FROM AN E-BUSINESS REVENUE MODEL TO
ITS SOFTWARE REFERENCE ARCHITECTURE

Volker Gruhn, Thorsten Weber

Chair of Applied Telematics/e-Business, Department of Computer Science, University of

Leipzig

Abstract:

Key words:

Revenue models define how a company creates their revenues and hence they
are an integral part of business models. While a lot of research on business
models and revenue models of the e-Business already exists, there is a
shortfall of a concept to derive appropriate software architectures for the
underlying software system directly from these models. This is interesting
since a software system for companies of the e-Business is the fundamental
basis to operate this business in practice. In this paper a concept is introduced
to derive an important part of the overall software architecture for business
models based on a characterization of its revenue model. For that purpose, a
‘classification cycle' is defined including a set of criteria which enables you to
conclude technical decisions for the design of a software architecture. Using
this classification cycle, a variety of revenue models can be identified. Within
this paper we focus on the specific revenue model subscription of services as
one example. The derived architecture serves as a software reference
architecture for all business models which are based on this type of revenue
model. It means that in case a software system has to be developed for a
business model using this revenue model, the software architecture presented
in this paper can be used as a sample solution to refer to. Thus, it helps
architects to derive a fundamental part of the overall software architecture in
an easy and efficient way.

business model, revenue model, software reference architecture, e-Business



34 Volker Gruhn, Thorsten Weber

2. RELATED WORK

Zerdick et al. (1999) define the revenue model as the 'determination of
the sources of revenue'. They investigate revenue models for the e-Business
isolated from business models. This approach is also pursued by Skiera and
Lambrecht (2000). However, they classify possible revenue models within e-
Business but do not analyze the relation of these models to the underlying
software architecture.

Other authors use a different approach by defining revenue models as a
part of the encompassing business model. One of the first definitions of a
business model in e-Business is given by Timmers (1998, 1999). According
to him, 'a business model is defined as the organization (or ‘architecture’) of
product, service and information flows, and the sources of revenues and
benefits for supplier and customer'. It becomes obvious that the revenue
model that Timmers calls 'sources of revenue' is an integral part of a
business model. Buchholz (2001) defines a business model as a 'brace of
four constitutive components', where the revenue model is one of them. Also
Wirtz (2001) and Doubosson-Torbay, Osterwalder and Pigneur (2001) see
revenue models as a part of business models.

However, we could not identify any research that analyzes the
dependency of business models and its related software architecture in depth.
Only a few authors deal with this relation at all. One approach in this area is
delivered by Bartelt and Lamersdorf (2000). They define four methods for
the designing of business models. One of these methods are so called
'modules of functionality' like product-catalogues and search engines. They
are identified within business models and can be used independently from a
precise case and thus can be reused in other business models. However, this
approach does not deliver a set of such functionality modules and identifies
only some examples which cannot be used in general. Furthermore, they do
not investigate these modules of functionality for the domain of the revenue
generation.

Due to this shortfall we chose an alternative approach that is described in
the next chapters to derive a software reference architecture on the basis of a
characterization of a revenue model. A software reference architecture can
be interpreted as 'a collection of computational components [...] together
with a description of the interactions between these components — the
connectors' (Gerlan and Shaw, 1993). Thereby, multiple descriptions can be
given depending on different aspects one wants to focus on. We describe in
this article our software reference architecture using UML class diagrams
(OMG, 2005) to place emphasis on static aspects, and sequence diagrams to
place emphasis on dynamic aspects of the system.



From an e-business revenue model to its software reference... 35

1. MOTIVATION

e-Business is characterized and influenced both by the usage of
information technology for business purposes and by the occurrence of
adapted or completely new generated business models. To lead a company
successfully, there has to be a clear understanding of how the revenues can
be generated. The offered value a customer is willing to pay for as well as
the related processes of revenue generation are defined in the revenue model.
Thus, a revenue model is one of the core elements in planning and realizing
a company. Analyzing the literature, it becomes obvious that there is a
common understanding that a revenue model is an integral part of a business
model.

