Understanding Formal Description of
Pitch-Based Input

Ondrej Polacek and Zdenék Mikovec

Faculty of Electrical Engineering, Czech Technical University in Prague, Karlovo
nam. 13, 12135 Prague 2, Czech Republic
{polacond, xmikovec}@fel.cvut.cz

Abstract. The pitch-based input (humming, whistling, singing) in acous-
tic modality has already been studied in several projects. There is also

a formal description of the pitch-based input which can be used by de-

signers to define user control of an application. However, as we discuss

in this paper, the formal description can contain semantic errors. The

aim of this paper is to validate the formal description with designers. We

present a tool that is capable of visualizing vocal commands and detect-

ing semantic errors automatically. We have conducted a user study that

brings preliminary results on comprehension of the formal description by

designers and ability to identify and remove syntactic errors.

Keywords: Non-verbal Vocal Interaction; Vocal Gesture; Formal De-
scription; User Study

1 Introduction

The Non-Verbal Vocal Interaction (NVVI) can be described as a method of in-
teraction, in which sounds, other than speech, are produced. There are several
approaches described in the literature which include using pitch of a tone, length
of a tone, volume, or vowels in order to control the user interfaces. The NVVI
is an interaction method that has already received a significant focus within
the research community. It has been used as an input modality for people with
motor disabilities [7][3] as well as voice training tool [2]. It is a method that
shares some similarities with Automatic Speech Recognition (ASR). However,
when comparing both interaction styles, several differences are revealed. Several
reports, including mouse emulation [1] or controlling real-time games [7], sug-
gest that NVVI is better fitted to continuous control rather than ASR. NVVI is
cross-cultural and language independent [8]. Unlike ASR, NVVT generally em-
ploys simple signal processing methods [3]. Due to NVVIs limited expressive
capabilities, ASR is better at triggering commands, macros or shortcuts. NVVI
should be considered as a complement to ASR rather than replacement.

To design an application controlled by speech a set of word patterns or gram-
mar must be defined. This grammar will then allow the ASR to recognize a range
of expected words used in utterances. Likewise, a designer can also use a similar
formal method for pitch-based NVVI.

2 Ondrej Polacek, Zdenék Mikovec

formal
description
analog sampled feature frames gestu're action
signal sound HW signal extraction matching >

Fig. 1. NVVI signal processing pipeline

The signal processing pipeline for most pitch-based NV VI systems is depicted
in Figure 1. Pitch is extracted from the sampled signal in a short discrete periods
of time called frames. The typical duration of one frame is approximately 20 ms.
The formal description of the NVVI and a stream of frames are then matched
together, followed by generation of an appropriate action.

2 Formal description

When designing a set of voice gestures, the designer must describe an ideal
pitch profile for each gesture. These ideal pitch profiles are then referred to as
gesture templates and they are usually represented in graphic form as shown
in Figure 2. However, the users are unable to produce an ideal pitch profile.
The interpretation of gesture templates by the user is referred to as gesture
instances. An example of the relationship between a gesture template and its
instances is depicted in Figure 2. Note that slightly different instances share
the same semantics defined by the gesture template which is in this case an
increasing tone. Once gesture templates are designed in a graphic form, they

gesture instances gesture template
< Lo | 3 3
S : : ! : :
g /f/l S| e
time™

Fig. 2. Relationship between a gesture template and its instances

can be described by a Voice Gesture Template (VGT) expressions. Design of
VGT expression is described in detail in [5]. These expressions are similar to
regular expressions. They have two terminal symbols p and s that correspond
to pitch and silence. They also use an operator * for repetition and operator
| for the choice. However, there are several symbols with different meanings,
for example brackets [| which are used for more sophisticated conditions and
brackets <> which are used for output definitions to trigger an action. The use
of VGT expressions is illustrated in Figure 3. The gesture template depicted
in Figure 3 describes instances which start under midi note 60 and increase in
pitch to more than 4 midi notes. Midi notes [4] are numerical representations of

Understanding Formal Description of Pitch-Based Input 3

‘/pl [pl.m < 60]\“:p7*:“/p2 [p2.m - pl.m >= 4]Hp <move>*“:é
b T ST T T

< — |

= ey . . gl

5 60 4 | ‘/‘P?/‘ “pr*" (s
(o1)

time

Fig. 3. VGT expression and its graphical representation of gesture template.

traditional notes in western music notation, for example, midi note number 60
corresponds to ¢’. The Figure 3 also illustrates the relation of VGT expression
and the graphic representation of the gesture template. This process can be
divided into four parts:

1. In the first part, the frame p1 is matched to the expression when its pitch
is under midi note 60. This is ensured by the condition [pl.m < 60] where
the attribute .m is a midi note value of the frame p1;

