Desktop-to-Mobile Web Adaptation through
Customizable Two-dimensional Semantic Redesign

Fabio Paternd, Giuseppe Zichittella

CNR-ISTI, HIIS Laboratory, Via Moruzzi 1, 56124 Pisa, Italy
{fabio.paterno, giuseppe.zichittella}@isti.cnr.it

Abstract. In this paper we present a novel method for desktop-to-mobile
adaptation. The solution also supports end-users in customizing multi-device
ubiquitous user interfaces. In particular, we describe an algorithm and the
corresponding tool support to perform desktop-to-mobile adaptation by
exploiting logical user interface descriptions able to capture interaction
semantic information indicating the purpose of the interface elements. We also
compare our solution with existing tools for similar goals.

Keywords: Ubiquitous Applications, Multi-Device Environments, Adaptation.

Introduction

One of the main issues in current technological settings is how to design and
develop interactive applications that can be accessed through a wide variety of
devices (ranging from small watches to very large screens, including various types of
smartphones, PDAs and Digital TVs). This is particularly important in Web
applications, which are the most common ones.

The vision of ubiquitous computing [16] is that the users operate in intelligent
environments, which are aware of users’ needs and able to assist, even proactively,
the users in performing their activities and reaching their goals. To this end, one
important aspect is the possibility for a user surrounded by multiple devices to freely
move about and receive user interfaces adapted to the current context of use.

In current mobile devices various solutions are adopted for accessing Web
applications originally developed for desktop systems. Some just cut the page to the
display area, thus showing only a limited portion. Others, such as those using the
Small Screen Rendering Technique in the Opera mini browser, provide the narrow
view in which the content is vertically arranged in order to avoid horizontal scrolling.
The most sophisticated solutions are those, such as the Safari browser in the IPhone,
which automatically resize the Web page to the screen size and allow the user to zoon
in and out through gestures in the touch interface. However, their usability is often
low in terms of Web navigation, since users have to make various zoom in and out
interactions in order to identify the part of content that they are looking for.

The solutions for such issues can benefit from user interface model-based
approaches, in which declarative descriptions of the user interface are used in order to
avoid dealing with a plethora of low-level implementation details associated with the

wide number of available devices and implementation languages. Despite such
potential benefits, their adoption has mainly been limited to professional designers,
but new solutions have recently been emerging that are able to extend such
approaches in order to achieve natural development by enabling end users to develop
or modify interactive applications still using conceptual models, but with continuous
support that facilitates their development, analysis, and use [1].

Model-based languages are utilized at design time to help the user interface
designer cope with the increasing complexity of today’s applications and contexts.
The underlying user interface models are mostly used to generate a final user interface
code, which is then executed at run time. However, approaches utilizing the models at
run time are receiving increasing attention. We agree with Sottet et al. [13], who call
for keeping the models alive at run time to make the design rationale available.

In the following, we present some research work that exploits model-based
approaches for multi-device ubiquitous applications. We show a new tool for desktop-
to-mobile adaptation, called customizable two-dimensional semantic redesign. We
present its underlying algorithm and compare its results with those of other current
tools. The environment also allows end users to customize the adaptation process.
Lastly, some conclusions are drawn along with indications for future work.

Related Work

Various approaches are possible to support adaptation for mobile devices.
Bickmore [2] proposed a classification into five categories: device-specific authoring
(one version for each target device type), multiple-device authoring (one version, with
subversions for the various targets, e.g. using different stylesheets), client-side
navigation (adaptation is performed directly by the client), Web page filtering
(adaptation is obtained by content filtering) and automatic re-authoring (one version
exists, which is then automatically adapted for the target device). Automatic re-
authoring can be further divided into transducing (the original structure is preserved
and the elements are adapted, e.g. images resized) and transforming (the structure is
adapted as well). Our approach is an example of automatic re-authoring, supporting
transforming (since the original pages can even be split into multiple mobile pages if
they are too expensive in terms of space consumption).

