] = r′. A run of AR

is a finite or infinite sequence q0q1 . . . of states in Q such that (i) q0 = qinit, and (ii)
〈qi, qi+1〉 ∈ ∆ for all consecutive pairs of states in the sequence.

A timed automaton A and its region automaton AR are bisimilar in the sense that

1. 〈l, v〉 −→ 〈l′, v′〉 implies 〈〈l, [v]〉, 〈l′, [v′]〉〉 ∈ ∆, and
2. 〈(l, r), (l′, r′)〉 ∈ ∆ implies ∀v : ([v] = r)⇒ ∃v′ : ([v′] = r′) ∧ 〈l, v〉 −→ 〈l′, v′〉.

ThusA andAR also have corresponding runs: (i) ifA has a run 〈l0, v0〉〈l1, v1〉 . . ., then
AR has a run 〈l0, [v0]〉〈l1, [v1]〉 . . ., and (ii) if AR has a run 〈l0, r0〉〈l1, r1〉 . . ., then A
has a run 〈l0, v0〉〈l1, v1〉 . . . such that [vi] = ri for each i. Note that some runs of AR

may have both corresponding zeno runs and corresponding non-zeno runs in A. We
define that a run in AR is non-zeno if it has at least one corresponding non-zeno run
in A.

3 Bounded Model Checking for Reachability and Lassos

As explained in the introduction, the idea behind bounded model checking is to con-
struct formulas whose satisfying interpretations correspond to runs having some desired
property (e.g., reachability, Büchi acceptance) and bounded length. The bound is incre-
mented until a satisfiable formula (and thus a run with the desired property) is found or
a completeness threshold is reached (meaning that no such run exists). This section in-
troduces BMC for finite runs and lasso-shaped infinite runs of timed (Büchi) automata.
The lasso-based BMC for TAs is very similar to BMC for untimed systems and has
been previously described in [9, 10]. Lasso-based BMC is complete for untimed finite
state systems but, as will be shown, despite a previous claim not complete for TAs.

Let A = 〈L, linit, X,E, I〉 be a timed automaton (or a timed Büchi automaton
〈L, linit, X,E, I, F 〉) and let k be the “bound” i.e. the length of the runs currently con-
sidered. We first construct a quantifier-free first order formula |[A, k]|runs using linear

arithmetics over reals whose satisfying interpretations represent A’s runs of length k.
For each clock x ∈ X , we introduce k + 1 “timed copies” x[0], x[1], . . . , x[k] where the
variable x[i] gives the value of the clock x at the ith state in the run. If C is a clock
constraint, then C [i] is the “timed version” of C obtained by substituting each clock
x ∈ X in it by x[i]; e.g. ((x < 3) ∧ (y ≥ 2))[4] = (x[4] < 3) ∧ (y[4] ≥ 2). To repre-
sent automaton locations in the run, we use the set

{
at [0], at [1], . . . , at [k]

}
of variables

over the domain L. Similarly, to select whether a time elapse or discrete step is taken at
the ith step, we use the Boolean variables elapse [0], . . . , elapse [k−1], and for the time
taken in time elapse steps the real-valued variables δ[0], . . . , δ[k−1]. We now define the
formula for runs of length k by

|[A, k]|runs
:= |[A]|init ∧ |[A, k]|inv ∧ |[A, k]|trans

where |[A]|init
:= (at [0] = linit) ∧

∧
x∈X(x[0] = 0) ensures that the values of

{
at [0]

}
∪{

x[0] | x ∈ X
}

represent the initial state of A, |[A, k]|inv
:=
∧

0≤i≤k
∧

l∈L(at
[i] =

l) ⇒ I(l)[i] forces all the k + 1 states to be valid ones, and the formula |[A, k]|trans
:=∧

0≤i<k(elapse
[i] ⇒ φ[i]) ∧ (¬elapse [i] ⇒ ψ[i]) captures the transition relation. The

formula φ[i] := (δ[i] > 0) ∧ (at [i+1] = at [i]) ∧ ∧x∈X(x[i+1] = x[i] + δ[i]) encodes
time elapse steps, while ψ[i] does the same for discrete steps:

ψ[i] := (δ[i] = 0) ∧∨〈l,g,R,l′〉∈E

(
(at [i] = l) ∧ (at [i+1] = l′) ∧ g[i] ∧∧

x∈R(x
[i+1] = 0) ∧∧x∈X\R(x

[i+1] = x[i])
)

The automaton A has a run 〈l0, v0〉 . . . 〈lk, vk〉 iff the formula |[A, k]|runs is satisfiable
under any interpretation extending

{
at [i] 7→ li, x

[i] 7→ vi(x) | 0 ≤ i ≤ k, x ∈ X
}

.

BMC for reachability. Based on the tight correspondence between the runs of A and
satisfying interpretations of |[A, k]|runs, one can use |[A, k]|runs to solve the reachability
problem. Given a timed automaton A and a location l in it, check whether the formula

|[A, l, k]|reach
:= |[A, k]|runs ∧

∨
0≤i≤k

(at [i] = l)

is satisfiable for some bound k ∈ {0, 1, . . .}. If |[A, l, k]|reach indeed is satisfiable,
then one can construct a run of A ending in l from the satisfying interpretation for
|[A, l, k]|reach. We return to the issue of completeness, i.e. detecting the case that l is not
reachable, later in this section.

