
Desktop-to-Mobile Web Adaptation through 
Customizable Two-dimensional Semantic Redesign 

Fabio Paternò, Giuseppe Zichittella 

 
CNR-ISTI, HIIS Laboratory, Via Moruzzi 1, 56124 Pisa, Italy 

{fabio.paterno, giuseppe.zichittella}@isti.cnr.it 

Abstract. In this paper we present a novel method for desktop-to-mobile 
adaptation. The solution also supports end-users in customizing multi-device 
ubiquitous user interfaces. In particular, we describe an algorithm and the 
corresponding tool support to perform desktop-to-mobile adaptation by 
exploiting logical user interface descriptions able to capture interaction 
semantic information indicating the purpose of the interface elements. We also 
compare our solution with existing tools for similar goals.  

Keywords: Ubiquitous Applications, Multi-Device Environments, Adaptation. 

Introduction 

One of the main issues in current technological settings is how to design and 
develop interactive applications that can be accessed through a wide variety of 
devices (ranging from small watches to very large screens, including various types of 
smartphones, PDAs and Digital TVs). This is particularly important in Web 
applications, which are the most common ones. 

The vision of ubiquitous computing [16] is that the users operate in intelligent 
environments, which are aware of users’ needs and able to assist, even proactively, 
the users in performing their activities and reaching their goals. To this end, one 
important aspect is the possibility for a user surrounded by multiple devices to freely 
move about and receive user interfaces adapted to the current context of use. 

In current mobile devices various solutions are adopted for accessing Web 
applications originally developed for desktop systems. Some just cut the page to the 
display area, thus showing only a limited portion. Others, such as those using the 
Small Screen Rendering Technique in the Opera mini browser, provide the narrow 
view in which the content is vertically arranged in order to avoid horizontal scrolling. 
The most sophisticated solutions are those, such as the Safari browser in the IPhone, 
which automatically resize the Web page to the screen size and allow the user to zoon 
in and out through gestures in the touch interface. However, their usability is often 
low in terms of Web navigation, since users have to make various zoom in and out 
interactions in order to identify the part of content that they are looking for. 

The solutions for such issues can benefit from user interface model-based 
approaches, in which declarative descriptions of the user interface are used in order to 
avoid dealing with a plethora of low-level implementation details associated with the 



2 
 

wide number of available devices and implementation languages. Despite such 
potential benefits, their adoption has mainly been limited to professional designers, 
but new solutions have recently been emerging that are able to extend such 
approaches in order to achieve natural development by enabling end users to develop 
or modify interactive applications still using conceptual models, but with continuous 
support that facilitates their development, analysis, and use [1]. 

Model-based languages are utilized at design time to help the user interface 
designer cope with the increasing complexity of today’s applications and contexts. 
The underlying user interface models are mostly used to generate a final user interface 
code, which is then executed at run time. However, approaches utilizing the models at 
run time are receiving increasing attention. We agree with Sottet et al. [13], who call 
for keeping the models alive at run time to make the design rationale available. 

In the following, we present some research work that exploits model-based 
approaches for multi-device ubiquitous applications. We show a new tool for desktop-
to-mobile adaptation, called customizable two-dimensional semantic redesign. We 
present its underlying algorithm and compare its results with those of other current 
tools. The environment also allows end users to customize the adaptation process. 
Lastly, some conclusions are drawn along with indications for future work. 

Related Work 

Various approaches are possible to support adaptation for mobile devices. 
Bickmore [2] proposed a classification into five categories: device-specific authoring 
(one version for each target device type), multiple-device authoring (one version, with 
subversions for the various targets, e.g. using different stylesheets), client-side 
navigation (adaptation is performed directly by the client), Web page filtering 
(adaptation is obtained by content filtering) and automatic re-authoring (one version 
exists, which is then automatically adapted for the target device). Automatic re-
authoring can be further divided into transducing (the original structure is preserved 
and the elements are adapted, e.g. images resized) and transforming (the structure is 
adapted as well). Our approach is an example of automatic re-authoring, supporting 
transforming (since the original pages can even be split into multiple mobile pages if 
they are too expensive in terms of space consumption). 