To realize a business model in the e-Business, there is a special focus on
the software architecture of its underlying software system, because, like the
'e" suggests already, the processes are supposed to be performed mostly
electronically. Thus, the business model and its underlying software
architecture are tightly connected. Since the revenue model is a very
important element of the business model, the software architecture also has
to be designed according to the requirements which have to be satisfied to
generate revenues. There are other elements of a business model like its
procurement or distribution model that influence the overall software
architecture of the complete software system, but we focus on this
fundamental aspect.

The purpose of this article is to develop a software reference architecture
to support the application of one revenue model within its encompassing
business model. Thus, the reference architecture helps architects to derive an
important part of the overall software architecture which is necessary to
realize a business model. Within this article it will be focused on the
subscription revenue model as one possible revenue model in e-Business. It
can be applied to different business models like Internet-Service-Provider,
online magazines or even e-shops which offer an ongoing claim of their
products using a subscription.

Therefore, the revenue model has to be characterized in a way which
enables a company to derive technical decisions for the design of this
software architecture. Because of the mutual dependency between the
revenue and the business model, the criteria for this characterization have to
be based on the business model itself. This article shows a way of deriving a
software architecture on this background. Using the resulting software
reference architecture for the subscription revenue model in practice, the
planning, (re-)designing and implementing of new applications for business
models becomes more reliable and effective.



36 Volker Gruhn, Thorsten Weber

Since we claim to derive a reference architecture, this term yet has to be
defined. More generally than an architecture, a reference model is according
to Bass, Clements and Kazman (1997) 'a standard decomposition of a known
problem into parts that cooperatively solve the problem'. Then, a (software)
reference architecture is 'a reference model mapped onto software
components [...] and the data flow between these components'. Related to
our article, the known problem is represented by the revenue models. This
domain is decomposed into functional parts which can be implemented as
components and their relations. Thus, a sample solution is given that can be
used as a reference during the development of a software architecture related
to this domain.

3. CLASSIFICATION OF THE SUBSCRIPTION
REVENUE MODEL

Subscription is taken as the relevant e-Business revenue model for this
article. Other examples of revenue models are transaction fees, advertising
or profiling, but here we focus on the subscription revenue model. In
general, a subscription represents a contract between a supplier of an offer
and its customer (the subscriber) about the claim of a specific amount of a
specific offer within a specific period for a specific price.

The agreed amount represents the maximum the customer is allowed to
obtain during the period. In the case that this amount is exceeded, additional
entities are charged separately. In the majority of the cases, the subscriptions
are extended automatically and the price is paid per period.

In this section, the revenue model subscription and its variations are
characterized. Therefore, some key criteria are identified with regard to the
purpose of reasoning design decisions of an appropriate software
architecture. Using these criteria the classification of the revenue model
enables two things:
¢ to identify different variations (or subtypes) of the revenue model and
e to be able to derive decisions for the software architecture of the

underlying software system which enables the application of this revenue

model.

For the classification of the revenue model, the 'classification cycle' is
used. The following paragraph introduces this tool.



From an e-business revenue model to its software reference... 37

3.1 The classification cycle

Related to the elements of the definition of a business model the
classification criteria to characterize a revenue model are grouped into four
sections: actor-related, offer-related, benefit-related and revenue-related
criteria. The close dependencies between the revenue model and its business
model are considered via this approach. The characterization of the revenue
model is based on criteria that are linked to its encompassing business
model. Nine criteria were collected as a result of related work research and
own considerations. In the following, the criteria are introduced in brief.

3.1.1 Actor-related criteria

The actor-related criteria are the customer role and the customer relation.
The customer role may obtain one of the parameters informant, buyer, seller,
or value integrator (actors within communities where the customer itself
generates the value). This criterion limits the possible ways of receiving
money from the customer. It is not limited that a customer only acts in one
role. For example, a customer on a market platform may sell his own
products and buy products from other participants. The important question
from a software architecture point of view is whether a customer role has to
be supported or not. The customer relation might be anonymous, identified
or identified and authenticated. An online bank for example has to be sure
that the customer is the person he claims to be. Therefore, special
authentication procedures have to be supported in this case. In general,
depending on this criteria the design of customer profile management and
access control is influenced.