Various contributions have been put forward in this area and it is not possible to
mention all of them. The OPA browser [14] allocates various functions for Web
browsing on each numerical key of a cellular phone. Buyukkokten et al. [4] proposed
a novel technique for form summarization, which is also able to automatically
summarise texts according to various policies. Laakko and Hiltunen [6] proposed a
technique for server side adaptation. We too support a solution using an adaptation
proxy but we also exploit logical descriptions that allow us to propose a more general
solution. The Roam system [5] is another environment for multi-device applications.
It also logically partition an application in a set of components but then it requires that
developers provide various implementations for different types of devices. Thus there
is little support for automatic adaptation. Studies on usability of mobile adaptation [7]
by Kaikkonen and Roto indicate that adaptation should not completely destroy the

original structure of the desktop pages in order to allow users to still be able to
associate the mobile pages with the original ones. One important issue in this
adaptation process is how to handle table adaptation. In [10] there is a proposal that
allows users to interactively fold and unfold the tables rows and/or columns.
However, such manual adaptations are lost when users access the tables again.

A Model-based Architecture for User Interface Adaptation

We have designed and developed a model-based architecture for user interface
adaptation, which supports reverse and forward transformations that are able to
transform existing desktop Web applications for various interaction platforms. The
basic assumption is that there exists a huge amount of easily accessible content for
desktop Web applications, which can be processed and transformed to support multi-
device interfaces, even across non-Web implementation languages. The advantage of
this solution with respect to others (e.g. [9]) is that it does not require that the
applications be implemented using a particular toolkit in order to make them able to
adapt.

When the user accesses the application through an interaction platform other than
the desktop, the intermediate adaptation server (which includes a proxy server)
transforms its user interface by building the corresponding logical description and
using it as a starting point for creating the implementation adapted to the accessing
device (see Figure 1). Lastly, the user interface implementation for the target device is
generated.

The reverse engineering module analyses the content of the HTML and the
associated CSS files and builds the logical description of the desktop user interface,
which is provided as input to the adaptation module.

Adaptation/Proxy server

Logical Logical. HTML/css B
descr. 1 W descr.2 _
Reverse [mmmmps Semantic mmmmmis Generator il .
XML Redesign EeUlS
Application Client
Server

Fig. 1. The Main Phases of the Adaptation Process

In the process of creating an interface version suitable for a platform different from
the desktop, we use a semantic redesign module. This part of the environment
automatically transforms the logical description of the desktop version into the logical
description for the new platform. Therefore, the goal of this transformation is to
provide a description of the user interface suitable for the new platform. This means
that intelligent rules are used for adapting the description of the user interface to the
new platform taking into account its capabilities (e.g. using interface elements that are
more suitable for the new platform) but ensuring at the same time that the support for
the original set of tasks is maintained. This solution allows the environment to exploit

the semantic information contained in the logical description. In this case the semantic
information is related to the basic tasks that the user interface elements are expected
to support.

This software architecture for user interface adaptation currently uses MARIA
[12], a recent model-based language, which allows designers to specify abstract and
concrete user interface languages according to the CAMELEON Reference
framework [3]. This language represents a step forward in this area because it
provides abstractions also for describing modern Web 2.0 dynamic user interfaces and
Web service access. It provides an abstract language independent of the interaction
modalities and concrete languages for a number of platforms. In general, concrete
languages are dependent on the typical interaction resources of the target platform but
independent of the implementation languages.

In MARIA an abstract user interface is composed of one or multiple presentations,
a data model, and a set of external functions. Each presentation contains a number of
user interface elements (interactors) and interactor compositions (indicating how to
group or relate a set of interactors), a dialogue model describing the dynamic
behaviour of such elements, and connections indicating when a change of
presentation should occur. The interactors are classified in abstract terms: edit,
selection, only_output, control, interactive description, .. Each interactor can be
associated with a number of event handlers, which can change properties of other
interactors or activate external functions.

The Adaptation Transformation

We have designed a new tool for adaptation: Customizable Two-dimensional
Semantic Redesign. It supports adaptation from desktop-to-mobile devices and
overcomes some of the limitations of previous approaches in the area [11] because it
allows users to configure the adaptation process and provides more control over costs
calculation and the adaptation results. For example, while previous solutions
calculated the screen space requested by the user interface elements mainly in terms
of vertical extension, the new algorithm calculates both the horizontal and the vertical
consumption of screen space.