Various contributions have been put forward in this area and it is not possible to 
mention all of them. The OPA browser [14] allocates various functions for Web 
browsing on each numerical key of a cellular phone. Buyukkokten et al. [4] proposed 
a novel technique for form summarization, which is also able to automatically 
summarise texts according to various policies. Laakko and Hiltunen [6] proposed a 
technique for server side adaptation. We too support a solution using an adaptation 
proxy but we also exploit logical descriptions that allow us to propose a more general 
solution. The Roam system [5] is another environment for multi-device applications. 
It also logically partition an application in a set of components but then it requires that 
developers provide various implementations for different types of devices. Thus there 
is little support for automatic adaptation. Studies on usability of mobile adaptation [7] 
by Kaikkonen and Roto indicate that adaptation should not completely destroy the 



original structure of the desktop pages in order to allow users to still be able to 
associate the mobile pages with the original ones. One important issue in this 
adaptation process is how to handle table adaptation. In [10] there is a proposal that 
allows users to interactively fold and unfold the tables rows and/or columns. 
However, such manual adaptations are lost when users access the tables again. 

A Model-based Architecture for User Interface Adaptation 

We have designed and developed a model-based architecture for user interface 
adaptation, which supports reverse and forward transformations that are able to 
transform existing desktop Web applications for various interaction platforms. The 
basic assumption is that there exists a huge amount of easily accessible content for 
desktop Web applications, which can be processed and transformed to support multi-
device interfaces, even across non-Web implementation languages. The advantage of 
this solution with respect to others (e.g. [9]) is that it does not require that the 
applications be implemented using a particular toolkit in order to make them able to 
adapt. 

When the user accesses the application through an interaction platform other than 
the desktop, the intermediate adaptation server (which includes a proxy server) 
transforms its user interface by building the corresponding logical description and 
using it as a starting point for creating the implementation adapted to the accessing 
device (see Figure 1). Lastly, the user interface implementation for the target device is 
generated.  

The reverse engineering module analyses the content of the HTML and the 
associated CSS files and builds the logical description of the desktop user interface, 
which is provided as input to the adaptation module. 

 

 

Fig. 1. The Main Phases of the Adaptation Process 

In the process of creating an interface version suitable for a platform different from 
the desktop, we use a semantic redesign module. This part of the environment 
automatically transforms the logical description of the desktop version into the logical 
description for the new platform. Therefore, the goal of this transformation is to 
provide a description of the user interface suitable for the new platform. This means 
that intelligent rules are used for adapting the description of the user interface to the 
new platform taking into account its capabilities (e.g. using interface elements that are 
more suitable for the new platform) but ensuring at the same time that the support for 
the original set of tasks is maintained. This solution allows the environment to exploit 



4 
 

the semantic information contained in the logical description. In this case the semantic 
information is related to the basic tasks that the user interface elements are expected 
to support. 

This software architecture for user interface adaptation currently uses MARIA 
[12],  a recent model-based language, which allows designers to specify abstract and 
concrete user interface languages according to the CAMELEON Reference 
framework [3]. This language represents a step forward in this area because it 
provides abstractions also for describing modern Web 2.0 dynamic user interfaces and 
Web service access. It provides an abstract language independent of the interaction 
modalities and concrete languages for a number of platforms. In general, concrete 
languages are dependent on the typical interaction resources of the target platform but 
independent of the implementation languages.  

In MARIA an abstract user interface is composed of one or multiple presentations, 
a data model, and a set of external functions. Each presentation contains a number of 
user interface elements (interactors) and interactor compositions (indicating how to 
group or relate a set of interactors), a dialogue model describing the dynamic 
behaviour of such elements, and connections indicating when a change of 
presentation should occur. The interactors are classified in abstract terms: edit, 
selection, only_output, control, interactive description, .. Each interactor can be 
associated with a number of event handlers, which can change properties of other 
interactors or activate external functions. 

The Adaptation Transformation 

We have designed a new tool for adaptation: Customizable Two-dimensional 
Semantic Redesign. It supports adaptation from desktop-to-mobile devices and 
overcomes some of the limitations of previous approaches in the area [11] because it 
allows users to configure the adaptation process and provides more control over costs 
calculation and the adaptation results. For example, while previous solutions 
calculated the screen space requested by the user interface elements mainly in terms 
of vertical extension, the new algorithm calculates both the horizontal and the vertical 
consumption of screen space. 