3.1.2 Offer-related criteria

Offer-related criteria are consistency, pricelevel and origin of the
products or services. The consistency is one of the most important criteria
since it provides information about the ways the company has to manage
their products internally and how the shipment can be handled. Possible
values are services, digital goods, physical goods, or information. The
pricelevel ranges from nano via micro and medium to macro' and gives
information about possible payment methods. The origin of the offer may
either be self-determined or over-directed. This differentiation is important

! According to Reif (2001), the ranges are (in €) nano (0,001 to 0,1), micro (>0,1 to 5),
medium (>5 to 1000) and macro (>1000).



38 ‘ Volker Gruhn, Thorsten Weber

for devices which the product management component has to maintain and
to control.

3.1.3 Revenue-related criteria

The revenue-related criteria comprise the payment method and the
revenue origin. The origin of the revenues can be direct or indirect and is
addressing either the end-consumer (direct) or third parties like other
companies (indirect). The latter parameter occurs for example in
advertisement-based revenue models. As we mentioned earlier already,
payment methods are influenced among others by the pricelevel of the
offering. A company has to decide whether its customers are claimed using
invoices, direct debits, credit cards, or external payment providers which
offer for example a method to transfer prices also on a nano or micro level.

3.14 Benefit-related criteria

The last section is the benefit related criteria. Two criteria can be found
here: the primary benefit and the additional benefit for a customer. The
primary benefit does not have static values but answers the question 'what is
the customer willing to pay for?' This criterion can thus be interpreted as the
revenue model in a nutshell and contains the most important value from a
customer point of view. The additional benefit can be e-Business-inherent,
personalization or anonymity. In the case that one of the last two values is
selected, the design of the software architecture has to consider this fact
strongly. Otherwise, the e-Business-inherent means nothing but benefits that
are encompassed anyway by using the e-Business technology like time
savings due to independency of physical distances or convenience by
ordering products simply using a PC. In this case, nothing has to be
considered in particular.

This total of nine criteria, grouped in their sections and arranged in the
classification cycle are used to characterize a revenue model. This
classification cycle, which can be seen in Figure 1, is a general tool to
describe revenue models of the e-Business. However, within this article, it is
only applied to classify the subscription revenue model. Thus, only a limited
set of all parameter values will be used.

As it will be classified in the following, we concentrate only on one
variation of the subscription revenue model: subscription of services. Other
variations like subscription of digital products or subscription of physical
products are not within the scope of this article. Nevertheless, it becomes



From an e-business revenue model to its software reference... 39

obvious that the product consistency is the most relevant criterion of
subtypes of the subscription revenue model.

3.2 Classifying the subscription of services revenue
model

The classification cycle in figure 1 shows the characteristics of the
subscription of services revenue model.

Figure 1. Classification cycle of the revenue model subscription of services

A typical example for a business model which offers services to
subscribe is an Internet Service Provider who offers web-access to its
customer. Based on this example, the following considerations are
explained.

4. FROM REVENUE MODEL TO SOFTWARE
REFERENCE ARCHITECTURE

Based on this characterization of the subscription of services revenue
model by using the classification cycle, technical decisions for a software
reference architecture are derived within this section.