2. Then all pitch frames p* are matched until the difference between the pitch
of a current frame and the frame p1 is higher than or equal to 4 midi notes
(frame p2). This is ensured by the condition [p2.m - pl.m >= 4];

3. After satisfying the condition in the 2nd step, all pitch frames p <move>*
are matched and the output symbol move is triggered with each frame;

4. The processing of the template is completed, when a silent frame s is matched.

3 Semantic Errors

Semantic information, that describes pitch profiles of gesture templates, is en-
coded by a VGT expression. However, the description of gesture templates may
be affected by semantic errors which cannot be detected while parsing the ex-
pression. A semantic error can also appear in a VGT expression when a new
gesture template is added to the expression. The expression must be checked
by tedious experimenting that involves user input to see if all templates are
recognized correctly. Our research has identified two frequent types of semantic
errors which cause improper behavior in gesture recognition — ambiguous and
unreachable templates.

Two gesture templates are ambiguous if there is at least one gesture instance
that satisfies both templates. The reason this error frequently occurs is due to
an imprecise template description. In a real application there is typically a large
number of instances fulfilling the condition of ambiguity. This semantic error is
typically demonstrated by the generation of two or more output symbols in one
frame.

The gesture template is unreachable when there is no instance matching
the template. This can, for example, be caused by a condition that is always
false, the template does not take into account human capabilities, or there is
another gesture template that prevents the unreachable template from matching
instances.

4 Ondrej Polacek, Zdenék Mikovec

3.1 Semantic Error Detection

Detection of semantic errors, which are described above, requires analysis of ges-
ture instances that can be generated by a VGT expression. We have implemented
a tool which is capable of displaying possible gesture instances and automatically
identifying semantic errors. It also allows deeper understanding of matching an
instance to an expression by tracking its pitch profile. After generating all possi-
ble instances that match the expression, the tool checks if each instance belongs
to just one template (ambiguity condition) and if each template has at least one
instance (unreachability condition).

Frame =
24 72 120 fBB 216 264 312 360 408 456 504 552 600 648 695 744 79p | VO! Expression Debugger &l
P ORI 25t tp2t m o= @01 pa2 o3 m — ptiom <= 4 p3im]
i ﬁ {":‘:’:‘: ; iil {ﬂgl.m < 62]1; ;sip[isz.m Ezpsl.m >441J;’= = 4
t '000‘00 4|p4l [p4l.m >= &0] p* p42 [pdl.m - pd2.m > 4] p* =
e 1 'M‘Q’ Slps1 [ps1 501 p* 2.m - psi 4] p* ps3
9, OV OG0 00 ot [pot 2 GOLp (pS2.3 = pSi.m > 4] 5+ ps3
h 'W’Q‘0.0‘Q. &|pel [pEl.m >= &0] p&2 [pél.m - p&2.m > 4] p* pf
5 {EHREHAIRENY
66 | 'M"""Q‘O‘ Pitch frame Value
5 SRR
o FECS AN 4
TG OD OO, 2
: B ;
52 A AR AT) 2 =
¥ N\
o é”“’"’"’ & Gesture templates B
5 SRR ’ :
B 0,50 A NR AR B b dh ER R R R S
57 L QQQ‘:Q T Tempiate Name Status Instanc *
:‘;S @:" 1 alpha 30534 |
55 K 3 charlie 7813 (=
5 135 charlie eAb\guous 13203 |
53 4 145 delta fiofff.. alfpiguous 22232
52 i I's echo unreschable 0+
51 T i S
50
mr;z Linear parts: 1 D 3

Fig. 4. Tool for vocal gestures visualization and semantic error detection.

The user interface of our tool is depicted in Figure 4. Part A of the Figure
shows a dialog which contains a list of templates and number of instances. The
dialog shows semantic errors within the VGT expression by displaying both
ambiguous and unreachable templates (see the Status column). The user can
display instances by selecting an appropriate row. When selecting a row with
ambiguous templates, instances cause the ambiguity are displayed in part B.

Gesture instances are shown in the part B of Figure 4. The horizontal axis
represents frames converted into timestamps in milliseconds and the vertical
axis represents pitch using midi note numbers [4] starting with silence at the
bottom. The black lines represent the generated gestures. When there are a lot
of instances and their typical pitch profile is not visible, the user can display
these instances and track them from the beginning to the end. When tracking
an instance, the corresponding position of a VGT expression is highlighted in
the VGT Expression Debugger (dialog in part C). Horizontal and vertical bars
represent the current position, the bold line represents the part of an instance
that has been already tracked and the blue lines show the further extending of
a current instance.

Understanding Formal Description of Pitch-Based Input 5

The VGT expression is shown in dialog C. The current position of tracked
instance is highlighted directly in the VGT expression by a yellow background,
allowing the user to inspect how the instance is matched to its template. This is
a very useful feature when inspecting instances that correspond to two or more
ambiguous gestures, as the user can now clearly see the cause of the ambiguity.
Current pitch values of numbered pitch frames are shown below the expression.

