A Domain Specific Language for Contextual
Design

Balbir S. Barn and Tony Clark?

Middlesex University, Hendon, London, UK, NW4 4BT

Abstract. This paper examines the role of user-centered design (UCD)
approaches to design and implementation of a mobile social software ap-
plication to support student social workers in their work place. The expe-
rience of using a variant of UCD is outlined. The principles and expected
norms of UCD raised a number of key lessons. It is proposed that these
problems and lessons are a result of the inadequacy of precision of mod-
eling the outcomes of UCD, which prevents model driven approaches to
method integration between UCD approaches. Given this, it is proposed
that the Contextual Design method is a good candidate for enhancing
with model driven principles. A subset of the Work model focussing on
Cultural and Flow models are described using a domain specific language
and supporting tool built using the MetaEdit+ platform.

1 Introduction

This paper examines the role of user-centered design (UCD) to the design and
implementation of a mobile social software application for supporting student
social workers in their work place. The principles and expected norms of UCD
raise a number of issues which lead us to propose that these problems are a result
of the inadequacy of precision of modeling the outcomes of UCD, which prevents
model driven approaches to method integration between UCD and established
software engineering practice. A particular UCD approach - Contextual Design
[3] is explored in detail from a model/language design perspective by first cri-
tiquing the key issues of ambiguity and lack of precision of diagrams normally
produced as a result of Contextual Design activities. Following on from this, a
subset of Contextual Design, namely, the Cultural Model is developed in terms of
abstract and concrete syntax together with its accompanying semantics diagram
using an approach to language design described by Clark et al [7]. An implemen-
tation using the MetaEdit+ tool [17] is also briefly described. The issues of a
lack of precision of UCD methods represents an ongoing research challenge in the
field of requirements engineering and a key outcome of this paper is to encour-
age discussion of these problems and lessons to enable method re-engineering of
UCD practice.

The paper contributes to current research in human centred software engi-
neering by providing a formal syntax and semantics for aspects of the Contextual
Design methodology and in doing so provides a route whereby the exploration
of how UCD and software engineering can be integrated.

The remainder of the paper is structured as follows: section 2 introduces
key aspects of UCD and model driven development; section 3 presents the key
motivation of this work, our experience of using UCD and the lessons learnt, and
provides a short introduction to Contextual Design, the UCD approach we have
selected to be subject to a formal treatment; section 4 puts the case for using a
model driven approach to UCD; section 5 presents the approach we have taken to
develop a modelling language with more precise syntax and semantics; section 6
presents the domain specific language version for Contextual Design along with
an illustrative example of its use; section 7 presents concluding remarks and
notes for further research.

2 Background to UCD and MDD

2.1 From User-Centered Design to Participatory Design

A detailed review of the literature concerning user-centered design is not possi-
ble within the constraints of this paper but it is useful to present an overview
of key phases in development of user engagement in systems design processes.
User-Centered Design (UCD) or the variant, User-Centered Systems Design [22]
emerged in the 1980s as an important development recognizing the move from
batch computing to interactive computing applications where there was a need
to involve users in the design process. At that time, however, as Marti and Ban-
non [20] indicate: UCD did not imply that “users were ... active participants in
the design process”, rather they were studied, observed, measured as a way of
gathering requirements for the system development [8]. An implication of UCD
is thus one of where the designer (hopefully) reacts to feedback from the user. A
more radical school of user involvement is that attributed to the so-called Scan-
dinavian Model of UCD, namely, Participatory Design (PD) that emerged from
the research activity of people such as Bjerknes et al [5]. In PD, users are seen
as equal partners in the design and development of systems. This involvement
of users implies users as “active agents” and later became known as Coopera-
tive Design [11] or more latterly as “Co-Design”. In PD, interestingly, there is
a focus on primary work processes and identification of technology to enhance
and better support work activities. (The basis of business process modeling). As
UCD concepts became established they were further elaborated as ISO Standard
13407, Human-centred design processes for interactive systems [23]. These con-
cepts were developed and extended into 12 key principles for UCD by Gulliksen
[15].