The company offers services (criteria consistency). The primary benefit
for the customer is the ongoing supply of these services. Therefore, he
subscribes to this service by concluding a contract. These criteria obviously
affect the way how the offers have to be maintained by a software system. In



40 Volker Gruhn, Thorsten Weber

addition, the origin of the offer is self-determined. This leads to the
requirement that the company has to create, change and maintain its services
by itself. For the given example of an Internet Service Provider, the
company has to offer a variety of different tariffs for its customers to meet a
wide range of different whishes depending on the personal behavior of each
customer. The tariff determines the kind of service the customer subscribes
and is volume or time related. The maximum available amount of units for
each kind has to be fixed by the tariff plus the time period in which these
units have to be consumed. Furthermore, the tariff defines the price for this
package and the costs of additionally claimed units within one period. All
these parameters have to be fixed within a tariff. While the contract itself
contains personal information about the customer and maybe determines
general issues like e.g. the payment method, the tariffs contain the detailed
description of the service. Therefore, contract and tariffs belong to one
component but will be realized in separate classes. A selected tariff is then
aligned to a contract.

To be able to distinguish various statuses of a customer this is a relevant
information that has also to be stored in the contract. By providing a status, it
is possible to lock out users from using any services if it is required, for
example if they did not pay their last bill correctly. Thus, the risk of betrayal
can be reduced for the company.

It also became obvious, that depending on the tariff different reference
values (volume or time) have to be charged and therefore have to be logged.
Since the customer relationship is identified, each customer session has to be
investigated separately regarding the activities of the user. At the end of a
session, a logging mechanism must determine the relevant reference value
and the consumed entities and save it persistently. For revision purposes and
to create itemized bills, each session has to be saved separately. Therefore,
an appropriate usage account has to be realized in a separate component.
This component performs the central processes to charge the customer in
accordance to the use of the subscription revenue model.

Obviously, customer profiles have to be supported as well. That the
origin of the revenue is direct can be seen at the criteria. This means that the
end-customer transfers the revenues. They act as identified buyer who pay
their bills by using invoices or direct debits. In addition, there is no need for
any anonymity assumed to be an additional benefit>. Thus, the customer
disposes of a customer profile. Access data like login and password and
private address data have to be saved there. Furthermore, a debit account,
saving all financial transactions, is necessary within the customer profile.

2 In case the customer relation is classified as identified, it is hardly possible in practice that
there the additional benefit might be anonymity.



From an e-business revenue model to its software reference... 41

This account will be periodically charged with the amount of the invoice
(therefore debit account) and in return will be credited on the event of
incoming financial transactions. Since a history of all transactions has to be
available, each transaction has to be stored in an own data record. Thus, the
account will be realized by two classes where one class (better: the instances
of one class) contains the data records. The complete customer profile will
be realized by a further component which contains cooperative classes.

The invoice was mentioned already. The invoice has to determine and
sum up the consumed entities and compare this value with the customer's
chosen tariff at the end of a period. In case the summed up value extends the
maximum count of entities, the difference has to be calculated separately
based on the defined price. Otherwise, the invoice will show the defined
price for the subscription. The final amount will be charged and added as a
new data record of the customer's debit account and a physical version of the
invoice has to be created and send to the customer. An own component will
implement the invoice. This component will gather the relevant information
from the customer profile component, the contract and tariff component, and
the usage account component. Therefore, references between these
components have to be considered in the reference architecture.

To summarize: the following components were derived based on the
classification of the revenue model:

e a contract and tariff component which separates both elements in own
classes

e a usage account component which is responsible for the logging of the
user activities depending on the tariff; this is the central component to
charge the customer using this revenue model

e a customer profile component which comprises classes for personal data
and for debit account data

® ainvoice component

These considerations are picked up again in the next chapter where a
detailed appropriate software reference architecture is represented.

S. A SOFTWARE REFERENCE ARCHITECTURE
FOR THE SUBSCRIPTION REVENUE MODEL

According to the views defined by Gruhn and Thiel (2000), the software
architectures are described on a software-technical level in the following.
Since it is a goal of the represented reference architectures to identify
relevant components which realize necessary functionality to implement the



42 Volker Gruhn, Thorsten Weber

revenue model, these components are identified within the software-
technical architecture by encompassing their belonging classes.