The new algorithm takes as input the concrete description of a desktop user 
interface in the MARIA language and goes through a number of steps. First, it 
performs some basic transformations: if the user provides preferences regarding the 
minimum and maximum fonts for the target device then the system transforms all the 
textual content in order to fit it into the given range. Next, it calculates the cost of all 
the interactors and composition operators in the provided specification. If the 
resulting total cost is sustainable for the target device, then the corresponding logical 
description is generated, otherwise it starts the process to reduce the cost in order to 
make it sustainable. The basic elements are adapted for the target device first: the 
images are shrunk, while preserving their aspect ratio, some interactors are replaced 
with others that are semantically equivalent but need less screen space (e.g. a list can 
be replaced with a drop-down menu), long texts are reduced in such a way that the 
part exceeding a limit is shown only on request, image and text in tables are reduced 



in size. After these basic transformations the overall cost is recalculated and if it is not 
yet sustainable by the target device then the part of the algorithm related to page 
splitting is activated. The purpose of this phase is to split the original desktop 
presentation into two or more presentations that are sustainable for the target mobile 
device. For this purpose the algorithm considers the interactor compositions 
(groupings of elements or relations that involve two groups) and tables of elements, 
and associates some of them to newly generated mobile presentations, removing them 
from the current presentation in order to decrease its overall cost. 

 

 
Fig. 2 The adaptation algorithm 

The elements that determine the cost of the interactors are: the font attributes (size, 
style, type), the vertical and horizontal space required by a text, image dimensions, 
interline value, interactor type, ... 

The algorithm has a parameter (Scrolling to Avoid), which allows the specification 
of which scrolling (vertical or horizontal) to avoid in the case that the presentation 
cost exceed the limits in both directions.  

When the splitting part is activated the algorithm looks for a structured element in 
the logical description whose cost is sufficiently high that removing it would make 
the presentation sustainable for the target device. Then, such structured element 
would be allocated to a newly generated mobile presentation, which would be 
accessible through a link inserted in the original one. The structured elements 



6 
 

considered are groupings, relations, data tables and layout tables. When the element 
candidate for removal is a data table, the splitting is implemented differently. The 
table is split into two parts, the part composed of the columns visible without 
horizontal scrolling remains in the original presentation with an additional link 
allowing the user to continue to browse it in a separate presentation containing the 
remaining columns, from which it is possible to return by a similar link. 

 

 

 
Fig. 3. Example of table splitting 

 
In particular, the tool supports two ways to determine how splitting should be 

performed. In both cases it analyses the cost of the structured elements, which 
includes those of the composed interactors, and the cost of the tables (both data and 
layout tables). Then, the decision of the set of elements to allocate to the newly 
generated mobile presentation is given in one case by the most expensive element. In 
the other case the algorithm first calculates the elements whose removal would make 
the current presentation sustainable by the target device, and then selects the one that 
has the lowest cost. The rationale for this second option is that it allows obtaining a 
sustainable presentation but by removing the least amount of information possible, 
thus preserving the original design as much as possible. 

End-User Adaptation Customization 

In the research on user interface adaptation, one issue that we are considering is 
how to provide users with more control over the adaptation process in order to 
improve the usability of its results. In this context more control can mean various 
things. One important aspect is control over the rules that drive adaptation to the 



various platforms (the most common case is desktop-to-mobile adaptation). For 
example, the adaptation engine is able to split the desktop pages when they require 
considerable amounts of interaction resources but some users may like to have more 
control over the splitting algorithm. End-User Development [8] (EUD) can be defined 
as a set of methods, techniques, and tools that allow users of software systems, who 
are acting as non-professional software developers, at some point to create, modify or 
extend a software artefact. End-users already have difficulties with single device 
applications, thus it easy to understand how such difficulties increase when 
considering applications for multi-device environments. This is one further reason for 
providing better support for EUD in ubiquitous applications. 