While the mantra of involving users in the design process is now well in-
grained [26] it has been contested and more recently Marti and Bannon [20]
outline caveats where they argue that involving users can present problems. The
characterization of problems they have identified forms part of the evaluation
of our experience of co-design when applied to our development of a mobile ap-
plication for e-learning, and which led us to consider how such issues may be
addressed by model driven practice for UCD.

2.2 Model Driven Development

Orthogonal but related to UCD is the need to recognize that software engineering
development methods have also evolved and more recently model driven devel-
opment is increasingly seen as critical to good design: see [10] for an overview
of MDD where it is argued that modelling is a key technology that is necessary
to address the representation gap between human understanding of complex
modern systems and their implementations and where precision at all levels of
development is key to the increased scope of computer-based support for sys-
tems development. We argue that precision is key to increasing all aspects of
system quality including reliability, usability, efficiency, and that MDD offers
an approach that provides precision from a range of appropriate perspectives.
MDD is increasingly being used for user-centred aspects of systems such as HCI
[27,25,24] and safety [1].

Modeling in general is viewed as a capstone of many software engineering
approaches where it is used to as an approach to user requirements definition
and as a basis for developing information systems to meet those requirements.
Models provide a vehicle for explaining and sharing understanding of complex
problems and provide capabilities for different views of the underlying problem
at different levels of abstraction. Model driven architecture takes this premise
further by providing an overarching conceptual structure for using and applying
transformations to models in a structured and controlled manner in all stages of
the software engineering development process.

The Object Management Group (OMG) provides a set of standards to ex-
press models and model-model transformation and has been leading industry
initiatives in the promotion of technologies, methods and standards under the
banner of model driven architecture (MDA) [13]. Our position is: MDA has key
role to play in systems development and are in agreement with Constantine and
Lockwood [8], who assert that UCD can be ambiguous and vague. In contrast,
Gulliksen et al assert that “model driven approaches represent a move away from
user-centered design reducing their involvement to that of the users being infor-
mants rather than co-designers”. This assertion needs re-visiting in the light of
MDA approaches to user interface design and recent advances in domain spe-
cific languages. Certainly Fisher [9] has identified that Collaborative Design and
meta-design (using MDA principles) are key themes facing software engineering
research and practice.

3 Experience of User Centered Design

This section describes some of our experiences from a recent research project
that utilised UCD and software engineering approaches to developing a mobile
application for Social Work education. We discuss some of the key issues and
lessons arising from that experience and present an argument for model driven
UCD.

3.1 Case Study

The motivation for exploring how model driven principles could be applied to
user centred design arose from a recent research project where we applied a vari-
ant of user centred design to design and implement a mobile device application
to support Social Work Education in the UK.

In common with many other professions, the training of social workers re-
quires students to be placed in social work settings and to undergo assessment
in the workplace. Trainee social workers in England (those on an accredited so-
cial work degree (UG or PG) must successfully complete 200 days in a practice
setting. Such placement can occur in different size blocks according to struc-
tures and requirements of individual degree programmes. These requirements
are maintained and regulated by the Social Work professional body — the Gen-
eral Social Care Council (http://www.gscc.org.uk/Home/).

During the practice learning process, there are several key stakeholders in-
volved, including: the student; the practice mentor and assessor; the University
academic tutor; the work based supervisor. The key outcome of the placement is
a report that outlines the skills and competencies raised along with supporting
evidence collected from the placement.

Given these background concepts the research project aimed to develop a set
of applications both mobile and web-based that supported student social workers
in the planning and design of practice learning assessments and in the collation
of research and practice evidence towards a final report.

3.2 Experience using UCD

The project team assigned to the project was multidisciplinary. There were aca-
demic experts from Computer Science, Sociology, Social Work, along with prac-
titioners from the Social Work field. Further, the project development teams
were located in multiple locations across the UK South. As well as the mul-
tiple disciplines located within the team, the Computer Science team further
represented alternative approaches to systems design, with representation from
both MDA and UCD. These different approaches led to some creative tension
manifested in early debates similar to that discussed between Gulliksen and Con-
stantine. Given the make-up of the project team, it was essential to agree to a
methodology that could accommodate disparate views. The team had previous
experience of using a co-design process for developing mobile applications for
the Nursing domain [21]. Hence this approach was adapted to suit the needs
of this project and the software engineering principles influencing members of
the team. Thus the project deployed a variety of methodological techniques that
draw upon software engineering, social sciences research and usability.