The new algorithm takes as input the concrete description of a desktop user
interface in the MARIA language and goes through a number of steps. First, it
performs some basic transformations: if the user provides preferences regarding the
minimum and maximum fonts for the target device then the system transforms all the
textual content in order to fit it into the given range. Next, it calculates the cost of all
the interactors and composition operators in the provided specification. If the
resulting total cost is sustainable for the target device, then the corresponding logical
description is generated, otherwise it starts the process to reduce the cost in order to
make it sustainable. The basic elements are adapted for the target device first: the
images are shrunk, while preserving their aspect ratio, some interactors are replaced
with others that are semantically equivalent but need less screen space (e.g. a list can
be replaced with a drop-down menu), long texts are reduced in such a way that the
part exceeding a limit is shown only on request, image and text in tables are reduced

in size. After these basic transformations the overall cost is recalculated and if it is not
yet sustainable by the target device then the part of the algorithm related to page
splitting is activated. The purpose of this phase is to split the original desktop
presentation into two or more presentations that are sustainable for the target mobile
device. For this purpose the algorithm considers the interactor compositions
(groupings of elements or relations that involve two groups) and tables of elements,
and associates some of them to newly generated mobile presentations, removing them
from the current presentation in order to decrease its overall cost.

Reverse

‘ ’ Semantic Redesign

Calculate costs
(stage 1)

|

Exec base

JAXB
I - !
Transformations

Unmarshalling

—

N
| Yes ALimid
Exec Bl Exceed
?
interactors ¢
reduction | Calculate costs no
- (stage 2)
\H/
Exec o Y Limit
o ~r Exceed
Splitting 2
‘ no
JL JL

"\;.r' -\, /
| JAXB Marshalling

Page
Generator

Fig. 2 The adaptation algorithm

The elements that determine the cost of the interactors are: the font attributes (size,
style, type), the vertical and horizontal space required by a text, image dimensions,
interline value, interactor type, ...

The algorithm has a parameter (Scrolling to Avoid), which allows the specification
of which scrolling (vertical or horizontal) to avoid in the case that the presentation
cost exceed the limits in both directions.

When the splitting part is activated the algorithm looks for a structured element in
the logical description whose cost is sufficiently high that removing it would make
the presentation sustainable for the target device. Then, such structured element
would be allocated to a newly generated mobile presentation, which would be
accessible through a link inserted in the original one. The structured elements

considered are groupings, relations, data tables and layout tables. When the element
candidate for removal is a data table, the splitting is implemented differently. The
table is split into two parts, the part composed of the columns visible without
horizontal scrolling remains in the original presentation with an additional link
allowing the user to continue to browse it in a separate presentation containing the
remaining columns, from which it is possible to return by a similar link.

Horizontal
Threshold
1

" . o Train
Departure| Arrival | Duration | Train no.

: Category Changes
N - t
Mo lorence| 110 11807 R 0
PlsA |rLOREncE ¥ 3028 R 0
;l;s‘,{ LoRime i 7‘*’ R 0
T
i
i
Departure| Arrival | Duration Train no. (,;"’:‘i:“ Changes
HA |monence| 2 1736 R 0
Mea |moRiNce| 11 next pres 11867 R 0
%’(ll"z? FL (%»L[‘rl(g| 104 3020 R 0
%}l]\‘f Iltznle:[ﬁu: 1:04 11706 R 0
(a) (by

Fig. 3. Example of table splitting

In particular, the tool supports two ways to determine how splitting should be
performed. In both cases it analyses the cost of the structured elements, which
includes those of the composed interactors, and the cost of the tables (both data and
layout tables). Then, the decision of the set of elements to allocate to the newly
generated mobile presentation is given in one case by the most expensive element. In
the other case the algorithm first calculates the elements whose removal would make
the current presentation sustainable by the target device, and then selects the one that
has the lowest cost. The rationale for this second option is that it allows obtaining a
sustainable presentation but by removing the least amount of information possible,
thus preserving the original design as much as possible.

End-User Adaptation Customization

In the research on user interface adaptation, one issue that we are considering is
how to provide users with more control over the adaptation process in order to
improve the usability of its results. In this context more control can mean various
things. One important aspect is control over the rules that drive adaptation to the

various platforms (the most common case is desktop-to-mobile adaptation). For
example, the adaptation engine is able to split the desktop pages when they require
considerable amounts of interaction resources but some users may like to have more
control over the splitting algorithm. End-User Development [8] (EUD) can be defined
as a set of methods, techniques, and tools that allow users of software systems, who
are acting as non-professional software developers, at some point to create, modify or
extend a software artefact. End-users already have difficulties with single device
applications, thus it easy to understand how such difficulties increase when
considering applications for multi-device environments. This is one further reason for
providing better support for EUD in ubiquitous applications.