Figure 5 and 6 show the user interface that allows end users to configure the 
adaptation process. The various parameters are grouped according to the related user 
interface aspect considered. For the fonts, it is possible to specify the minimum and 
maximum font size in the target device, and the associated measure unit. For the radio 
buttons it is possible to indicate whether they should be transformed into an interactor 
that supports the same semantics but using less space screen. In this case, it is 
possible to specify the threshold, in terms of number of choice options, which should 
trigger the transformation and the type of interactor to use for its replacement. Similar 
parameters are available for the list boxes. Other parameters concern the maximum 
number of characters for texts, maximum and minimum dimensions for images. These 
parameters determine the cost of rendering a presentation. This cost is compared with 
the overall sustainable cost in the target device, which is given by the screen 
resolution multiplied by the horizontal and vertical tolerance. The higher the tolerance 
coefficient values are, the more scrollable the generated user interface will be. This 
means that end users have the possibility to specify to what extent the adapted content 
will be scrollable in the target device. The table tolerance provides an additional 
factor to consider when calculating the sustainable cost. In practise, this means that 
when there are tables, more scrolling will be acceptable before deciding to split the 
presentation. 

 

Fig. 4. An example application: Wikipedia. 



8 
 

Figure 4 shows the structure of the user interface of a well-known application, 
Wikipedia, and next we see how the splitting changes depending on the customization 
parameters specified. In next Figures we show two example configurations, which 
mainly differ for the scrolling to avoid parameter (in one case is vertical and in the 
other is horizontal) and the coefficients for display tolerance (in one case they are 20 
and 80, in the other one they  are 20, 500).  

 
Fig. 5. First Example of Adaptation Configuration and Associated Results. 



The customization interface also allows the user to set the priority of the type of 
scrolling (horizontal or vertical) to avoid and the algorithm splitting policy to apply. 
In this way, we obtain the specification of user preferences regarding adaptation, 
which can also be reused for other applications more easily than solution such as 
collapse-to-zoom [15], where the user can express preferences only associated to a 
given application. 

 

 
Fig. 6. Second Example of Adaptation Configuration and Associated Results. 



10 
 

Then, we can see for each configuration the resulting adapted mobile pages. In the 
first case the main page is split into three mobile pages (Figure 5). In the first mobile 
presentation we have highlighted the automatically generated links to the other mobile 
pages. In the second case (Figure 6), only two pages are generated from the splitting. 
This is because in order to fit with the vertical scrolling was sufficient to cut only one 
big element, which referred to the main central content part. 

Please note that the results of the adaptation applied to Web sites such as 
Wikipedia can change depending on the change of the actual content, which 
continuously varies in such sites. 

An Example Application 

In order to better understand how our approach works we can consider an example 
desktop Web application (see Figure 7). For the sake of clarity we do not use a 
particularly complex example. 

 
Fig. 7. An example user interface 

When the reverse engineering module performs the analysis of this page code, it 
builds the corresponding logical description (which is highlighted in the Figure). At 
the first level it identifies a group (G1) associated with the header, a group (G2) 
associated with the central part, and one group (G3) mainly associated with the data 



table. Lastly, a final long text at the bottom is identified. Recursively it identifies the 
elements included in each group. The top group is composed of an image and some 
text, the central group is composed of an image and a form, the bottom group is 
composed of text and a data table. The form is then composed of a number of 
interactive elements and texts. Now, let us assume that the following parameters have 
been specified to configure the adaptation process: 

 
Minimum font size = 10px 
Maximum font size = 18px 
Max image width = 200px 
Max image height = 150px 
Horizontal tolerance = 10% 
Vertical tolerance = 10% 
Radio button transformation = yes 
Radio button threshold = 3 
Radio button mapping = drop down list 
Scrolling to Avoid = horizontal 
Interactor composition to cut = highest 
Long text limit = 300 
 

According to the algorithm previously described, first some basic textual content 
adaptation is performed. For example, the text “Flight information crawler", 
contained in Grouping G1, has a size (33px) greater than the value specified in the 
parameter maximum font size, and consequently is reduced to this limit.  

Then, the algorithm calculates the costs in terms of screen consumption of the 
basic interface elements, and then consequently calculates the costs of the higher 
elements in the logical structure. 