BMC for lasso-shaped infinite runs. Assume now that B is a timed Büchi automaton
〈L, linit, X,E, I, F 〉. We can use the formula |[B, k]|runs to define a formula |[B, k]|lasso

such that the timed Büchi automaton B has an accepting infinite lasso-shaped run
〈l0, v0〉 . . . 〈li−1, vi−1〉

(
〈li, vi〉 . . . 〈lk, vk〉

)ω
for some 1 ≤ i < k iff |[B, k]|lasso is satis-

fiable under an interpretation extending
{
at [i] 7→ li, x

[i] 7→ vi(x) | 0 ≤ i ≤ k, x ∈ X
}

.

To do this, we use an auxiliary set loop[1], . . . , loop[k] of Boolean loop variables to de-
tect loops in the finite runs represented with |[B, k]|runs. A variable loop[i] being true
means that the i − 1th and the kth state are the same, meaning that a lasso-shaped run
can be obtained by looping back from the kth to the ith state. Furthermore, an auxil-
iary set acc[1], . . . , acc[k] of Boolean variables is used to compute whether an accepting
location is visited at the ith or later state in the run. We define

|[B, k]|lasso
:= |[B, k]|runs ∧ |[B, k]|loop ∧ |[B, k]|accept

where |[B, k]|loop
:=
∧

1≤i≤k

(
loop[i] ⇒ (at [i−1] = at [k]) ∧ ∧x∈X(x[i−1] = x[k])

)
detects the loops in the finite runs, and |[B, k]|accept

:= (acc[k] ⇔ ∨
l∈F (at

[k] = l)) ∧∧
1≤i≤k−1

(
acc[i] ⇔ acc[i+1] ∨∨l∈F (at

[i] = l)
)
∧
(∨

1≤i≤k(loop
[i] ∧ acc[i])

)
forces

satisfying interpretations to correspond to accepting runs only: there shall be a loop in
the run and an accepting location in the loop.

The encoding can easily be modified to accept only non-zeno runs. A lasso-shaped
run is zeno iff it does not contain any time elapse step in its looping part. Thus, non-
zenoness can be enforced by requiring the looping part to contain at least one time
elapse step. For this purpose k Boolean variables el [0], . . . , el [k−1] where el [i] being
true for a given i means that there is a time elapse step after the ith state. Looping back
to the ith state is allowed only if el [i] is true, leading to the following conjunct:

|[B, k]|lnz := (el [k−1] ⇔ elapse [k−1]) ∧
∧

1≤i≤k−2

(
el [i] ⇔ (elapse [i] ∨ el [i+1])

)
∧

∧
1≤i≤k

loop[i] ⇒ el [i−1]

Note that for a run that loops back from the last to the ith state, the step that loops back
from the last to the ith state is of the same type as the step from the i − 1th to the ith
state. Thus, it is sufficient if the step from the i−1th to the ith state is a time elapse step
in order to have a time elapse step in the looping part of the run, which is the reason
why we only require el [i−1] to hold if loop[i] holds and not el [i].

(In)completeness. We now study the completeness of the two BMC encodings given
above. As in [7, 9], by completeness we mean the ability to find a run if one exists or to
demonstrate that no runs exists if this is the case. To show completeness, a completeness
threshold is needed, i.e. an integer bound K such that a run of interest (witnessing
reachability or Büchi acceptance) exists if and only if one exists with bound K or less.

Previous completeness results. For finite state systems, the simple run-unfolding BMC
is complete for reachability problems and lasso-BMC is complete for non-emptiness
under Büchi acceptance conditions [7]. When considering timed automata, the reach-
ability BMC encoding given above is complete [9]. This is because (i) a location l is
reachable in an automatonA iff it is reachable in its region automatonAR due to bisimi-
larity (recall Sect. 2.2), (ii)AR has at most |L|·|X|!·2|X| ·∏x∈X(2mx+2) states, which
implies that l is reachable with at most Kreach = |L| · |X|! · 2|X| ·∏x∈X(2mx +2)− 1
steps in AR, and (iii) thus l is reachable with at most Kreach steps in A. Therefore, l is

reachable in A iff |[A, l,Kreach]|reach is satisfiable. Of course, using Kreach as a bound is
usually infeasible in practice but its existence guarantees the theoretical completeness
of the BMC approach.

Incompleteness for Büchi acceptance conditions on TAs. We now show that, despite
a previous claim in [9], lasso-based BMC is not complete for checking non-emptiness
of timed Büchi automata or, in fact, for even detecting whether a timed automaton has
at least one infinite run. Incompleteness of an encoding can best be shown by giving
an automaton for which the encoding can not find a run. For this purpose, we will use
automaton in Fig. 2(a) which, as will be demonstrated, does not have any lasso-shaped
infinite runs despite having infinite non-zeno runs. Therefore, lasso-based BMC will
fail to find any run for the automaton and is thus incomplete for (i) detecting whether
a timed automaton has at least one infinite run, (ii) deciding non-emptiness of timed
Büchi automata, and (iii) model checking propositional LTL on timed automata.