4 User study

The aim of the user study was to find out whether the designers could under-
stand VGT expressions, and to demonstrate the usefulness of the tool described
in the previous section. Eight designers were recruited to participate in the study.
Each participant (mean age=29.6, SD=2.8) had some previous experience with
NVVI — four of them knew the interaction method, three had used it at least
once and one had previously designed an NVVI application. Seven of the par-
ticipants considered themselves as interaction designers and the remaining one
as a usability expert. All participant were familiar with regular expressions.

The participants were given approximately 20 minutes of training, which
involved discussing the syntax of two VGT expression examples as well as se-
mantic errors. The participants were asked to complete three tasks. In each task
they were told to recognize the gesture templates in given VGT expression by
describing them orally and sketching a graphic representation of each template.
They were also asked to identify any semantic errors that may have been present
in the expressions and to propose a solution for each. However, they were not
told to write a new corrected expression due to limited time of each session.
One session lasted approximately one hour. Participants were divided into two
groups of four — Group A and B. Group A was allowed to use the tool described
above, whereas Group B was not allowed to use any aid.

Task #1

In the first task participants were told to analyze the following VGT expression:

pl p* (p2 [p2.m - pl.m > 4] p* s <alpha> |
p3 [p2.m - p2.m > 8] p* s <bravo>)

The expression above describes the two templates as depicted in Figure 5a.
The alpha template defines instances where pitch increases by 4 or more midi
notes. The bravo’s instances have to increase by 8 midi notes. However, the
bravo template is unreachable, as the condition in the alpha template is always
matched earlier.

Group A (Use of tool): Each participant correctly understood the templates
and discovered that the gesture bravo was unreachable. Two participants pro-
posed a partially correct solution.

Group B: One participant misunderstood the bravo template and consequently
could not see an error. The other participants miscategorized the error as am-
biguous. Two participants proposed a partially correct solution.

6 Ondfej Polacek, Zdenék Mikovec

< alpha | bravo . charlie delta < alpha | bravo
2 : : : 2 :
a 3 3 i s :
‘ 1 L i — —) ol
time = time =
a. b.

Fig. 5. a. Gesture templates in the task #1 b. Gesture templates in the task #2

Task #2

The second task contained gestures used in the Tetris game controlled by hum-
ming [7]. The participants were again told to analyze the VGT expression:

pl p*

(p2 [p2.m - pl.m > 4] p <alpha>* s |
p3 [pl.m - p3.m > 4] p <bravo>* s) |
p*200;600 s <charlie> |
p*500; s <delta>
The expression above describes the templates depicted in Figure 5b. Alpha

instances have to increase in pitch by 4 or more midi notes, whereas the bravo
instances have to decrease by the same amount. Charlie instances are short tones
of 200 to 600 ms and delta instances are all those that are longer than 500 ms.
Two ambiguities are present in the expression. The first one is a time overlap
in charlie and delta templates. The solution is to modify one of the limits. The
second error is a pitch overlap between alpha, bravo and charlie, delta templates,
due to the latter two not defining a pitch limit. The solution is to limit the pitch
in charlie, delta templates to within +4 midi notes.
Group A (Use of tool): Each participant understood the presented templates.
One participant incorrectly identified the gestures initially, but corrected their
interpretation after using the tool. All four were also able to locate all errors and
propose a correct solution for each error.
Group B: Unlike the three others, one participant was not able to describe alpha
and bravo templates correctly. All four participants were able to find ambiguity
between charlie and delta. The second error was found by three participants,
who proposed a correct solutions for each of the errors.

Task #3

The most complex VGT expression was analyzed in the last task. The expression
defines six of the eight templates used in keyboard controlled by humming [6].
pll [pill.m< 60] pl12 [p12.m-pll.m<=4 & pll.m-pl2.m<=4]%* s<alpha> |

p21 [p21.m>=60] p22 [p22.m-p21.m<=4 & p21.m-p22.m<=4]* s<bravo> |

p31 [p31.m< 60] p* p32 [p32.m-p31.m>4] p* s<charlie> |

p4l [p41.m>=60] p* p42 [p4l.m-p42.m>4] p* s<delta> |

p51 [p51.m< 60] p* p52 [p52.m-p51.m>4] p* p53 [p53.m<=p51.m] p* s<echo> |
p61 [p61.m>=60] p* p62 [p61.m-p62.m>4] p* p63 [p63.m>=p61.m] p* s<foxtrot>