3.3 Problems Encountered

While the system was successfully developed, its deployment and use was very
limited, and is consequently still ongoing (past the project completion date).

This is partially attributed to the implementation of the co-design approach and
it is here that it is considered that there are many lessons to be learnt. Using
the putative framework of problems identified by Marti and Bannon [20] as a
starting point the following lessons are presented:

user types The intended software applications were designed for several types
of users.

users as designers While it is accepted that all users can design at some level
— that is have ideas, think creatively about different uses of tools and convey
those thoughts in some form explicit knowledge transfer — it is clearly not
the case that users have the necessary design skills to engage in all stages of
the design process.

new technologies Mobile technology is evolving at a rapid pace. Increasing
power, capability and software applications possible makes it very difficult
for non-technologists to remain abreast with such change. In order for users
to make a significant contribution to the design process they need to have a
logical understanding of technological solutions in order to be able to con-
ceptualize new scenarios of use. This problem manifested itself very early in
the co-design process: many of our participants had their first direct contact
with current mobile devices in our show and tell workshops.

work environments Project champions tend to be located at management
level where there is often limited understanding of operational requirements.
This can have a detrimental effect on active user involvement throughout
the design process. The Social Work environment in a public sector setting
meant there were work pressures that often prevented users from securing
sufficient time to effect a meaningful engagement in the co-design activities.

deployment risk The need for sufficient training, guidance, support and im-
pact assessment in the work environment also need to be sufficiently defined.
Issues of risk and technology in the workplace, although correctly identified
at the beginning of the project manifested themselves resulting low usages
in the work place context. There has been considerable interest within the
social sciences in developing ideas related to risk. Beck in his seminal text
Risk Society [2] argued that the “technisisation” of risk derives form the om-
nipresence of technology. The experience here could be seen as reflecting fear
on a number of dimensions. Reluctance to engage with the project could be
seen as a fear of technology itself and the ability of some individuals to cope
with technological demands. The social work task is in itself high risk and
high profile and the use of technological devices for training purposes could
be seen as representing a ‘reflexive’ form of risk. The findings could also re-
flect the so-called ‘precautionary principle’. Practitioners and students were
anticipating possible difficulties in areas such as confidentiality and data pro-
tection which prevented them from considering the possible full benefit of
the opportunity offered by the project.

user confusion Confusing what users want with what they truly need. Nu-
merous user studies and approaches can create a wide and detailed user
understanding however such studies can create confusion with what users
say they want with what they really need.

multi-faceted design team The make-up of the design team can influence the
nature of user involvement. For example, a team that is equipped with skills
in UL prototyping, and software design will likely involve users at stages in
the design process. A team with predominantly HCI researchers will likely
involve more users and at more stages. In this case, there was a relatively
balanced team in terms of skills and knowledge — our problems were arriving
at shared common vocabularies, and attempting to involve all users and all
design team members all the time.

4 The Case for Modelling in User Centered Design

These lessons or observations from the co-design approach have the potential
to be mitigated by taking a model-driven integrated approach to the artifact
development from the co-design activities. This paper argues that artifacts from
user-centred design should be model based so that transformations between view-
points can be integrated. This requires a user-centered design approach that is
both rich, for capturing key user requirements and is also model driven such
that it can be subject to model driven transformations during the design and
implementation process.

Currently, UCD approaches are strong on user engagement and communica-
tion but tend not to be model-based in the software engineering sense. Thus it is
difficult to derive a single viewpoint to meet both the needs of stakeholders and
software engineers. Such design-slicing could be a powerful feature in presenting
key features of an overall design without information overload.

Multiple viewpoints are a recognized approach to such a challenge but tend
to driven by software engineering needs. For example, Rational Unified Process
[18] has attempted to integrate user centered design activities. Such models serve
software engineering well but present notational and technique challenges to the
stakeholder in the usability domain. Here, it is proposed that multiple viewpoints
that are driven from UCD method approaches have the potential to reduce or
mitigate the problems/issues raised earlier. Hence it is proposed that taking
steps to move UCD to a more model driven software engineering approach has
the potential to be more effective than taking steps to make Software Engineering
more UCD focussed.