 

Fig. 8. The costs of the example 

Figure 8 shows the resulting costs. For each element a pair of values is provided 
indicating both the horizontal and the vertical costs. If we consider the specified 
values for horizontal and vertical tolerance and the resolution of the current device 



12 
 

(360x480 pixels), the maximum sustainable horizontal cost would be 396 pixel, and 
the vertical 528 pixels. If we look at the overall page cost, given by the cost of G0, we 
can notice that it is higher than the sustainable cost and consequently the adaptation 
transformation should move on to the next phase, which involves adaptation of the 
user interface elements. In particular, in this case we have: 

 
• The transformation of long texts, since G0 contains a text longer than 300 

characters, the text is split into two parts, one reachable only on request 
through a link; 

• The transformation of images, the image contained in the G2 grouping is 
larger than the limits indicated by max image width and max image 
height, thus it is scaled from 343x248 pixel to a resolution of 198x143 
pixels. 

• Conversion into equivalent interactors, the radio buttons (an example is 
the interactor SC in the Figure) are transformed according to the 
adaptation parameters that indicate that radio buttons be converted into 
drop-down menus when there are more than three options.  

• Reduction of space taken up by data tables, the data table DT, contained 
in the Grouping G3, is reduced by decreasing the size of all the texts 
contained in it. 

 
Figure 9 shows the updated costs in the user interface versions with the elements 

adapted as described. It is possible to note that even the resulting overall cost is still 
too large for the target device. Thus, the phase dedicated to page splitting is activated. 

 

 

Fig. 9. The updated costs of the example 

As described previously the splitting algorithm is driven by two parameters: 
Scrolling to Avoid and Interactor composition to cut. In our example the first one is 
set to horizontal, and the second one to highest. According to these values, the 
splitting algorithm looks for the element with the highest cost, which is suitable to 



avoiding horizontal scrolling. In this case it is the data table DT in Figure 9. 
According to the rules previously introduced the table is split in such a way as to 
allocate to a newly generated mobile presentation the portion exceeding the horizontal 
limit. Thus, at the end of the first cycle the algorithm produces two newly generated 
additional mobile presentations: one for the excessive table portion and one for the 
excessive text (see Figure 10). 

 Fig. 10. The presentation generated by the semantic redesign 

Comparison with Other Approaches 

We have conducted a study comparing our tool, in terms of adaptation results, with 
two publicly available tools for desktop-to-mobile adaptation: Mowser 
(http://mowser.com) and Skweezer (http://www.skweezer.com). Figure 11 shows an 
example form interface adapted using the three systems. 

 



14 
 

 
Fig. 11. Form adaptation comparison 

 
By comparing the three versions we have noted that Mowser resizes only the images 
larger than 150 pixels, ignores style sheets and text attributes indicated in the pages 
because it associates them with predefined sheets. It provides no particular support for 
long texts, tables, or change of interactors. In addition, it aims to reduce vertical use 
of screen space, but this is obtained by requiring users to perform considerable 
horizontal scrolling.  

Squeezer follows a different policy. It reduces the image quality but it does not 
change their dimensions. Like Mowser, it ignores the colours and the properties 
specified by the style sheets but it preserves some HTML tags ( <b>, <i> and <u>) for 
the text formatting. Also Squeezers does not support long text transformations, table 
management (see Figure 12), or interactor changes. Differently from Mowser, 
Squeezer aims to reduce horizontal scrolling, which implies increasing the vertical 
one. It also aims to reduce the page download time by reducing the size of its content 
in terms of bytes. 

 



 
Fig. 12. Table adaptation comparison 

The results of this comparison were encouraging because our tool has shown to be 
more flexible. Indeed, it allows end users to customize the adaptation parameters and 
is able to adapt a higher number of interface element types than the other two tools 
(e.g. tables and long texts do not receive specific adaptation transformations with the 
other two tools). 

Conclusions and Future Work 

Ubiquitous environments call for adaptive systems in order to adapt to the varying 
interaction resources. Model-based approaches can provide useful support in this 
context. We propose a solution for desktop-to-mobile adaptation of Web user 
interfaces, which overcome limitations of previous ones.  

The solution is able to dynamically handle Web pages and build the corresponding 
logical description through a reverse engineering module able to analyse all the 
HTML and CSS associated tags. In the adaptation interface elements can be replaced 
with others that are semantically equivalent but require less screen space. The scripts 
are preserved in the adapted version. Content such as Flash, Java applets are not 
currently adapted. 

In addition, there is a need for providing users with more control on ubiquitous 
interfaces, according to the end-user development paradigm. In this paper we have 
presented a solution that also allows end-users to customize the desktop-to-mobile 
adaptation in order to change the results that can be obtained by automatic user 
interface generation. 