The following figure 2 shows the class diagram of the reference
architecture. The grey boxes encompass the classes to their related

DATransaction
Address o T “Siring.
0. Customar involcoNumber : Sting
- : kiate  Oato
> Cusiomer 1 Sting. it float
B -ame : Siring i ke -
AN miame - Sty ATransacton(ia inviir. in &mour)
: ioginStatus ; Booiewn « talse TR : :
- emaii ; String
& pomaliSucd _________ § s ‘Involce
' -address - EoeCustomer_w(} : String. \
e getName() : String
| +seiName() & y DebltAccount
CustomerGatalogue *goilogini) : String s bt T
j+setLogin{) £ “boalance : float Sting
e 1 Booie i pan oty ot S  witName : String
Neirpas : : '
ogeuiGustomeni Kunde - Customan) Bocloar] [\t gnarmeny oo  [inoicoutus OATiansacion
nowCustomer(in kunde : Customer) : Boglean | 11000l invoicani.in amour)  casicFse
JvioginCustomertin kenmwert : Sting) Canignat) Suna . 4 ot foat
[saetCustomartio hunden i :Stivg) - Customer | ' 2tgmast) kroatefieport) SNSRI | BN SV LT
g |voginfinpasswont  Sring) : Bootean| - AT < imoetin conact Contct nirom -Dse.n o Date
5 D toa
"Y""‘V" ) +getContrsct() : Contract B 77 FoaxcTotarTimatin vammm uAnm-mswlo P : Poai
: P O rsendmucain st
e rendSession) : Boolesn et ey i I«-r-acmons uAfunsmwc ) tioal
3 Y e Bl
% : X T B G v
UATranssction . & SR AN
StarTimel1] Date ¥y et i
endTime(1): Date . : ; .
1] Integer
y UssgeAccol
[FUATiamsacton i b ook o : : :
"';ﬁ‘”‘;“";’:ﬂ g’:* o s LogilleAnaiyst
Wi R Ol o . 0T o) UnTrarsacion .
TransforAmount]) : flost vy [pstartSessiontin contract : Contract) -
e oo momwe - foal)  Bogionr] T anveTransterAmounl( : Boean P2 frowiTransiersdB(m session_1d « Sting) - ol
ot Booiean - -
I [onomeratons ). < 2 3
‘ i { roates B VO | spanal
X ¥ Tarit S e [ o e M ¥ RS
TarittCataiogue [locked , ) ; :
B T ; Gonbact .
.name : String v o e
aeiTar(n o a) : Tan] dascription : String 18 assigned Anows - [So0Tac_ia  Sting i B
oatiyType : EnthyType ; P Ncustomer_id - Suing
 maxEnttios : iteger R urationSian  Date b CamrsciContimmation
claimPeriod : Period durationEnd : Data .
balki. mensoey basicPrion . foat 1 00 farit Tari ; oo - Sirg
|-a00PricePerEntity - float -paymeriMethad : Payment i customer_i
+qeiTari_id) : Sting 1 ContaciStalis - Contaaiatus *“r_‘i";) | duratonsian: Oute
geinamsi : Suing ~empmeralons oeiCanvac 6 S ] ity
e S Fee 3 e
. |rueiDszcrption) : String [wesk mnummsmn(] Dato. Ht ity Typs - EntityType
05" LsetDescrptiont) - month {+setburationstang oetiog | Period
[raotEnttyType() : EntityTyps | quanteryear ¢wallmﬂEmY) Date -  axEntition : ntager
) - [setEnityTypal) naiyear |ssetDurasonEnd) e
Tomumetaion: ¥ Duradonnd asicPiice : foat
|ogetMasEninias() :imeger your gefTarti_idi : Sring : e mooany  fost
st LT et Tar i) g m'::u:moa ,Po ment
time_in_min. » 1 [sgetPedod() : Perod iy N l.ob\o’ nt : 1088 4
[data_in_mb J +0tPeriod) [+ 30tContractStatus{) ¥
B vetBasicPrice(; :tost ; Cusiomer, i i : Tar#)
{) 'HMCO{IIIII!MHI\IMWH"M Sting) : Bootean
+ge1AddPricePerEntity() : fioat
+netAddPricePerEntityl)

Figure 2. Class diagram of the software reference architecture

As it can be seen, five components are defined, while in the previous
section only four main components were derived from the classification
cycle of the revenue model. The reason for this is that the UsageAccount
component needs additional services from another component called
LogfileAnalyst. Before we analyze its role in more detail, we look at the
other components.