4.1 Contextual Design

The Contextual Design approach described by Beyer and Holtzblatt [3] is a good
candidate for enhancing using model driven principles as it already exhibits lan-
guage that one might see comfortably in the software design arena but is still
a rich user-centered design approach. The method supports the production of a
number of artifacts such as: key customer data as the basis for decision making;
processes where work is done; interactions using “flow models”; cultural mod-
els for capturing intuitive elements of environment; consolidation using affinity
diagrams.

These elements are present in a number of models enumerated here and we
also indicate if there is an existing language and notation feature available from
the Unified Modeling Language (UML) [14] available:

Artifact Model: produces the key customer data relevant to the system. These
data are referred to in other models and also inform the technical architecture
element that is part of the User Environment Design stage. The Conceptual
Design method does not advocate data modeling approaches explicitly but
the strong similarity suggests that UML Class Models would be a strong
technique for capturing such data.

Flow Model: is an analysis tool that is used to capture communication and
coordination between roles. It will typically describe what interactions take
place such as request for information, supply of information or an action. In
Contextual Design such a model is informal — but it can easily be modeled
in UML in a variety of ways. For example flow models have been described
by Activity Diagrams with additional features in [?].

Cultural Model: is an analysis tool that shows the cultural or political forces
in the organization. Issues addressed are forces that may impinge on roles
to prevent or modify how work is done. For the purposes of this paper, we
view cultural forces having an effect on belief values held by individuals who
are participating in a given task.

Sequence Model: shows the detailed steps that are performed to accomplish
a task. The terminology used in Contextual Design shows strong correspon-
dence to process modeling and can be represented by UML Activity Dia-
grams. This correlation provides a useful language tool for sharing of infor-
mation between usability designers and systems designers. For the purposes
of this paper we view sequence models as capturing the many alternative
workflows that individuals can undertake when directed to perform a given
task. The choice between different workflows is partially determined by the
belief values held by a given individual. It follows that cultural models have
a part to play in influencing workflow choices.

Contextual Design provides a stage that aims to consolidate findings from the
analysis. In this stage tools such as Affinity Diagrams for mapping issues across
the organization, and Consolidated work models for identifying common strate-
gies are available. These tools help in addressing the problems of multiple types
of users, users as designers, confusing what users want and what they truly
need because an overall view is possible. Such models could be captured using
stereotypes and UML class diagrams.

Similarly, process models described from different user perspectives may be
organized in models so that commonality and variability may be explicitly spec-
ified. However, no formal language for expressing such variation is described.
Interestingly, the method also has elements that are focused on software archi-
tecture These elements produce artifacts that include object models and the
functions and structures needed by the re-designed systems expressed as a de-
tailed architectural model.

4.2 The Semantics of Cultural Models

We now look at the Cultural model in detail and in particular examine the
concepts represented in Cultural models from the perspectives of key compo-
nents of language design - abstract and concrete syntax and the accompanying
semantics. Inspection of examples of cultural models [4]) raises key questions.
At first the diagrams appear to convey a significant amount of information. A
closer examination requires a full answer to many questions. Many of the di-
agrams represent Influencers as overlapping circles of different sizes. Consider
the following: Is there a significance in the size of circles? Is there significance
to the overlaps? What does an overlap mean? Are the length of the arrows im-
portant and do they signify anything? Is there a particular style to annotating
the circles and arrows? Even if the questions can be answered - and it make
take many pages of explanatory text there are still issues of interpretation be-
tween users and stakeholders. Generally, these are the same class of problems
that modelling design methods have addressed and which led to the standard-
isation of the Unified Modelling Language (UML) [14] and solutions to these
problems boil down to the creation (and agreement) of an abstract syntax (a set
of concepts, relationships and well-formed rules), a concrete syntax (typically a
graphical notation that supports the concrete syntax), and semantic model for
the domain which will allow unambiguous interpretation of instances of concepts
from abstract syntax. A model-enhanced version of this diagram would therefore
need to be based on a language that is specifically designed to represent cultural
forces in an organization - the domain. Such a class of language is often termed
a domain specific language (DSL) [6].