We plan to further extend this work in various directions. The customization user 
interface can be improved in order to make the effects of the various customization 
parameters more understandable. In addition, in this work we have considered only 
desktop-to-mobile adaptation but other types of transformations can benefit from the 
approach proposed, e.g. graphical-to-vocal adaptation. 



16 
 

Acknowledgments 

This work has been partially supported by the EU ICT STREP Project OPEN 
(http://www.ict-open.eu/) 

References 

1. Berti, S., Paternò, F., Santoro C., “Natural Development of Ubiquitous Interfaces”, 
Communications of the ACM, September 2004, pp.63-64, ACM Press.  

2. Bickmore T. et al. Web page filtering and re-authoring for mobile users. Computer Journal 
special issue on Mobile Computing, vol. 42(no. 6):pp. 534-546, 1999. 

3. Calvary, G., Coutaz, J., Bouillon, L., Florins, M., Limbourg, Q., Marucci, L., Paternò, F., 
Santoro, C., Souchon, N., Thevenin, D., and Vanderdonckt, J. 2002. The CAMELEON 
reference framework. CAMELEON Project. Deliverable 1.1 

4. Buyukkokten O., Kaljuvee O., Garcia-Molina H., Paepcke A., Winograd T. ,. Efficient 
web browsing on handheld devices using page and form summarization. TOIS, pages 82-
115, 2002. 

5. Chu H., Song H., Wong C., Kurakake S. and Katagiri M., Roam, a seamless application 
framework, Journal of Systems and Software, Volume 69, Issue 3, 2004, pp. 209-226, 
Elsevier. 

6. Laakko T. Hiltunen T. Adapting web content to mobile user agents. IEEE Internet 
Computing, Vol. 9(no. 2):46-53, March-April 2005. 

7. Kaikkonen A. Roto, V. Perception of narrow web pages on a mobile phone. Proc. Human 
Factors in Telecommunications, 2003. 

8. Lieberman, H., Paternò, F., Wulf W. (eds), End-User Development, Springer Verlag, 
ISBN-10 1-4020-4220-5, 2006. 

9. Melchior, J., Grolaux, D.,Vanderdonckt, J.,Van Roy, P., A Toolkit for Peer-to-Peer 
Distributed User Interfaces: Concepts, Implementation, and Applications, pp. 69.78, 
EICS’09, July 15–17, 2009, Pittsburgh, Pennsylvania, USA. 

10. Ohnishi K., Tajima K.. Browsing large html tables on small screens., ACM Symposium on 
User Interface Software and Technology (UIST '08). 

11. Paternò, F.,  Santoro, C.,  Scorcia A Automatically Adapting Web Sites for Mobile Access 
through Logical Descriptions and Dynamic Analysis of Interaction Resources. AVI 2008, 
Naples, May 2008, ACM Press, pp. 260-267.  

12. Paternò F., Santoro C., Spano L.D., "MARIA: A Universal Language for Service-Oriented 
Applications in Ubiquitous Environment", ACM Transactions on Computer-Human 
Interaction, Vol.16, N.4, November 2009, pp.19:1-19:30. 

13. Sottet J., Ganneau V., Calvary G., Coutaz J., Demeure A., Favre J., Demumieux R.: 
Model-Driven Adaptation for Plastic User Interfaces. INTERACT (1) 2007: 397-410. 

14. Uemukai T., Nishio S.. Y. Arase, T. Hara. Opa browser: a web browser for cellular phone 
users. ACM Symposium on User Interface Software and Technology (UIST '07), pages 
71-80. 

15. Wang-Wei-Ying C., Baudisch P., Xie X.. Collapse-to-zoom: Viewing web pages on small 
screen devices by interactively removing irrelevant content. ACM Symposium on User 
Interface Software and Technology (UIST '04), pages 91-94, October 2004. 

16. Weiser M., "The Computer for the 21st Century" - Scientific American Special Issue on 
Communications, Computers, and Networks, September, 1991. 


	Introduction
	Related Work
	A Model-based Architecture for User Interface Adaptation
	The Adaptation Transformation
	End-User Adaptation Customization
	An Example Application
	Comparison with Other Approaches
	Conclusions and Future Work
	Acknowledgments
	References