Figure 5 and 6 show the user interface that allows end users to configure the
adaptation process. The various parameters are grouped according to the related user
interface aspect considered. For the fonts, it is possible to specify the minimum and
maximum font size in the target device, and the associated measure unit. For the radio
buttons it is possible to indicate whether they should be transformed into an interactor
that supports the same semantics but using less space screen. In this case, it is
possible to specify the threshold, in terms of number of choice options, which should
trigger the transformation and the type of interactor to use for its replacement. Similar
parameters are available for the list boxes. Other parameters concern the maximum
number of characters for texts, maximum and minimum dimensions for images. These
parameters determine the cost of rendering a presentation. This cost is compared with
the overall sustainable cost in the target device, which is given by the screen
resolution multiplied by the horizontal and vertical tolerance. The higher the tolerance
coefficient values are, the more scrollable the generated user interface will be. This
means that end users have the possibility to specify to what extent the adapted content
will be scrollable in the target device. The table tolerance provides an additional
factor to consider when calculating the sustainable cost. In practise, this means that
when there are tables, more scrolling will be acceptable before deciding to split the
presentation.

Fig. 4. An example application: Wikipedia.

Figure 4 shows the structure of the user interface of a well-known application,
Wikipedia, and next we see how the splitting changes depending on the customization
parameters specified. In next Figures we show two example configurations, which
mainly differ for the scrolling to avoid parameter (in one case is vertical and in the
other is horizontal) and the coefficients for display tolerance (in one case they are 20
and 80, in the other one they are 20, 500).

16.21 > =
Desktop - Mobile mapping table
- Font properties — Main Page
. X -~ From Wikipedia, the free
Minimum font size |11 | encyclopedia
Navigation
Maximum font size |18 | hanpas Welcome to
. Eeatured content ikipedi
Defalt font size |11 | e ki as
Defiruh font Fasity: [AGaT = Random anicle s o sna Bloowe
anlt font Family | Arial Interaction ancchopediane Googar
@ About Wikipedia
. el Community portal 1324 007 sreles i
Measure unit e Recen! changes English.
O em Contact Wikipedia
Lo Today's featured picture
Radio button properties Teolbox
Jihat links here.
E Related changes Olher aroas of Wikipedia
Transform radio button [no | Upioad fie N s X
' foxitie L o o
Radio button threshold |1 Permanent link

Radio button mapping | Drop down list ~

List box properties iPod = 16.24 > =
IR Estbox [no | [14(: 48.82. 243.5!804‘!\\...9']
List box threshold |4

back
P < i Drop down list »
List box mapping | Drop down list ¥ | Today's featured article

Robert

Other objects properties Hues

Splitting options

@ Horizontal scrolling (defaulr)

o ERE (1553-
Long text limit 300 1632) was
Image scaling factor |50 an English
Max image width 150 7
= . mathematician and
Min image width 50 geographer who made
Max image heigth 150 observations of the
ariations .

Min image heigth 50 off the coast of

B Newfoundland . He either
Horizontal tollerance 20 hrim— b
Vertical tollerance 80 < > A B
Table tollerance 2 (c) bodyContent-upper

Pod = 16.23 =)

le'lBEZZ"\S 8180/m... & I]

Scrolling to avoid (priority): O YVertical scrolling

@ Lowest cost interactor composition

Splitting selection rule:
- AR R © Highest cost interactor composition

Disable Table splitting O

(a) Configuration

The Atlantic coast at Porto Covo |,
in the municipality of Sines, Portugal
known for its beaches , it is located
western coast of Portugal , about 1
(110 mi) south of Lishon . The na
Covo" probably means Port of the
where a covo is a kind of fishing n¢
capturing lobsters and crabs .

Photo: Joaquim Alves Gaspar

(d) bodyContent-bottom

Fig. 5. First Example of Adaptation Configuration and Associated Results.

The customization interface also allows the user to set the priority of the type of
scrolling (horizontal or vertical) to avoid and the algorithm splitting policy to apply.
In this way, we obtain the specification of user preferences regarding adaptation,
which can also be reused for other applications more easily than solution such as
collapse-to-zoom [15], where the user can express preferences only associated to a
given application.