5 Approach

Our approach to the problem of formalising Cultural model aspects of Contextual
Design (CD) is based on the principles of model driven language engineering
[7]and through a process of analysis of the problem space, a domain specific
language (DSL) is created. The second step is to implement the language using
a meta modeling tool or by hand-coding.

5.1 Model Driven Language Engineering

A language definition must be provided using a suitable meta-language that can
represent the key features of a language (shown in figure 1):

concrete syntax is the human-friendly representation of a language. The con-
crete syntax defines how the language is to be presented on the screen or the
page.

abstract syntax is a machine friendly representation of language. The abstract
syntax defines the information structures that are used to represent the
essential features of the language so that they can be processed as data
values by a machine without worrying about how they are displayed on the
screen or the page.

Semantic Mapping
P

<<include>> | V.
1 | <<include>>
I
I

I 1
Concrete Syntax Abstract Syntax Semantic Domain

—-eey

Syntax Mapping
<<include>> |

<<include>>

Fig. 1. Model Driven Language Engineering

syntax mapping relates the abstract syntax structures to their valid concrete
representation. A syntax mapping is used by a tool to link what the user
sees to how the language is stored internally.

semantic domain is a definition of the things we mean when constructing
models in our language. The relationship between syntax and semantics is the
same as that between relational database schemas and the tables that con-
form to them: there are conformance rules and there may be many databases
that conform the same schema.

semantic mapping are the conformance rules between the syntax and the se-
mantics. For example, the semantic mapping defines the rules by which a
database table is considered to be correct with respect to a given schema.

In addition to the elements defined above, a language definition must contain
well-formedness rules that define when concrete syntax, abstract syntax and
semantic domain elements are valid. These correspond to database rules that,
for example, require all column names to be unique.

Simple UML-style class models and associated constraints can be used as a
suitable meta-language for representing the language components listed above.
The syntax and semantics are represented as independent class diagrams and
the mappings are class diagrams that include elements from the appropriate
models and define relationships (associations) between the elements. There are
other meta-languages available e.g. MOF [12]. Also, Halpin and Morgan’s work
[16] was used as the meta-modelling language for Archimate - the enterprise
architecture modelling language [19].

5.2 Tooling

The next step is to provide an implementation of the language, that is, a tool
that provides a binding of the various syntactic and semantic models and thus
allows users to construct cultural models of the target (or subject) domain. To
develop a proof of concept of this toolset, we utilised the meta modelling toolset

MetaEdit+ [17]. Meta Edit+ is a software toolset that supports the design and
implementation of domain specific languages. It uses a meta modelling language
GOPRR that is broadly similar to one that we used to specify our abstract
syntax and has the following concepts: Graph specifies one modelling language
such as Cultural Model; Object describes the basic concepts of a modeling
language. Objects are the main elements of the language; Examples include the
concept of Force, Role and so on; Relationship describes the properties for the
objects’ connections such as inheritance, call and transition; within the toolset,
the relationship mechanism is used to form bindings with objects and roles; Role
specifies the lines and endpoints of relationships; Property defines the attributes
which can be used to characterise any of the previous concepts. Properties are of
different data types and can be used to link to external concepts. The abstract
syntax for Contextual Design was encoded in the GOPRR modelling language
within the MetaEdit+ toolset in order to define the concrete syntax and the
production of the accompanying tool.

6 A DSL for Contextual Design

Contextual Design (CD) invoves four different types of model: flow models; se-
quence models; artifact models; contextual models. It is important that we un-
derstand what these models mean in order to use them effectively. This section
applies the approach to language design described in section 5.1 to CD.

6.1 Abstract Syntax

The abstract syntax is the cornerstone of a language definition. In principle there
may be many different concrete syntax models and many different semantics for
the same abstract syntax model. This section defines the abstract syntax for
each of the main models in the CD modelling language.

0..*
1
from
1
Role . Flow Event
name : String name : String
to 0.4 i
0.% N
1 1
Lo Model |2

Fig. 2. Flow Models

Flow Models Figure 2 shows the abstract syntax of flow-models. The element
Model is used as the top level container for all CD model elements. A model
consists of a collection of roles with flows between them. Each flow represents an
interaction between roles and is labelled with both an event that it generates and
the artifacts that are involved in the interaction. An example of a well-formedness
rule associated with the class Model is: every role must have a unique name.