The CustomerProfile component contains five classes which should be
largely self-explaining. A user can have multiple addresses that lead to the
creation of an own class. The DebitAccount contains header information like
the current balance. The transactions are stored as instances of
DATransactions. Therefore, the constructor of this class is activated by the



From an e-business revenue model to its software reference... 43

DebitAccount, handing over the relevant information which it received
earlier by the invoking component, e.g. the Invoice. In addition, a
CustomerCatalogue is necessary to create new instances of Customer or to
deliver a reference of a customer object to an invoking class.

The ContractAndTariff component contains the separated classes
Contract and Tariff as required, while an instance of Tariff is assigned to an
instance of Contract. A class TarifCatalogue is similar to a
CustomerCatalogue and delivers a reference to a Tariff object. A further
class of this component is the ContractConfirmation which will be generated
by the time the customer places the contract. It contains contract-relevant
data and will be sent to the customer.

As mentioned earlier, the central component related to the core process of
this revenue model is the UsageAccount component. With the input of the
LogfileAnalyst component this component reports the activities within a
session and stores them persistently into a separate data record. Figure 3
shows this component.

UATransaction
startTime(1] : Dale
-endTimel1) : Date
-ransterAmount|0..1) : Integer p—v—
[+UATransaction() 3agoAccoun
+getStartTime() : Date il
+getEndTime() : Date 0. i
+selEndTime() [+creataReport(in from : Date, in o : Date) : UATransaction (0..']
+getTranslerAmount() : float “oontaing | |*startSession(in contract) ; Boolean
+satTransterAmount(in mange : float) : Boolean| -saveTransferAmount() : Boolean
+getDuration() : float |+ endSession() : Boolean

Figure 3. UsageAccount component

The process of the logging and the roles of the participating classes is
shown in detail in the sequence diagram in figure 4. By the time a customer
logs in and a new session is started, the method startSession of the class
UsageAccount is called. It controls at first the status of the contract to ensure
the customer is allowed to consume the services. Assuming a positive
response, the UsageAccount initiates a new instance of the class
UATransactions.

The data which have to be logged depend on the tariff the related
customer had chosen. Either the transferred data volume or the connected
time is relevant. In either case, by the time the customer logs out and ends
the session, the relevant information has to be determined and saved within
the UATransactions data record. Therefore, the method endSession of
UsageAccount is invoked. In case the transferred data volume has to be
recorded, this information has to be determined at first. Therefore, the
component LogfileAnalyst can be used, which gathers the information by
parsing the log file. This information can be saved afterwards within the



44 Volker Gruhn, Thorsten Weber

created instance of UATransaction. The duration of the session is always
saved in the data record independently of the tariff for reporting reasons.

sd Usage logging J

L bren J [status = = ‘blocked]

)
type = getEntityType() ———-——-Dﬂ
!

ype T

)
|
]
1
]
!
1
1
1
1
|

L ---‘new|)-->|»- :UATransaction

(

"~ savaTranslerAmo,

-
N
3
T TR <

)
|
1
)
unt(
|
|
1
!
|
1
1
1
|

amount = get

'
setTransferAmount(amount)

[<setTranslerAmount--

[ setEndTimel()
-+~ satEndTima-----

§

T l}
ll '
- 1 Il

Figure 4. Sequence diagram of the usage logging

The last component to be discussed is the Invoice which comprises one
equally named class. The constructor of this class is called at the end of each
subscription period from a controller of the complete system which is not
described here in any detail. The constructor receives the relevant parameters
to calculate the chargeable amount which are a reference to the relevant
customer, its contract, and the invoice period. Figure 5 shows the interaction
of the participating components during the invoicing.