Let us now study the automaton in Fig. 2(a) a bit more closely. It has two locations,
la and lb, and two clocks, x and y. For a given infinite run in the automaton, let tai be the
time spent in la the ith time the run visits la and tbi be defined analogously for lb. The
edge from la can only be traversed when x is less than one. Furthermore, x is reset when
the edge is traversed. Therefore, the time between two subsequent traversals of this edge
is strictly less than one time unit: ∀i ≥ 1 : tbi+t

a
i+1 < 1. Analogously, the time between

two subsequent traversals of the edge form lb to la is exactly one time unit: ∀i ≥ 1 : tai+
tbi = 1. Combining the two formulas results in ∀i ≥ 1 : tai+1 < tai and ∀i ≥ 1 : tbi+1 >
tbi , i.e. in any run the time spent in la strictly decreases from any visit to the next and the
time spent in lb strictly increases. Furthermore, the difference between the two clocks
in lb equals the time spent in la on the previous visit and vice versa. Consequently, the
difference between the clocks strictly increases in la and strictly decreases in lb. Thus,
the same location is never reached twice with the same clock difference and therefore,
no run can ever visit the same state twice. Hence, the automaton does not have any
lasso-shaped run. This, however, does not mean that the automaton does not have any
infinite runs at all. A valid infinite run, e.g., stays 1

i+2 time units in location la the ith
time it is visited and 1− 1

i+2 units in location lb. Figure 2(b) shows the clock valuations
on a ten time unit long prefix of this run, while Fig. 2(c) illustrates the clock regions
visited by the run. Note that while the run is not lasso-shaped in the space of clock
valuations, it indeed is lasso-shaped in the clock regions. Also, the run is non-zeno as
the time passing is

∑∞
i=1

1
i+2 + 1− 1

i+2 =∞.

4 Region-based BMC

As shown above, lasso-based BMC is not complete for checking non-emptiness of
timed Büchi automata. This section introduces a region-based BMC approach that fixes
this problem. The approach is inspired by the observation that even though the automa-
ton in Fig. 2(a) does not have any lasso-shaped infinite runs, its region automaton does.
Based on this observation, our new encoding modifies the lasso-based BMC encoding
by not requiring the last state of the run to be exactly the same as a previous state but

x < 1

x := 0

la

y ≤ 1
lb

x < 1 ∧ y > 0y = 1
y := 0

(a) The automaton

 0

 0.5

 1

 0 0.5 1

y

x

(b) The clock valuations of a
prefix of a run

(c) The same run in the
region abstraction

Fig. 2. A non-empty timed automaton that does not have any lasso-shaped run

only in the same region as a previous state. Such a run corresponds to a lasso-shaped
run in the region automaton and thus to a set of infinite runs of the TA.

Note that, in order to get runs in which time does not suddenly just stop, it is not
sufficient to require that the last state of the run is in the same region as an earlier state.
For many clock valuations, it is possible to reach a valuation in the same region by a
sufficiently small time elapse step. Thus, it is often possible to extend a finite run with
a short time elapse step to get a run in which the last and second to last state have the
same location and clock valuations in the same region. If the only requirement to a run
was that the last state is in the same clock region as a previous state, such a run would be
accepted. While it is possible to extend such a run to a valid infinite (though zeno) run
by adding smaller and smaller time elapse steps, in practice runs of the described type
are typically not of interest as they correspond to time not progressing past a certain
point. Therefore, we exclude runs of the described type by restricting to non-zeno runs.

In order to check whether two clock valuations are in the same clock region, one
needs to split up each clock’s value into its integral an fractional parts. Therefore,
region-based BMC uses two additional variables, x[i]int and x[i]fract, for each clock x ∈ X
and each state index i. The integer variable x[i]int represents the integral part of the value
of x while the real-valued variable x[i]fract represents its fractional part. Given a timed
Büchi automaton B = 〈L, linit, X,E, I, F 〉, the region-based BMC encoding is

|[B, k]|region
:= |[B, k]|runs ∧ |[B, k]|accept ∧ |[B, k]|close ∧ |[B, k]|nz

where |[B, k]|runs and |[B, k]|accept are defined as in Sect. 3, |[B, k]|nz is used to ensure
non-zenoness and is defined later in this section and |[B, k]|close, detecting whether the
clock valuations in the i− 1th and kth states are in the same region, is defined as

|[B, k]|close
:=

∧
0≤i≤k

∧
x∈X

(
0 ≤ x[i]fract ∧ x

[i]
fract < 1 ∧ x[i] = x

[i]
int + x

[i]
fract

)
∧

∧
1≤i≤k

(
loop[i] ⇒ (at [i−1] = at [k] ∧ Si,k)

)

with Si,k :=
∧

x∈X

(
(x

[i−1]
int = x

[k]
int) ∨ (x

[i−1]
int > mx ∧ x[k]int > mx)

)
∧
(
x
[k]
int ≤ mx ⇒(

(x
[i−1]
fract =0 ⇔ x

[k]
fract=0) ∧∧y∈X\{x}(y

[k]
int ≤my ⇒ (x

[i−1]
fract ≤y

[i−1]
fract ⇔ x

[k]
fract≤y

[k]
fract))

))
.

The first line in |[B, k]|close ensures the integral+fractional decomposition of clock val-
ues. Its sub-expression x[i] = x

[i]
int + x

[i]
fract mixes integer and real variables; such mixed-

type expressions are supported, e.g., by the SMT solver Yices [17]. As they are, how-
ever, not supported by all SMT solvers, an alternative encoding not requiring them will
be introduced in Sect. 5. Analogously to the lasso-based encoding, loop[i] is a Boolean
variable indicating that it is possible to loop from the last state in the run to the ith state,
or, more precisely, to a state in the same region as the ith state.