Desktop - Mobile mapping table

Font properties

Minimum font size |11

146 .48.82.243:8180/m... &

Maximum font size |18
Defanlt font size 1
Default font Family | Arial v/
Main Page
. Ow

Measure unit pixel

O em This page was last modified on
15 hine 2010 81 224
the

ution-
cengs - asational
ply. Soe Lo of

Radio button properties

Splitting options

Scrolling to avoid (priority): 18 Vertical sc

Splitting selection rule:

O Horizontal scrolling (default)

rolling

@ Lowest cost interactor composition
O Highest cost interactor composition

Disable Table splitting O

(a) Configuration

Transform radio button [no 1B Commmiyports
Contct Wikgadia Contactus
Radio button threshold 1 Donateto Pmacy palicy
Wikipedia About Wakipedia
" s : Hap Disdaimors
Radio butt D d list v olbox e
o on mapping rop down lis ! ':‘:T.: . T
ist be i m
List box properties - (b) Main Page
Transform list box | no |
List box threshold |4
List box mapping |Drop down list ¥ |
Other objects properties
Long text limit 300
Image scaling factor |50
Max image width |15E\ iPod = ‘T':, > =
Min image width |5u [146.48.82.243:8180/m.... & ‘]
f e1'gth back
Max fmage B |15D From Wikipedia, the free encyclopedia
Min image hei 50
gth | . welcome to Wikipedia . Arts.

i frex encyclopedia st Biography
Horizontal tollerance |2D the .?,4 o : .- e
Vertical tollerance |500 -

— Today's featured article
Table tollerance 2

Robert
Hues
(1553
1632) was
an English

mathcmatician and

geographer who made
i —— o

(c) bodyContent

Fig. 6. Second Example of Adaptation Configuration and Associated Results.

Then, we can see for each configuration the resulting adapted mobile pages. In the
first case the main page is split into three mobile pages (Figure 5). In the first mobile
presentation we have highlighted the automatically generated links to the other mobile
pages. In the second case (Figure 6), only two pages are generated from the splitting.
This is because in order to fit with the vertical scrolling was sufficient to cut only one
big element, which referred to the main central content part.

Please note that the results of the adaptation applied to Web sites such as
Wikipedia can change depending on the change of the actual content, which
continuously varies in such sites.

An Example Application

In order to better understand how our approach works we can consider an example
desktop Web application (see Figure 7). For the sake of clarity we do not use a
particularly complex example.

| |
:| Date |Duration Flight sumber (Company | Price | Time | :
! it 032008 93 : 5347 o | "
II Mfitan Phitadeiphia (11032009 | 9:30 ATIOEG Alitalia (33475 l{mm: | Grouping (G3)
II Milan Philadelpha (11032004 | 9:30 ATOORE Altalia ([534.75 | Midday § :
i:' Mian [Philadelphia[11/032009| 930 | AZ09B6 | Alialin |[534.75 [Evening I
L |

]
]
i
i | |
| I Grouping (G1) |
|
| ! i
| |]
: ! '
2 I
: i image]
]
I ! I
| i
| ! i
I ! I
I ! I
| i
I !]
I | I
I ! I
| | i
|| Fram: | 1
|
I To: | :
|| ORount e ome way O3ttt seststion © A sobtions ———Grouping (G2) !
: l |
IDepL—.u:e date | select day [| zelect month [| sslect peer | I i
] O Morming : Relation (R) :
| O 1
i| Departuce time rnge = 4 ! i
I Afternoen | |
: OFsening i]
|| Retuen date | selectday B | selectmonth B selectyear B I :
I -~
! © Mosning : 1
| O Midday
| TR, iy [:
i } Afternocn |]
| Evening |
1 ¥ | data table |
I I " 1
]
i
]
]
i
i
i
]
i
]
]
]

Fig. 7. An example user interface

When the reverse engineering module performs the analysis of this page code, it
builds the corresponding logical description (which is highlighted in the Figure). At
the first level it identifies a group (G1) associated with the header, a group (G2)
associated with the central part, and one group (G3) mainly associated with the data

10

table. Lastly, a final long text at the bottom is identified. Recursively it identifies the
elements included in each group. The top group is composed of an image and some
text, the central group is composed of an image and a form, the bottom group is
composed of text and a data table. The form is then composed of a number of
interactive elements and texts. Now, let us assume that the following parameters have
been specified to configure the adaptation process:

Minimum font size = 10px

Maximum font size = 18px

Max image width = 200px

Max image height = 150px

Horizontal tolerance = 10%

Vertical tolerance = 10%

Radio button transformation = yes
Radio button threshold = 3

Radio button mapping = drop down list
Scrolling to Avoid = horizontal
Interactor composition to cut = highest
Long text limit = 300

According to the algorithm previously described, first some basic textual content
adaptation is performed. For example, the text “Flight information crawler"”,
contained in Grouping G1, has a size (33px) greater than the value specified in the
parameter maximum font size, and consequently is reduced to this limit.