For the calculation, the tariff chosen by the customer has to be compared
with the used entities during this expired period.



From an e-business revenue model to its software reference... 45

sd Invoicing J
:Controller
end of claimPerlod
I
1
L Znvolce Contract :Cusfomer Tadlf Debi
new(contracl,
customer, from, 10)
, ' ! : ! !
i | 1
1 t— getTaritt() : Tarilt ! ! ' t
! - getTarilf : Tariff --- ! ! ! |
I | | 1 |
! | o 1 !
1 gelEntityType() — ) | |
H i »! 1 1
! g | t
! t Ll | |
! I » | 1
1 |~ getAdd| > | !
! ) 1 | |
! >l | : |
gelUsag 1
! getUsagy : U L1 1 1
! 1 | 1 |
Il ] ] ] ]
! : d to) >Il !
N !
! : {UAT 0.4 .1_, !
\ | ) 1 1
H 1 1 I |
| 1 1 | I
! calcAddFee() | | ! |
| ) 1 1 |
! — . | |
! alt
! ni(UA onf0..") | ! ! !
I " 1 |
1 [EntityType = = | | ' ' !
i “data_ln_mb'] - 1 i I I |
! ansferAmount | | 1 |
| - i ' 1 1 |
[ el ——r-—- ' I | |
[ . —— 1 1 |
{ Ef,',:'."’;"",:lﬂ calcTotalTime(UATransaction]0.."]) H 1 1 1
_In_t 1l | ] I
! | | | |
! 1 | | |
! 1 | | |
! | 1 1 |
| 1 | | I
| 1 1 | 1
! 1 | 1 )
| 1 1 1 |
\ ) 1 | 1
H 1 1 | 1
| 1 1 | 1
1 \ | | 1
1 1 1 1 )
i 1 1 | 1
1 1 | | I
1 ! | | 1
1 I 1 | 1
: ' : : !
0 >l
! " o 1 1 |
! < 0 N | | 1
' | | | 1
L dui mount 1 >
: ! ! amount; ! re! /' Gharge Debit
| ) h ! ! Account
| ' I ! !
> —
i iross  Adrd ™ I i |
1 o . T ] i 1
H | 1 1 | )
1 ) ] | 1
| | 1 | 1
| ! I | |
) | ) 1 1
H 1 1 | [
i 1 I 1 I
i ) | 1 1
1 1 1 1 1

Figure 5. Sequence diagram of the invoicing

The tariff is received from the ContractAndTariff component, the used
entities from the UsageAccount component. If the amount of consumed units
is not higher than the maximum amount according to the tariff, only the
agreed subscription fee has to be charged to the DebitAccount of the
customer. In case the used entities exceeded this maximum, an additional
price has to be calculated by the invoicing and charged to the account. At the
end, a physical invoice has to be sent to the customer.



46 Volker Gruhn, Thorsten Weber
6. VALIDATION

A German Lottery company was rebuilding its internet platform recently.
One of the offered games on the platform can be played in a subscription
mode, so that the customer automatically takes part on the draws according
to his configured parameters like draw days, predictions, and bet amounts.
To ensure the participation, the stake has to be available on the customers
account in advance. This virtual account is part of the customers profile. By
the time the bets are placed into the system, the stake is withdrawn
automatically from this account. To agree on the conditions of the contract,
the customer has to sign on to the platform and configure his subscription.

The design of the platforms software architecture was derived from the
reference architecture presented in the previous section. Because of the
divergent specification of bets, some components had to be adapted slightly.
The ContractAndTariff component had to be changed in a way to treat the
individually configured bets as tariffs. Thus, a bet was assigned to a contract
rather than a tariff. Furthermore, the UsageAccount and the Invoice
components were adapted, because each participation on a draw had to be
logged and the regarding bet amount had to be withdrawn from the
customers account immediately. Nevertheless, the usage of the software
reference architecture was helpful to design the required architecture with
reduced effort and in reduced time.