4.1 Ensuring Non-Zenoness

In order to complete the encoding, a way to ensure non-zenoness of the run is needed.
In lasso-based BMC, non-zenoness can be ensured by requiring that the looping part
of the run contains at least one time elapse step. For region-based BMC, this approach
does not work. Any concrete run corresponding to a lasso-shaped region automaton run
having a time elapse step in the looping part is guaranteed to have an infinite number of
time elapse steps. The sum of the delays of these steps is, however, not guaranteed to
be diverging. Thus, we will instead ensure non-zenoness using the following theorem:

Theorem 1 (Alur and Dill [1]). An infinite run of a region automaton that has an
infinite number of time elapse steps is non-zeno iff each clock x ∈ X either infinitely
often is zero or infinitely often has a value greater than mx.1

It is straightforward to turn this theorem into a non-zenoness condition for the BMC
encoding. Due to the fact that x’s value cannot decrease unless x is reset, x is guaranteed
to exceed mx in all states of the looping part if it exceeds mx in at least one state of
the looping part and is never reset inside the looping part. Therefore it is sufficient to
require that x is either zero at least once inside the looping part or exceeds its maximum
value in the run’s last state which is guaranteed to be in its looping part.

Requiring at least one time elapse step in the looping part of the run can be done
using the formula |[B, k]|lnz as for lasso-shaped paths. Furthermore, for any clock x ∈
X , k Boolean variables ok [i]

x are used to ensure that either x is zero at least once in the
looping part of the run or exceeds its maximum value in the last state of the run. This
results in the following definition of |[B, k]|nz:

|[B, k]|nz :=
∧
x∈X

(
ok [k]

x ⇔ (x[k]=0 ∨ x[k]>mx)
)
∧

∧
1≤i≤k−1

(
ok [i]

x ⇔ (x[i]=0 ∨ ok [i+1]
x)

)
∧

∧
1≤i≤k

(
loop[i] ⇒

∧
x∈X

ok [i]
x

)
∧ |[B, k]|lnz

By Theorem 1, any run with infinitely many time elapse steps in the region automa-
ton that does not satisfy the “infinitely often x = 0 ∨ x > mx” condition for a clock
x ∈ X is zeno. Therefore, the bound required to find a run using our encoding is the
length of the shortest lasso-shaped non-zeno run in the region automaton.

1 Note that using the slightly different definition of the region automaton in [1] any infinite run
of the region automaton is guaranteed to have an infinite number of elapse steps.

4.2 Completeness

In the following the completeness of the proposed approach will be shown. More pre-
cisely, it will be shown that, given a timed Büchi automaton B = 〈L, linit, X,E, I, F 〉,
Kregion := (|X| + 3) · |L| · |X|! · 2|X| ·∏x∈X(2mx + 2) is a completeness threshold,
meaning that our approach when used with bound Kregion can find a non-zeno run for B
if B has any non-zeno run. To do this, we prove the following theorem.

Theorem 2. Unless a given timed Büchi automaton B does not have a single accepting
non-zeno run, its region automaton BR has an accepting lasso-shaped non-zeno run of
length at most Kregion.

The theorem will be proven in two parts, each of which is stated as a lemma. The proofs
of the lemmas are given in the appendix.

Lemma 1. If B has an infinite accepting non-zeno run π = 〈l0, v0〉〈l1, v1〉 . . ., then B’s
region automaton BR has a lasso-shaped accepting non-zeno run πR

lasso.

Lemma 2. If BR has an accepting lasso-shaped non-zeno run, then BR has an accept-
ing lasso-shaped non-zeno run of length at most Kregion.

Note that the completeness threshold Kregion should first and foremost be consid-
ered a theoretical result, as the given completeness threshold in practice even for small
systems is infeasibly high. In order to find more practical completeness thresholds, an
approach similar to the ones used for untimed systems in [18] could be used.

5 Alternative encodings

Avoiding mixed-type expressions and unbounded integer variables. One challenge
in the encoding introduced in Sect. 4 is that it uses mixed-type expressions that use
both integer and real variables; such are not supported by some SMT solvers. One can,
however, modify the encoding to get rid of the mixed-type expressions. To do this,
instead of the x[i] clock variables, we use x[i]int variables for their integral parts and x[i]fract
variables for their fractional parts. Likewise, the difference variables for time elapse
steps δ[i] are each replaced by two variables δ[i]int and δ[i]fract for their integral and fractional
parts. After this, (in)equalities of form x[i] ./ n for an n ∈ N, used e.g. to encode the
TA’s guards and invariants and to enforce that the initial values of the clocks are zero,
are modified to use x[i]int and x[i]fract instead of x[i]. For instance, x[i] ≤ n is replaced with
x
[i]
int < n ∨ (x

[i]
int = n ∧ x[i]fract = 0). Expressions of the form x[i+1] = x[i] + δ[i] have

to be replaced by a case distinction to ensure that the fractional part of x[i+1] is always
less than one: each expression of form x[i+1] = x[i] + δ[i] is replaced with

(
(x

[i]
fract +

δ
[i]
fract < 1) ⇒ (x

[i+1]
int = x

[i]
int + δ

[i]
int ∧ x

[i+1]
fract = x

[i]
fract + δ

[i]
fract)

)
∧
(
(x

[i]
fract + δ

[i]
fract ≥ 1) ⇒

(x
[i+1]
int = x

[i]
int + δ

[i]
int + 1∧ x[i+1]

fract = x
[i]
fract + δ

[i]
fract − 1)

)
. When all expressions using the

x[i] clock variables are modified as described, the encoding does not contain any mixed-
type expressions anymore and can thus be used with a SMT solver not supporting them.

