INTEGRATION OF XML DATA IN
PEER-TO-PEER E-COMMERCE APPLICATIONS

Tadeusz Pankowski 12

Lpnstitute of Control and Information Engineering
Poznan University of Technology
Pl M.S.-Curie 5, 60-965 Poznan

Tadeusz.Pankowski@put.poznan.pl

2 Faculty of Mathematics and Computer Science
Adam Mickiewicz University
ul. Umultowska 87, 61-614 Poznan

tpankow@amu.edu.pl

Abstract

Keywords:

E-commerce applications need new solutions in the field of integration, inter-
change and transformation of data across the global marketplace. Such ad-
vanced data management features, which are expected to function automatically
or semi-automatically, are necessary when a party looks for potential business
partners, a buyer wants to find relevant supplier of the products, a seller wants
to find potential customers or business partners negotiate a deal, and so on.
In these e-commerce applications distributed systems based on the traditional
client-server paradigm are nowadays replaced by peer-to-peer (P2P) systems.
The goal of data management in P2P systems is to make use of a decentral-
ized, easily extensible architecture in which any user can contribute new data or
new schemas and mappings between other peer’s schemas. P2P data manage-
ment systems replace traditional data integration systems based on single global
schema with an interlinked collection of semantic mappings between peers’ in-
dividual schemas. The paper discusses this kind of P2P data management in
e-commerce settings. A new proposal concerning schema mapping specifica-
tion and query reformulation is presented.

Data integration, XML databases, query reformulation, schema mapping, Peer
Database Management Systems, P2P e-commerce

1. Introduction

E-commerce (electronic commerce) covers trading activities that are sup-
ported by variety of information and communication technologies. A new gen-
eration of e-commerce applications such as B2B (Business-To-Business) and
EAI (Enterprise Application Integration) requires new standards and new tech-

482 Tadeusz Pankowski

nologies. Such new technologies are developed and provided among others by
P2P (Peer-to-Peer) computing and PDMS (Peer Data Management Systems)
[Bernstein et al., 2002; Tatarinov and Halevy, 2004]. B2B P2P e-commerce
opens up new possibilities of trade, where new business partners from around
the globe can be found, their offers can be compared, even complex negotia-
tions can be conducted electronically, and a contract can be drown up and ful-
filled via an electronic marketplace. Thus, market places for B2B e-commerce
require integration and interoperation of several systems (e.g. product databases,
order processing systems) across multiple organizations. E-commerce is car-
ried out in a highly dynamic environment where companies enter the market-
place some others drop out. The data flow is bi-directional, i.e. data has to be
transferred back to participants as well (orders, product lists). The system must
be adaptable for different environments, as the electronic marketplace covers
many countries with different languages and different legal regulations.

A basic functionality of a system supporting e-commerce applications is the
integration of external data sources or data services. To solve the problem
of data integration one can use the idea of federated database system [Sheth
and Larson, 1990]. In this scenario a global business data repository is a key
component of a federated system where it plays the role of a global schema
(mediator): all requests by the client application are sent to the repository.
The mediator then looks up its resources (metadata repository) and sends the
query to the appropriate source. The result is received by the mediator and
then sent back to the client application in the desired format. Such a solution
was proposed in [Quix et al., 2002]. This approach is based on a centralized
client-server architecture in which servers represent vendors or marketplaces
and customers are represented by clients.

Nowadays and after the great success of file sharing systems, such as Nap-
ster, Gnutella and BitTorrent, another more decentralized approach referred
to as Peer-to-Peer comes into use [Bernstein et al., 2002; Calvanese et al.,
2004]. P2P systems are characterized by an architecture constituted by vari-
ous autonomous nodes (called peers) which hold information, and which are
linked to other nodes by means of mappings. In P2P data sharing and data
integration each peer exports data in terms of its own schema, and data inter-
operation is achieved by means of mappings among the peer schemas. One of
the challenges in these systems is answering queries posed to one peer while
taking into account the mappings. This can be achieved by so called query re-
Jormulation [Halevy, 2001],[Lenzerini, 2002],[Madhavan and Halevy, 2003],
[Pankowski, 2005],[Tatarinov and Halevy, 2004],[Yu and Popa, 2004].