Then, the algorithm calculates the costs in terms of screen consumption of the
basic interface elements, and then consequently calculates the costs of the higher
elements in the logical structure.

(567,741)

Go

(231,40) (385,558) (567,82)
[c] [c] [c] ™
(360,60)

Img B Img ER] T DT
(40,40) (191,33) (343,248) (385,311) (76,12) (567,70)

LT sc B LT LT LT
(191,50) (385,15) (338,34) (223,89) (318,34) (203,89)

Fig. 8. The costs of the example

Figure 8 shows the resulting costs. For each element a pair of values is provided
indicating both the horizontal and the vertical costs. If we consider the specified
values for horizontal and vertical tolerance and the resolution of the current device

(360x480 pixels), the maximum sustainable horizontal cost would be 396 pixel, and
the vertical 528 pixels. If we look at the overall page cost, given by the cost of GO, we
can notice that it is higher than the sustainable cost and consequently the adaptation
transformation should move on to the next phase, which involves adaptation of the

user i

nterface elements. In particular, in this case we have:

e The transformation of long texts, since GO contains a text longer than 300
characters, the text is split into two parts, one reachable only on request
through a link;

e The transformation of images, the image contained in the G2 grouping is
larger than the limits indicated by max image width and max image
height, thus it is scaled from 343x248 pixel to a resolution of 198x143
pixels.

e Conversion into equivalent interactors, the radio buttons (an example is
the interactor SC in the Figure) are transformed according to the
adaptation parameters that indicate that radio buttons be converted into
drop-down menus when there are more than three options.

e Reduction of space taken up by data tables, the data table DT, contained
in the Grouping G3, is reduced by decreasing the size of all the texts
contained in it.

Figure 9 shows the updated costs in the user interface versions with the elements
adapted as described. It is possible to note that even the resulting overall cost is still
too large for the target device. Thus, the phase dedicated to page splitting is activated.

(481532)
Go
(231,40) (338,321 (481,79)
[s:] [e] [l "
(360,40}
Img T Ima R T DT
(40,40) (191,18) (198,143) (338,708) (76,12) (481,67
it lsc| liv Ly e B

(191,50) (132,20) (338,34) (223.20) (318,34) (203.20)

Fig. 9. The updated costs of the example

As described previously the splitting algorithm is driven by two parameters:
Scrolling to Avoid and Interactor composition to cut. In our example the first one is
set to horizontal, and the second one to highest. According to these values, the
splitting algorithm looks for the element with the highest cost, which is suitable to

12

avoiding horizontal scrolling. In this case it is the data table DT in Figure 9.
According to the rules previously introduced the table is split in such a way as to
allocate to a newly generated mobile presentation the portion exceeding the horizontal
limit. Thus, at the end of the first cycle the algorithm produces two newly generated
additional mobile presentations: one for the excessive table portion and one for the
excessive text (see Figure 10).

. back
Departure date |10 -|10 - 2013 ~ . " [Flight number [company | Price | Time
Departure time range | Evening - £Z9985 Alitalia [534.75 [Morning
Return date 10 - 10 = 2013 = ! AZ99B6 Alitalia |534.75 |Morning
- n A7 9986 Alitalia [534.75 [Morning
Return time range | Evening M
generated
Search result presentatlon 1
next
Leaving ~
from |AMWingto | Date |Duration ﬂ
Milan Philadelphia [11/03/2009 | 09:30
Milan Philadelphia [11/03/2009 | 0930
Milan Philadelphia [11/03/200% | 0930
Info about:
Lorem ipsum dolor sit amet, consectetur adipisici eft, sed
eiusmod tempor incidunt ut labore et dolore magna aliqua. Ut
enim ad minim veniam, guis nostrud exercitation wlilamco
laboris nisi ut aliguid ex ea commodi consequat..
read mMore) =« evemauni.., .., .. .
L (back)
main Quis aute lure reprehendernt involuptate velit esse cillum
H dolore eu fugiat nulla pariatur. Excepteur sint cbcaecat
presentatlon cupiditat non proident, sunt in culpa qui officia deserunt mollit
anim id est laborum
generated

presentation 2

Fig. 10. The presentation generated by the semantic redesign

Comparison with Other Approaches

We have conducted a study comparing our tool, in terms of adaptation results, with
two publicly available tools for desktop-to-mobile adaptation: Mowser
(http://mowser.com) and Skweezer (http://www.skweezer.com). Figure 11 shows an
example form interface adapted using the three systems.