As the exact value of a clock x ∈ X is irrelevant once it exceeds mx, the en-
coding can be further modified to turn the x[i]int and δ[i]int variables into bounded integer

variables without affecting the correctness of the approach: the domain of each x[i]int is
{0, . . . ,mx + 1} while δ[i]int has the domain {0, . . . ,maxx∈X mx}. A simple case dis-
tinction similar to the technique shown for x[i] + δ[i] expressions is used to set each
variable’s value to its maximum value whenever it in the unbounded case would exceed
its maximum. Restricting to bounded integers is necessary for SMT solvers that do not
support unbounded integer variables.

Alternative non-zenoness condition. In [19] an alternative way to ensure that all runs
of a timed Büchi automaton are non-zeno is proposed. The approach modifies the TA
using one additional clock such that accepting states only count as accepting if at least
one time unit passed since the last accepting state. While using this approach for BMC
would be feasible for Büchi acceptance conditions, it is not clear how it could be ex-
tended to other approaches like directly encoding an LTL formula (cf. e.g. [16]) as in
such an encoding there is no notion of accepting states. Thus we propose a similar but
slightly different approach as an alternative encoding ensuring non-zenoness by requir-
ing that the looping part of the run is at least one time unit long. The resulting non-
zenoness condition is simpler and needs less variables than the original one proposed
in Sect. 4:

|[B, k]|nz2
:= (Σ[k−1]=δ[k−1])∧

∧
0≤i≤k−2

(Σ[i]=Σ[i+1]+δ[i])∧
∧

1≤i≤k

(loop[i] ⇒ Σ[i]≥1)

Correctness. A lasso-shaped run of the region automaton returns to a previously visited
region at the end of the looping part. If the looping part is at least one time unit long, as
required by our alternative non-zenoness-encoding, the integral part of the value of any
clock x ∈ X changes somewhere in the looping part. Unless x has exceeded mx, this
implies that a new region is reached. In this case, x has to be reset before the looping
part can return to the original region. Hence, each clock x is either reset or exceeds
mx in the looping part, i.e. infinitely often, which according to Theorem 1 implies non-
zenoness. Therefore any lasso-shaped run of the region automaton along whose looping
part at least one time unit passes is non-zeno and the alternative encoding is correct.

Note that the opposite is not true, i.e. not every lasso-shaped non-zeno run of the
region automaton has a looping part along which at least one time unit passes. This
implies that using the alternative non-zenoness-encoding sometimes results in needing
a higher bound to find a run than would be required with the original encoding.

6 Experiments

The Fischer mutual exclusion protocol and an industrial model with both handmade
and random properties were used to compare the different SMT BMC encodings and
discretization-based SAT BMC experimentally.

Setup. In the experiments, lasso-based BMC (not requiring non-zenoness, cf. Sect. 3)
was compared to region-based BMC. In addition to the basic encoding given in Sect. 4,
the two non-mixed type encodings and the alternative non-zenoness condition given in

Table 1. Execution times and maximum bound reached for the Fischer protocol (median over 11
executions, “to” means timeout)

#
pr

oc
es

se
s

¬GFproc1.crit ¬(GFproc1.crit ∧GF¬proc1.crit)

la
ss

o
B

M
C

m
ix

ed
ty

pe

no
n-

m
ix

ed

lim
ite

d
in

te
ge

r

di
sc

re
-

tiz
at

io
n

la
ss

o
B

M
C

m
ix

ed
ty

pe

no
n-

m
ix

ed

lim
ite

d
in

te
ge

r

di
sc

re
-

tiz
at

io
n

Ti
m

e

B
ou

nd

Ti
m

e

B
ou

nd

Ti
m

e

B
ou

nd

Ti
m

e

B
ou

nd

Ti
m

e

B
ou

nd

Ti
m

e

B
ou

nd

Ti
m

e

B
ou

nd

Ti
m

e

B
ou

nd

Ti
m

e

B
ou

nd

Ti
m

e

B
ou

nd

2 0.35 9 0.28 5 0.2 5 0.28 5 0.11 7 0.33 9 0.31 6 0.25 6 0.3 6 0.16 10
3 1.73 12 0.26 5 0.28 5 0.28 5 0.15 7 1.41 12 0.33 6 0.33 6 0.34 6 4.07 13
4 16.94 15 0.35 5 0.33 5 0.34 5 0.22 7 14.54 15 0.41 6 0.43 6 0.42 6 to 14
5 83.46 18 0.5 5 0.42 5 0.43 5 0.31 7 66.53 18 0.54 6 0.51 6 0.53 6 to 13
7 to 20 0.99 5 0.57 5 0.6 5 0.51 7 to 20 1.39 6 0.7 6 0.74 6 to 13

10 to 19 1.53 5 0.9 5 0.97 5 0.95 7 to 18 to 5 1.13 6 1.22 6 to 13
20 to 15 to 4 2.45 5 2.59 5 3.57 7 to 18 to 5 3.46 6 3.86 6 to 12
30 to 14 to 4 5.23 5 5.45 5 10.04 7 to 18 to 5 8.12 6 8.98 6 to 11

Sect. 5 were used. The basic encoding is referred to as “mixed type, basic nz.” while the
modifications are referred to as “non-mixed” for the unlimited range integer non-mixed
type encoding, “limited integer” for the limited range integer encoding and “alt. nz.” for
the alternative non-zenoness condition (cf. Sect. 5).