Artifact Models Artifact models are equivalent to class models in UML. They
describe the elements that are involved in the interactions between roles. In
terms of our language definition, we do not need to consider artifacts in any
more detail.

0.*

name : String name : 5tring

0. influencedBy
Role]0-* Influence Force
Values
belief amount : ForceVal
influences
consistentWith 0.*

Fig. 3. Cultural Models

Cultural Models Figure 3 shows the abstract syntax of cultural models that
represent influences by one role on another. Each influence has a force associ-
ated with it from weak to strong. Each role manages a collection of values that
represent personal beliefs. For example an individual might believe that certain
types of technology are effective or that the cost associated with using certain
processes is very high. In a CD model, Values is an assembly of belief value types
in the same way that a class has an assembly of attributes. As we shall see, the
specific belief values associated with a person who performs the role is defined
in the semantics. An Influence together with its Force defines a condition which
must be met by any valid instance of the belief values associated with an any
influenced Role. A condition is a boolean expression in terms of variables. The
effect of applying an influence to a role is to restrict the set of possible belief
values that the role can have. A well-formedness rule that applies is Influence:
the set of variable names in the condition must be a sub-set of the value type
names associated with the belief values of all influenced roles.

Sequence Models Figure 4 shows the abstract syntax of sequence models.
Each role has an interface of activities. Each activity provides a description of
what to do when an event is received by the role. Each activity has a number

1

1

0.*
Activity

name : String

alternatives

0.*

|Condition! 1 Step 1 1 0--'!Anifact|

Fig. 4. Sequence Models

of alternative step assemblies (Steps) that reflects the options an individual has
when responding to a request to perform a task. For example, if an individual
is requested to implement a software component they may choose to implement
the component in one of a number of programming languages and using any one
of a number of development methods. Each individual step in a step-assembly
processes some artifacts and must satisfy a collection of belief-values. The idea is
that a step cannot be performed by a role unless it is consistent with the beliefs
of the particular individual.

An example of a well-formeness rule for sequence models is: the artifacts
associated with a step must be a subset of the artifacts associated with the flow
that gave Tise to the event.

6.2 Concrete Syntax

The complete abstract syntax for Contextual Design is large. In this paper we
have focussed on the Cultural Forces Model as it presents concepts that address
areas of the systems design process that are often not captured in software engi-
neering. Consequently we have translated that section of the abstract syntax to
the GOPRR meta modelling syntax for Meta-Edit-+. The tool capability allows
the creation of an concrete syntax - the notations and graphical elements and
their binding to the GOPRR representation of the abstract syntax. Diagram 5
shows the abstract syntax for cultural models in MetaEdit+ and figure 6 shows
the resulting cultural modelling tool generated from the meta-model and also a
partially drawn cultural model of the Social work Domain.

In this diagram example Roles include Student Social Worker. Influencers,
those who can assert a force and therefore influence how an activity is performed
include: Management, and Academic. Examples of Forces that are brought to
bear on a role include the fear of Data security (the loss of data) that was identi-
fied during the project deployment. When that force became sufficiently critical,
there was a Breakdown (red lightning icon) which resulted in an restriction of
the use of the mobile devices. The Toolset for developing and presenting Cultural

Graph Edit View Types

X Metamodel [GOPRR]: Meta Model for Cultural Forces, June 9, 2010, 13:54

Format Help

S shB oo

Build MHT

o+ QDb X

o= &+ ¢4+ .2

1 Object set [GOPRR!
{1 Object [COPRR]
Breakdown
Corporate Culture
s-Forcelnfluence

Influgncer rolehiame: String Forcedssasiation
L.Rale oleType:Fisedd List from
™ 5,
[Fargedssociion
< Y-
Property Value

Object ty| Object [COPR
Object ng Corporate Cu

i Breakd
Propertie reakdovn
Occurren N arme:String
Descriptiv Description:String
<O o e

Forcelnfluence
forceNams:String

to strength:Rasio Button Set

Fom | ageiping
Farce
o1

Breakdownimpast

>

Active: Corporate Culture Force: Ohje| Subgraph(s): None

laldldl

Graph Edit Wiew Types

Grid: 10@10 [snap [show | & [100x5+] €y

Fig. 5. GOPRR Meta Model

Format Help

X! Meta Model for Cultural Forces: Meta Model for Cultural Forces, June 23, 2010, 1:07