7. CONCLUSIONS

This paper focused on the creation of a software reference architecture
for a revenue model of the e-Business based on a business model related
characterization of this revenue model. Therefore, we introduced a
classification cycle including relevant classification criteria. The parameters
of these criteria, selected in accordance with a specific revenue model,
enabled us to derive requirements and conclusions for the design of an
appropriate software architecture. Because we focused on the domain of the
subscription of services revenue model, the software architecture can be
considered as a reference architecture. The benefit of this software reference
architecture was proven already during its application within a practical
software development project.

At this point, wee see the need of further research in order to extend the
usage of the classification cycle to further revenue models and to derive
more appropriate software reference architectures. It is our aim to get a
comprehensive set of reference architectures which can be used to a large
variety of business models within the e-Business.



From an e-business revenue model to its software reference... 47

ACKNOWLEDGEMENT

The Chair of Applied Telematics/e-Business is endowed by Deutsche

Telekom AG.
The authors can be contacted at {gruhn, weber}@ebus.informatik.uni-

leipzig.de

REFERENCES

Bass, L., Clements P.C., and Kazman, R., 1997, Software Architecture in Practice, Addison
Wesley

Bartelt, A., and Lamersdorf, W., 2000, Business Models of Electronic Commerce: Modeling
and Classification (German: Geschiftsmodelle des Electronic Commerce: Modellbildung
und Klassifikation), in: Verbundtagung Wirtschaftsinformatik 2000, pp. 17-29, Shaker

Buchholz, W., 2001, Netsourcing Business Models — Business Models for purchasing
platforms (German: Netsourcing Business Models - Geschiftsmodelle fiir
Einkaufsplattformen), in: Dangelmaier, W., Pape, U., and Riither, M., ed., Die Supply
Chain im Zeitalter von E-Business und Global Sourcing, pp. 37-52

Dubosson-Torbay, M., Osterwalter, A., and Pigneur, Y., 2001, eBusiness model desing,
classification and mesurement, (October 5, 2004) http://citeseer.ist.psu.edu/dubos-
son.torbayOlebusiness.html

Garlan, D., Shaw, M., 1993, An Introduction to Software Architecture, in: Advances in
Software Engineering and Knowledge Engineering, pp. 1-39, World Scientic Publishing
Company

Gruhn, V., and Thiel, A., 2000, Componentmodels - DCOM, JavaBeans,
EnterpriseJavaBeans, CORBA (German: Komponentenmodelle - DCOM, JavaBeans,
EnterpriseJavaBeans, CORBA), Addison-Wesley

Object Management Group: OMG Unified Modeling Language Specification, March 2005,
Version 2.0.

Reif, W., 2001, What is E-Commerce? (German: Was ist E-Commerce?), University of
Augsburg, (May 5, 2003) http://www.uni-augsburg.de/lehrstuehle/infol/lehre/ss01/e-
ommerce/folien/Definition.pdf

Skiera, B., and Lambrecht, A., 2000, Revenue Models for the Internet (German: Erlésmodelle
im Internet), (December 13, 2003) http://www.ecommerce.wiwi.uni-
frankfurt.de/skiera/publications/Erloesmodell.pdf

Timmers, P., 1998, Business Models for Electronic Markets, in: Gadient, Y., Schmidt, B.,
Selz, D., ed., EM — Electronic Commerce in Europe. EM — Electronic Markets, Vol.8. No.
2, 07/98, (May 10, 2005) http://www.electronicmarkets.org/modules/pub/view.php/
electronicmarkets-183

Timmers, P., 1999, Electronic Commerce — Strategies and Models for Business-to-Business
Trading, John Wiley & Sons Ltd. England

Wirtz, B.W., 2001, Electronic Business, 2. Auflage, Gabler

Zerdick, A., et al., 1999, The Internet Economy — Strategies for Digital Business (German:
Die Internet-Okonomie - Strategien fiir die digitale Wirtschaft), Springer