For comparison to the SMT-based BMC variants, discretization-based SAT BMC
was applied. That is, the real-time models were transformed into discrete time mod-
els [12] and then checked using a discrete time BMC SAT encoding [16] implemented
in NuSMV [14] 2.5.4. The used translation algorithm encodes the region abstraction and
thus is complete in the same sense as region-based SMT BMC. All BMC approaches
were used in an incremental fashion, i.e. successively increasing the bound using an
incremental SMT / SAT solver. The real-time models were encoded as symbolic timed
transition systems [12], a symbolic representation variant of timed automata. Properties
were specified as LTL formulas and encoded using [16].

In our experiments, we focused on comparing different BMC approaches. It should,
however, be noted that both benchmarks have been previously studied using different
verification methods including the model checker Uppaal [4].

All experiments were conducted on GNU/Linux computers with AMD Opteron
2435 CPUs limited to ten minutes of CPU time and 4 GB of RAM. For the SMT-based
BMC variants, Yices [17] 1.0.33 was used.

Fischer protocol. As a first benchmark, the Fischer mutual exclusion protocol, a stan-
dard benchmark for real-time verification, and two non-holding properties (“process
one can only finitely often be in the critical section” and “process one can only finitely
often enter and exit the critical section”) were used. The protocol has been previously
studied using Uppaal [20]. Table 1 shows the time needed for finding counter-examples
and the maximum bound reached on instances of different sizes. For space restrictions,
only results for the basic non-zenoness condition are listed. However, results for the
alternative non-zenoness encoding are very similar.

For the first property the discretization-based approach scaled only slightly worse
than the non mixed-type region-based encodings. Lasso-based BMC, in contrast, scaled
significantly worse, already timing out at size 7. The reason is that the region based

Table 2. Execution times in seconds for finding counter-examples to the non-holding properties
on the industrial benchmark (median over 11 executions, “to” means timeout, “nz.” abbreviates
“non-zenoness condition”)

Entire model Medium size submodel Small submodel
Pr

op
er

ty

la
ss

o
B

M
C

m
ix

ed
ba

si
c

nz
.

m
ix

ed
al

t.
nz

.

no
n-

m
ix

ed
ba

si
c

nz
.

no
n-

m
ix

ed
al

t.
nz

.
di

sc
re

ti-
za

tio
n

la
ss

o
B

M
C

m
ix

ed
ba

si
c

nz
.

m
ix

ed
al

t.
nz

.
no

n-
m

ix
ed

ba
si

c
nz

.
no

n-
m

ix
ed

al
t.

nz
.

di
sc

re
ti-

za
tio

n
la

ss
o

B
M

C
m

ix
ed

ba
si

c
nz

.
m

ix
ed

al
t.

nz
.

no
n-

m
ix

ed
ba

si
c

nz
.

no
n-

m
ix

ed
al

t.
nz

.
di

sc
re

ti-
za

tio
n

1 1.0 43.55 to 3.97 to to 0.55 0.85 to 0.73 to to 0.29 0.69 to 0.51 to to
2 2.19 to to 18.11 20.4 to 0.4 0.43 0.56 0.41 0.47 to 0.21 0.3 0.37 0.27 0.27 to
3 0.66 2.12 16.81 2.04 1.78 to 0.32 0.49 0.81 0.42 0.5 to 0.21 1.0 0.36 0.28 0.29 to
4 2.16 to to 21.1 19.27 to 0.32 0.47 0.59 0.45 0.52 to 0.21 0.45 0.38 0.3 0.37 to
5 1.87 to to 19.74 22.14 to 0.32 0.63 0.65 0.47 0.54 to
6 1.8 to to 20.36 30.36 to 0.33 0.58 0.59 0.44 0.49 to
7 0.47 0.66 1.11 0.73 0.8 to 0.27 0.3 0.32 0.31 0.32 to
8 0.67 1.94 4.55 1.26 1.75 to 0.33 0.47 0.47 0.43 0.44 to
9 0.57 0.63 1.07 0.71 0.77 to

10 1.32 to to 3.41 4.64 to
11 to to to 25.4 41.12 to
12 to to to 26.15 26.71 to
13 to to to 27.54 28.68 to

BMC variants can find significantly shorter counter-examples. Similarly, the discretiza-
tion-based method may return significantly longer counter-examples, as it only allows
time elapse steps that either leave the ordering of clocks’ fractional parts unchanged
or advance to the very next region. This often makes it necessary to break up a single
time elapse step in a counter-example into multiple time elapse steps in the discretized
model. While not affecting execution times for the first property by much, the longer
counter-examples for the discretization-based approach had a huge impact on the sec-
ond, more complicated property. Another interesting result is that the mixed-type en-
coding performed significantly worse than the non-mixed type encodings, indicating
that avoiding mixed-type expressions can be beneficial even for SMT-solvers that sup-
port them.