Understanding Formal Description of Pitch-Based Input 7

The six instances correspond to the following - 1. alpha to a straight low
tone, 2. bravo to a straight high tone, 3. charlie to increasing tone by more than
4 midi notes, 4. delta to decreasing tone by more than 4 midi notes, 5. echo to
a tone that increases by more than 4 midi notes and then decreases to at least
its initial pitch and finally 6. foztrot which is essentially echo vertically inverted.
Ambiguities between charlie and echo and between delta and foxtrot are present
due to the end pitch of charlie and delta templates not being limited.

alpha bravo charlie delta echo foxtrot
< . . . : :
S . i
= i i
S il | | |
60 | | |
— | | |

time

Fig. 6. Gesture templates in the task #3

Group A (Use of tool): One participant misunderstood alpha and bravo tem-
plates. Two participants incorrectly identified the templates initially, but cor-
rected their interpretations after using the tool. Two participants thought there
was an error present between alpha and bravo, but identified their mistake after
using the tool. All participants located the error and three of them were able to
propose correct removal solution.

Group B: Two participants incorrectly identified alpha and bravo templates as
unreachable and were thus unable to sketch them. The other two participant
incorrectly identified the templates as ambiguous. However, the other templates
were understood by all participants, who were also able to identify the ambigu-
ities and propose correct solutions.

5 Discussion

Using VGT expressions accelerates the process of building an NVVI applica-
tion, as the matching algorithm no longer needs to be hard coded. The question,
that is raised though, is whether designers are able to understand these VGT
expressions. In most cases, participants from both groups correctly identified
templates directly from VGT expression, which supported our assumption that
VGT expressions can be understood by most designers. From total of 48 ges-
tures that were examined in one group, there was two errors in the group A
(use of tool) and seven error in the group B. What was slightly surprising was
that participants from group A primarily relied on their own judgement rather
than on the provided tool. However, they did use the tool from time to time to
visually confirm their opinion or when they were unsure of the answer. In these
situations the tool helped them to correctly understand the given templates and
consequently to succeed in fulfilling the tasks. Thanks to the tool, participants
from the group A also had no difficulty in detecting semantic errors. Although

8 Ondfej Polacek, Zdenék Mikovec

the participants from the group B were not as successful as group A, they were
still able to locate a significant number of error occurrences. It seems that the
use of the tool results in better understanding of VGT expressions and mini-
mizes the overlooking of semantic errors. However, a further quantitative study
is needed in order to support this hypothesis.

6 Conclusion

This paper discusses the formal description of pitch-based vocal input, used
during the design process of NVVI applications. We have created a tool for au-
tomatic error detection and visualization of the formal description. Our research
was focused on the comprehension of the formal description by designers and
their ability to detect possible semantic errors with and without using the tool.
Their ability to comprehend the formal description and to detect semantic errors
was validated in a user study by eight interaction designers. Designers who used
the tool were more successful in understanding the formal description. Further
research concerning these results will be conducted in the future, including a
comparative quantitative study to prove the efficiency of the gesture visualiza-
tion tool.

Acknowledgments. This research has been partially supported by the MSMT
research program MSM 6840770014 and the VitalMind project (IST-215387).

References

1. Harada, S., Landay, J.A., Malkin, J., Li, X., Bilmes, J.A.: The vocal joystick: eval-
uation of voice-based cursor control techniques. In: Proceedings of ASSETS’06, pp
197-204. ACM Press (2006)

2. Hamalainen, P., Méki-Patola, T., Pulkki, V., Airas, M.: Musical computer games
played by singing. In: 7th International Conference on Digital Audio Effects, pp
367-371. (2004)

3. Igarashi, T., Hughes, J.: Voice as sound: using non-verbal voice input for interactive
control. In: Proceedings of UIST‘01, pp. 155-156. ACM Press (2001)

4. MIDI Manufacturers Association: Complete MIDI 1.0 Detailed Specification v96.1
(2nd ed.), http://www.midi.org/techspecs/midispec.php (2001)

5. Polacek, O., Mikovec, Z., Sporka, A.J., Slavik, P.: New way of vocal interface
design: Formal description of non-verbal vocal gestures. In: Proceedings of the
CWUAAT’10, pp. 137-144. Cambridge Press, UK (2010)

6. Sporka, A.J., Kurniawan, M., Slavik, P.: Non-speech Operated Emulation of Key-
board. IIn: Designing Accessible Technology, ISBN 1-84628-364-7, pp. 145-154.
Springer, Heidelberg (2006)

7. Sporka, A.J., Kurniawan, S.H., Mahmud, M., Slavik, P.: Non-speech Input vs Speech
Recognition: Real-time Control of Computer Games. In: Proceedings of ASSETS’06,
pp- 213-220. ACM Press (2006)

8. Sporka, A.J., Zikovsky, P., Slavik, P.: Explicative Document Reading Controlled
by Non-speech Audio Gestures. In Text, Speech and Dialogue, 9th International
Conference, TSD 2006, LNAT 4188, pp. 695-702. Springer, Heidelberg (2006)