Mowser

Flight information cravler

Specify Departure city and Anival city
From
To

ORoundtrip O One way O Muttiple destination © All sa

Ahen do you want 1o fly 7
Departure dat= [10 [|10 [[2013
time range ' Maming

1053 [2013 |
nge O'Maming

Semantic Redesign

Skweezer

From
To
All snlutions:

Departure date |10 5] 105 2013 &

Departure time range | Evening |
Retum date [10 & 10 5 (203
Retum time range | Evening £
Search |

Flight information crawder

Spec fy Deparure city and Amval city

From

Too

O Round tip © Ona way O Multiple destination O All
solutions

\When do you want 1o fiv 7

Departure date | 10 53| 10 [2013

Deparute time range O Marning
O Midday

O Aftemoon

O Evening

s Ratum data | 10 (][10 &) 2013 §
Retum time range C Morning

© Midday

© atemoon

O Evening

Search

Fig. 11. Form adaptation comparison

By comparing the three versions we have noted that Mowser resizes only the images
larger than 150 pixels, ignores style sheets and text attributes indicated in the pages
because it associates them with predefined sheets. It provides no particular support for
long texts, tables, or change of interactors. In addition, it aims to reduce vertical use
of screen space, but this is obtained by requiring users to perform considerable
horizontal scrolling.

Squeezer follows a different policy. It reduces the image quality but it does not
change their dimensions. Like Mowser, it ignores the colours and the properties
specified by the style sheets but it preserves some HTML tags (, <i> and <u>) for
the text formatting. Also Squeezers does not support long text transformations, table
management (see Figure 12), or interactor changes. Differently from Mowser,
Squeezer aims to reduce horizontal scrolling, which implies increasing the vertical
one. It also aims to reduce the page download time by reducing the size of its content
in terms of bytes.

14

Mowser Semantic Redesign Skweezer

) o Saarch rasults:

Soarch fasylls: M Leaving from Amiving to Date Duration Flight number Compar
" Price Tane

Milan Philadelphia 11/0372003 930 AZ9926 Alitalis 534 75

Murrang

Milan Philadelphia 11/032003 9.0 AZ3966 Alitalia 534 75

Mufcliry

Milan Philadalphia 11/02/2003 9:0 AZ996G Altalia 534 75

Evering

lafo aby

Lorem ipsum dolor sit amet, consectetur adipisici e, sed

wisrod bempar incidund ut laboe el dolore magaa aligua L)

&nim ad minim veniam, quis nestrud exercitation ullameo

Eaboris s 1 st ox e commad consegual G auly

[Leaving from Arriving to | Date [Duration

[
Infi abaut It about
Lorem I

ad

covsecteiLr ack
ey i el

Lonem (8T Joier 54 &

You e vwewang @ ml
View orlg| Iure rep it in voluptate

it esse cillum dolore eu fugl
sal cupiddal o prodent
it anim id est laberum

nulla panatin Excepleur st abe
sunt in culpa qui officia desenunt

Mahilized by [l Mowsne

56% (D35 kB) nspamiato

Fig. 12. Table adaptation comparison

The results of this comparison were encouraging because our tool has shown to be
more flexible. Indeed, it allows end users to customize the adaptation parameters and
is able to adapt a higher number of interface element types than the other two tools
(e.g. tables and long texts do not receive specific adaptation transformations with the
other two tools).

Conclusions and Future Work

Ubiquitous environments call for adaptive systems in order to adapt to the varying
interaction resources. Model-based approaches can provide useful support in this
context. We propose a solution for desktop-to-mobile adaptation of Web user
interfaces, which overcome limitations of previous ones.

The solution is able to dynamically handle Web pages and build the corresponding
logical description through a reverse engineering module able to analyse all the
HTML and CSS associated tags. In the adaptation interface elements can be replaced
with others that are semantically equivalent but require less screen space. The scripts
are preserved in the adapted version. Content such as Flash, Java applets are not
currently adapted.