Industrial benchmark. As second benchmark, a model of an emergency diesel generator
intended for the use in a nuclear power plant was used. The model is fairly large, hav-
ing 24 clocks and its location being defined by the valuation of 130 finite domain state
variables. Additionally, two submodels (7 clocks / 64 state variables and 6 clocks / 36
state variables) which are sufficient for verifying some of the properties were used. The
model has previously been studied using different verification methods including Up-
paal [21, 12]. Table 2 shows the execution times for non-holding properties. For space
restrictions, the results for the limited range integer encoding, which are just slightly
worse than the unlimited range integer encoding, are omitted here. The discretization-
based approach timed out for all properties on all submodels, clearly indicating that its
applicability is restricted to small models. The choice of non-zenoness condition was
irrelevant for all except one property. Unlike for the Fischer protocol, lasso-based BMC
performed significantly better for some properties while performing significantly worse
for others. A likely explanation again is the length of the counter-examples that can be
found using the respective variants.

 1

 10

 100

 1000

 0 1000 2000 3000 4000 5000 6000 7000 8000

T
im

e
 i
n

 s
e

c
o

n
d

s

Number of properties

discretization
mixed, alt. nz.
mixed, basic nz.
non-mixed, alt. nz.
non-mixed, basic nz.
lasso BMC

Fig. 3. Execution time by number of properties for random properties on the industrial bench-
mark. A point (x, y) indicates that for x properties y or less time was needed (each), correspond-
ing to a plot of quantiles

Furthermore, random properties for the industrial model were generated using the
following LTL patterns: unconditional fairness (GFx), strong fairness (GFx⇒ GFy),
weak fairness (FGx⇒ GFy), “leads to” (G(x⇒ Fy)) and Gx⇒ Gy, a pattern that
had been used by the authors of the industrial benchmark. 2000 properties of each type
were randomly selected, except for the unconditional fairness pattern for which all 371
generated properties were selected. Figure 3 shows the times required to find counter-
examples for all properties for which at least one method found a counter-example.
Again, the discretization-based approach timed out for all properties. For random prop-
erties, lasso-based BMC was clearly faster than the region-based approaches. A likely
explanation is that most random properties have very short counter-examples, meaning
that the potentially smaller bound needed by region-based BMC is outweighted by the
more complicated transition relation. Furthermore, random properties that involve only
non-timing related parts of the system tend to have exceptionally short zeno counter-
examples, further favoring lasso-based BMC which does not require non-zenoness.

7 Conclusions

In this paper, we have shown that traditional lasso-based SMT BMC is not complete
for model checking linear-time properties on timed automata, introduced region-based
SMT BMC to fix this problem, and shown its completeness. Different variations of the
approach tailored for supported features of different SMT solvers are given. The vari-
ations of region-based SMT BMC have been experimentally compared to each other,
to lasso-based SMT BMC and to discretization-based SAT BMC. The experiments in-
dicate that region-based SMT BMC outperforms discretization-based SAT BMC. For
hand-made properties, region-based SMT BMC also was more robust than lasso-based
SMT BMC. For random properties, however, lasso-based SMT BMC performed better.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126(2)
(1994) 183–235

2. Alur, R.: Timed automata. In: CAV 1999. Volume 1633 of LNCS., Springer (1999) 8–22

3. Bengtsson, J., Yi, W.: Timed automata: Semantics, algorithms and tools. In: Lectures on
Concurrency and Petri Nets. Volume 3098 of LNCS., Springer (2003) 87–124

4. Behrmann, G., David, A., Larsen, K.G.: A tutorial on UPPAAL. In: FM-RT 2004. Volume
3185 of LNCS., Springer (September 2004) 200–236

5. Behrmann, G., Larsen, K.G., Pearson, J., Weise, C., Yi, W.: Efficient timed reachability
analysis using clock difference diagrams. In: CAV 1999. Volume 1633 of LNCS., Springer
(1999) 341–353

6. Beyer, D., Noack, A.: Can decision diagrams overcome state space explosion in real-time
verification? In: FORTE. Volume 2767 of LNCS., Springer (2003) 193–208

7. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without BDDs. In:
TACAS 1999. Volume 1579 of LNCS., Springer (1999) 193–207

8. Woźna, B., Zbrzezny, A., Penczek, W.: Checking reachability properties for timed automata
via SAT. Fundamenta Informatica 55(2) (2003) 223–241

9. Sorea, M.: Bounded model checking for timed automata. Electronic Notes in Theoretical
Computer Science 68(5) (2002)

10. Audemard, G., Cimatti, A., Kornilowicz, A., Sebastiani, R.: Bounded model checking for
timed systems. In: FORTE 2002. Volume 2529 of LNCS., Springer (2002) 243–259

11. Malinowski, J., Niebert, P.: SAT based bounded model checking with partial order semantics
for timed automata. In: TACAS 2010. Volume 6015 of LNCS., Springer (2010) 405–419

12. Kindermann, R., Junttila, T., Niemelä, I.: Modeling for symbolic analysis of safety instru-
mented systems with clocks. In: ACSD 2011, IEEE (2011) 185–194

13. Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories. In: Hand-
book of Satisfiability. IOS Press (2009) 825–885

14. Cimatti, A., Clarke, E.M., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Sebas-
tiani, R., Tacchella, A.: NuSMV 2: An opensource tool for symbolic model checking. In:
CAV 2002. Volume 2404 of LNCS., Springer (2002) 359–364

15. Clarke, Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press (1999)
16. Biere, A., Heljanko, K., Junttila, T., Latvala, T., Schuppan, V.: Linear encodings of bounded

LTL model checking. Logical Methods in Computer Science 2(5:5) (2006) 1–64
17. Dutertre, B., de Moura, L.M.: A fast linear-arithmetic solver for DPLL(T). In: CAV 2006.