BME ¥Dh B oo o+ Qb

O x

T2 &

v

< Corporate Culture
w-Data Security
i Forcelnfluence

ifcademic Tutor

Property Value
Craph ty| Meta Model f

i

O

F

Data Security

Manaagernent

Festrictions on
uge

Technology
use

» —_—

Fiemora Support

15,

Active: None

| Subgraph(s): None

Stucent Social

Deadlines far
Acaclemnic Work

Academic
Stuelent

—
v

e

Grid: 10810 [Snap [Shew | @ | 100% '!Gl

Fig. 6. Toolset for Modelling Cultural Forces

Models was generated from the set of abstract concepts described in GOPRR,
the concrete syntax developed using the graphics tools available in MetaEdit+
and the bindings and rules for how connections work were declaratively specified
again in MetaEdit+

6.3 Semantic Domain and Semantic Mapping

Model Step

type type
Model Instance | 1 0..*[Step Instance
<<ordered>> 0.*
performedBy
Values Instance Role Instance
belief
type type
Values Role

belief

Fig. 7. Semantic Domain

Figure 7 shows both the elements of the semantic domain (classes suffixed
with Instance) and elements of the syntax domain together with semantic map-
ping associations between them (labelled type). The semantic domain defines
the elements that we are denoting using the syntax models. In this case the se-
mantic elements are essentially sequences of step instances that have arisen from
the steps associated with activities in the sequence model. However we cannot
associate any sequence of steps with a model instance because we must satisfy
the semantic mapping constraints that are outlined below:

1. in every role instance the belief values must satisfy the condition on every
influencer of the associated role.

2. in every step instance, the condition must be satisfied by the belief values
associated with the corresponding role instance.

3. a step can only be associated with a role instance where the corresponding
role has an incoming event with the same name as the activity giving rise to
the steps.

7 Concluding Remarks

The motivating work - the development of a mobile application for a complex
domain (Social Work) highlighted that there are potential problems that arise
with using co-design and while the core principles of UCD are clearly desirable,
the nature of the artifacts that are produced do not transfer to the software

engineering community in a straight forward manner. Thus our experience also
confirms that there is still mileage on the need to converge “on a science of design
through the synthesis of design methodologies” [9]. In particular there is interest
are in how design theories, user centred design approaches in general and their
outputs can be modeled such that method integration with established software
engineering approaches can be more formalized . Hence there a role for model
driven engineering in user centered design and this paper has outlined how one
established UCD approach may be adapted to make it more model driven (and
so artifacts captured using UML modeling tools).

CD models, as defined in the literature, have an informally defined seman-
tics. This limits what can be achieved, especially in terms of tooling to support
CD. This paper has taken a precise meta-modelling approach to the definition
of a language for CD modelling. In doing so, we have defined both the syntax
and (a) semantics for CD. Our semantics defines CD models to denote chains of
steps that arise from interactions between roles in a business context and which
process business artifacts. The semantics reflects the choices that occur in a
business environment that are resolved in terms of belief-systems of the individ-
uals involved; it does this by allowing a single model to denote multiple possible
sequences of steps for each single business activity. The semantics attributes in-
fluencing factors to the ability of individuals in a business to affect belief systems
and thereby influence the way that influenced individuals implement given tasks.

As a result of taking a semantics driven approach to our CD modelling lan-
guage we can now perform analysis of models. For example, it is possible to
determine whether, given a set of influencers on individuals, there are any se-
quences of steps for a given business interaction. Suppose that this is used in a
business that encourages new employees to get advice from established employ-
ees when performing tasks. Our semantics allows us to determine whether there
are particular sets of ’old-hands’ whose collective advice would be unhelpful.
Furthermore, we can measure the amount of positive influence that mentoring
is likely to have in terms of the reduction in confusion when staff take on a new
role. For researchers, future projects will likely consider and evaluate further
how such approaches may be used to allow more alignment with the software
engineering model driven architecture paradigm.