In addition, there is a need for providing users with more control on ubiquitous
interfaces, according to the end-user development paradigm. In this paper we have
presented a solution that also allows end-users to customize the desktop-to-mobile
adaptation in order to change the results that can be obtained by automatic user
interface generation.

We plan to further extend this work in various directions. The customization user
interface can be improved in order to make the effects of the various customization
parameters more understandable. In addition, in this work we have considered only
desktop-to-mobile adaptation but other types of transformations can benefit from the
approach proposed, e.g. graphical-to-vocal adaptation.

Acknowledgments

This work has been partially supported by the EU ICT STREP Project OPEN

(http://www.ict-open.eu/)

10.

11.

12.

13.

14.

15.

16.

References

Berti, S., Paterno, F., Santoro C., “Natural Development of Ubiquitous Interfaces”,
Communications of the ACM, September 2004, pp.63-64, ACM Press.

Bickmore T. et al. Web page filtering and re-authoring for mobile users. Computer Journal
special issue on Mobile Computing, vol. 42(no. 6):pp. 534-546, 1999.

Calvary, G., Coutaz, J., Bouillon, L., Florins, M., Limbourg, Q., Marucci, L., Paterno, F.,
Santoro, C., Souchon, N., Thevenin, D., and Vanderdonckt, J. 2002. The CAMELEON
reference framework. CAMELEON Project. Deliverable 1.1

Buyukkokten O., Kaljuvee O., Garcia-Molina H., Paepcke A., Winograd T. ,. Efficient
web browsing on handheld devices using page and form summarization. TOIS, pages 82-
115, 2002.

Chu H., Song H., Wong C., Kurakake S. and Katagiri M., Roam, a seamless application
framework, Journal of Systems and Software, Volume 69, Issue 3, 2004, pp. 209-226,
Elsevier.

Laakko T. Hiltunen T. Adapting web content to mobile user agents. IEEE Internet
Computing, Vol. 9(no. 2):46-53, March-April 2005.

Kaikkonen A. Roto, V. Perception of narrow web pages on a mobile phone. Proc. Human
Factors in Telecommunications, 2003.

Lieberman, H., Paterno, F., Wulf W. (eds), End-User Development, Springer Verlag,
ISBN-10 1-4020-4220-5, 2006.

Melchior, J., Grolaux, D.,Vanderdonckt, J.,Van Roy, P., A Toolkit for Peer-to-Peer
Distributed User Interfaces: Concepts, Implementation, and Applications, pp. 69.78,
EICS’09, July 15-17, 2009, Pittsburgh, Pennsylvania, USA.

Ohnishi K., Tajima K.. Browsing large html tables on small screens., ACM Symposium on
User Interface Software and Technology (UIST '08).

Paterno, F., Santoro, C., Scorcia A Automatically Adapting Web Sites for Mobile Access
through Logical Descriptions and Dynamic Analysis of Interaction Resources. AVI 2008,
Naples, May 2008, ACM Press, pp. 260-267.

Paterno F., Santoro C., Spano L.D., "MARIA: A Universal Language for Service-Oriented
Applications in Ubiquitous Environment”, ACM Transactions on Computer-Human
Interaction, Vol.16, N.4, November 2009, pp.19:1-19:30.

Sottet J., Ganneau V., Calvary G., Coutaz J., Demeure A., Favre J., Demumieux R.:
Model-Driven Adaptation for Plastic User Interfaces. INTERACT (1) 2007: 397-410.
Uemukai T., Nishio S.. Y. Arase, T. Hara. Opa browser: a web browser for cellular phone
users. ACM Symposium on User Interface Software and Technology (UIST '07), pages
71-80.

Wang-Wei-Ying C., Baudisch P., Xie X.. Collapse-to-zoom: Viewing web pages on small
screen devices by interactively removing irrelevant content. ACM Symposium on User
Interface Software and Technology (UIST '04), pages 91-94, October 2004.

Weiser M., "The Computer for the 21st Century" - Scientific American Special Issue on
Communications, Computers, and Networks, September, 1991.

16

	Introduction
	Related Work
	A Model-based Architecture for User Interface Adaptation
	The Adaptation Transformation
	End-User Adaptation Customization
	An Example Application
	Comparison with Other Approaches
	Conclusions and Future Work
	Acknowledgments
	References