Volume 4144 of LNCS., Springer (2006) 81–94
18. Clarke, E.M., Kroening, D., Ouaknine, J., Strichman, O.: Completeness and complexity of

bounded model checking. In: VMCAI 2004. Volume 2937 of LNCS., Springer (2004) 85–96
19. Tripakis, S., Yovine, S., Bouajjani, A.: Checking timed büchi automata emptiness efficiently.

Formal Methods in System Design 26(3) (2005) 267–292
20. Larsen, K.G., Pettersson, P., Yi, W.: Model-checking for real-time systems. In: FCT 1995.

Volume 965 of LNCS., Springer (1995) 62–88
21. Lahtinen, J., Björkman, K., Valkonen, J., Frits, J., Niemelä, I.: Analysis of an emergency

diesel generator control system by compositional model checking. VTT Working Papers
156, VTT Technical Research Centre of Finland (2010)

A Appendix: Proofs of Lemmas 1 and 2

Lemma 1. If B has an infinite accepting non-zeno run π = 〈l0, v0〉〈l1, v1〉 . . ., then B’s
region automaton BR has a lasso-shaped accepting non-zeno run πR

lasso.

Proof. Let πR = 〈l0, [v0]〉〈l1, [v1]〉 . . . be the region automaton run corresponding to π.
In the following we will construct a lasso-shaped run πR

lasso of BR from a prefix of πR.

Let XU ⊆ X be the set of clocks which are reset only finitely many times along π.
Then according to Theorem 1, any clock x ∈ XU exceeds mx infinitely often on πR,
which combined with the fact that x is only reset finitely often, yields that x exceeds
mx in all states after a given point in π, i.e. x ≤ mx holds only finitely often on π.
Let sR

inf be an arbitrary state occurring infinitely often in πR. Note that such a state is
guaranteed to exist due to the fact that BR has only finitely many states. Each x ∈ XU

is guaranteed to exceed mx in sR
inf, as sR

inf occurs infinitely often on πR while x ≤ mx

holds only finitely often. Let iinf the lowest number such that 〈liinf , [viinf]〉 = sR
inf. We

will turn πR into a lasso-shaped run by looping back from a later occurrence of sR
inf to

its occurrence at index iinf.
Let iend be the lowest index such that 〈liend , [viend]〉 = sR

inf and (i) every clock in
X \XU is reset, (ii) there is a time elapse step and (iii) an accepting state of B visited
between the iinfth and the iendth state of π. As each of the described events occurs
infinitely often on π, a corresponding choice of iend is possible. Now let

πR
lasso := 〈l1, [v1]〉 . . . 〈liinf−1, [viinf−1]〉(〈liinf , [viinf]〉 . . . 〈liend−1, [viend−1]〉)ω

Then πR
lasso is a lasso shaped run of BR. Furthermore, any clock x ∈ XU exceeds

its mx value infinitely often on πR
lasso, namely in 〈liinf , [viinf]〉 = sR

inf. In addition, due to
the way iend was chosen, any clock X \XU is reset infinitely often, an accepting state
visited infinitely often and a time elapse step taken infinitely often on πR

lasso. According
to Theorem 1, this implies the non-zenoness of πR

lasso, which concludes the proof of
Lemma 1. ut
Lemma 2. If BR has an accepting lasso-shaped non-zeno run, then BR has an accept-
ing lasso-shaped non-zeno run of length at most Kregion.

Proof. We will prove the lemma by construction of a lasso-shaped non-zeno run of
BR of length at most Kregion from the lasso-shaped run πR

lasso constructed in the proof
of Lemma 1. Note that we only needed certain parts of the looping part of πR

lasso for
showing non-zenoness of the run, namely one time elapse step, one reset step per clock
in X \ XU, an accepting state and sR

inf. Thus, we can replace every segment between
two such relevant steps / states by the shortest path between them without affecting the
non-zenoness of the run or the fact that it is accepting. The resulting loop consists of∣∣X \XU

∣∣ reset steps, one time elapse step, one accepting state, sR
inf and

∣∣X \XU
∣∣ + 3

shortest paths in between. Any shortest path has length of at most
∣∣BR
∣∣−2, not counting

initial and final state, where
∣∣BR
∣∣ ≤ |L| · |X|! · 2|X| ·∏x∈X(2mx + 2) is the number

of states in BR. Taking into account that every step consists of two states, this yields a
length of at most (

∣∣X \XU
∣∣+1)·2+2+(

∣∣X \XU
∣∣+3)·(

∣∣BR
∣∣−2) < (|X|+3)·

∣∣BR
∣∣ ≤

(|X|+ 3) · |L| · |X|! · 2|X| ·∏x∈X(2mx + 2) ≤ Kregion.
After modifying the looping part of our lasso-shaped run, we can replace the non-

looping part with the shortest path from the initial state of BR to any state in the looping
part. Note that in the resulting run the set of states that occur in the non-looping part
is disjunct from the set of states in the looping part. This implies that we can reduce
our upper bound to the length of the looping part by |X| + 3 for each state in the non-
looping part and, ultimately, that Kregion is an upper bound for the length of the entire
resulting lasso-shaped run. ut