References

1. Ra Basnyat, Nick Chozos, and Chris Johnson. Incident and accident investigation
techniques to inform model based design of safety critical interactive systems. In
Design, Specification and Verification of Interactive Systems 2005, pages 51-66.
Springer Verlag, 2006.

2. U. Beck. Risk society: towards a new modernity. Sage Publications Ltd, 1992.

3. H. Beyer and K. Holtzblatt. Contextual design: defining customer-centered systems.
Morgan Kaufmann Pub, 1998.

4. H. Beyer and K. Holtzblatt. Contextual design. interactions, 6(1):32-42, 1999.

5. G. Bjerknes, P. Ehn, M. Kyng, and K. Nygaard. Computers and democracy: A
Scandinavian challenge. Gower Pub Co, 1987.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

26.

27.

T. Clark, A. Evans, and S. Kent. Engineering modelling languages: A precise meta-
modelling approach. Fundamental Approaches to Software Engineering, pages 242—
260, 2002.

T. Clark, P. Sammut, and J.S. Willans. Applied metamodelling: a foundation for
language driven development. 2008.

L.L. Constantine and L.A.D. Lockwood. Usage-centered engineering for Web ap-
plications. IEEE software, pages 42-50, 2002.

G. Fischer. Software engineering themes for the future. In Proceedings of the 28th
international conference on Software engineering, page 1044. ACM, 2006.

Robert France and Bernhard Rumpe. Model-driven development of complex soft-
ware: A research roadmap. In FOSE ’07: 2007 Future of Software Engineering,
pages 37-54, Washington, DC, USA, 2007. IEEE Computer Society.

J.M. Greenbaum and M. Kyng. Design at work: Cooperative design of computer
systems. L. Erlbaum Associates Inc. Hillsdale, NJ, USA, 1991.

Object Management Group. OMG Meta Object Facility, 2010.
http://wuw.omg.org/mof/.
Object Management Group. OMG model driven architecture, 2010.
http://www.omg.org/mda/.
Object Management Group. Unified Modeling Language, 2010.

http://www.uml.org/.

J. Gulliksen, B. Goransson, I. Boivie, S. Blomkvist, J. Persson, and A. Cajan-
der. Key principles for user-centred systems design. Behaviour & Information
Technology, 22(6):397-409, 2003.

T. Halpin and T. Morgan. Information modeling and relational databases: from
conceptual analysis to logical design. Morgan Kaufmann, 2008.

MetaCase Inc. Metaedit+ workbench - build your own domain-specific modeling
language, 2009. http://www.metacase.com/mwb/.

P. Kruchten. The rational unified process: an introduction. Addison-Wesley Long-
man Publishing Co., Inc. Boston, MA, USA, 2000.

M. M Lankhorst, H.A H.A. Proper, and J Jonkers. The Anatomy of the ArchiMate
Language.

P. Marti and L.J. Bannon. Exploring User-Centred Design in Practice: Some
Caveats. Knowledge, Technology & Policy, 22(1):7-15, 2009.

D. Millard, Y. Howard, L. Gilbert, and G. Wills. Co-design and Co-deployment
Methodologies for Innovative m-Learning Systems. Multiplatform E-Learning Sys-
tems and Technologies: Mobile Devices for Ubiquitous ICT-Based Education, 2009.
D.A. Norman. Cognitive engineering. User centered system design, pages 31-61,
1986.

International Standards Organization. Human-centered design processes for inter-
active systems. ISO, 1999.

Frank Radeke. Pattern-driven Model-based User-Interface Development. 2007.
Jean sébastien Sottet, Gaelle Calvary, and Jean marie Favre. Towards mapping
and model transformation for consistency of plastic user interfaces. In The Many
Faces of Consistency in Cross-Platform Design Workshop at CHI’2006, 2006.

M. Scaife, Y. Rogers, F. Aldrich, and M. Davies. Designing for or designing
with? Informant design for interactive learning environments. In Proceedings of
the SIGCHI conference on Human factors in computing systems, page 350. ACM,
1997.

Jean Vanderdonckt. A mda-compliant environment for developing user interfaces
of information systems. In Proc. of 17 th Conf. on Advanced Information Systems
Engineering CAiSE’05, pages 13-17. Springer-Verlag, 2005.