A system supporting query reformulation does not need to materialize a
target view over sources. Instead, a target query is reformulated into a set of
source queries that can be processed in underlying sources, and partial answers
are merged to obtain the final result. In both cases, the central problem is how

Integration of XML data in peer-to-peer e-commerce applications 483

to describe the correspondence or mappings between the source data and the
target data. Mappings are usually specified as high-level assertions that state
how source elements correspond to target elements at schema and/or instance
level. So, a distinction can be drawn between schema-level, instance-level or
hybrid approaches to source-target mappings [Rahm and Bernstein, 2001]. In
the case of schema mapping only schema information, not instance data, is
taken into account. Schema mappings can be given manually, perhaps sup-
ported by a graphical user interface, or they can be derived semi-automatically
[Miller et al., 2000; Popa et al., 2002] based on schema matching algorithms
[Rahm and Bernstein, 2001]. For query reformulation in relational data inte-
gration systems, schema mappings have been defined using GAV (global-as-
view), LAV (local-as-view) or GLAV (global-and-local-as-view) approaches
[Calvanese et al., 2004; Halevy, 2001; Lenzerini, 2002; Ullman, 1997].

The main contributions of this paper are the following. We propose a method
for specifying mappings between schemas of peer XML data repositories. The
source-to-target mapping specification is based on Skolem functions. Any
invocation SF(xy,...,x,) of a Skolem function SF' returns the same node
identifier for the same values of arguments x4, ..., z,. For different Skolem
functions and for different values of arguments returned identifiers (nodes) are
distinct. Arguments of a Skolem function are defined by means of path ex-
pressions returning text values. The mapping is specified as an expression of
a mapping language that asserts source-to-target dependencies [Fagin et al.,
2004]. Two kinds of dependencies are taken into account: (a) source-to-target
node generating dependencies, where a Skolem function is assign to each ab-
solute target path (i.e. a path starting from the root of a target schema) and
establishes a one-to-one relationship (modulo the function name) between tu-
ples of text values of source nodes and target nodes; and (b) source-to-target
value dependencies that constrain relationships between leaf node text values
in source and target data trees. Next, we propose rewriting rules for query re-
Sformulation. A query reformulation is defined as a rewriting process leading
from a target query to a required source query. Both mapping specification
and query reformulation are illustrated by examples relevant to e-commerce
applications.

The paper is structured as follows. In Section 2 we introduce some concepts
concerning XML data and XML path expressions. Then we define a method
to specify schema mappings based on Skolem functions. Classes of source-to-
target and value dependences are discussed and illustrated by an example. In
Section 3 we propose rewriting rules for query reformulation. Application of
these rules is illustrated in Section 4. Section 5 concludes the paper.

484 Tadeusz Pankowski

2. Specification of schema mapping

In data integration systems, there are one target (or mediated) schema and a
number of source schemas. In a P2P computation, a role of the target schema
can be played any peer that can be arbitrary chosen by the user. The target
schema is commonly treated as a virtual view over sources, and source schemas
describe real data stored in source repositories. We assume that both source and
target data conform to XML format.

2.1 XML data and path expressions

An XML document is a textual representation of data and consists of hier-
archically nested element structure starting with a root element. In the DOM
Data Model proposed by the W3C [XQuery 1.0 and XPath 2.0 Data Model.
W3C Working Draft, 2002], an XML document is represented by an ordered
node-labeled tree (or instance) that includes a concept of node identity. Sim-
ilarly, the schema of an XML document can be described by a node-labeled
tree, where multiplicity qualifiers (?, +, or %) are assigned with nodes.

We adopt an unordered tree model for XML schemas and instances, where
the leaves can be element nodes with text values. We will use a simple path
language for data tree navigation and we assume traversing only along the
child (/) axis. Variables will be bound to individual nodes (node identifiers).
The following categories of expressions are in our path language:

root = Qdoc| S8z an absolute ((@doc) or a relative (8x) root
P = l|root/l| P/l apath,
G = $zinP a range,

where Qdoc identifies document schema tree and points to the (absolute) root
of a document data tree being an instance of the schema; $x is a node variable
and its value is referred to as a relative root; [is an XML node label (element
tag); a path P is referred to as an absolute or a relative path depending on its
starting node; G can be an absolute range (if P is an absolute path) or a relative
range (if P is a relative path).

The type, type(p), of a path expression p is defined as follows:

type(p) = p, for a variable-free expression,
type($z) = type(P), for $z defined in a range $x in P,
type($z/P) = type($z)/P.

In Figure 1 there are five XML document schemas (written as schema trees)
that will be used as a running example to illustrate schema mapping and query
reformulation in a data integration scenario. Along with schemas, text values
of leaf nodes are also given. It is quite obvious, how from this simplified
presentation, proper XML document instances should be derived. E.g. @P3
has the instance given in Figure 2.

Integration of XML data in peer-to-peer e-commerce applications 485
@St: Suppliers @S2: Suppliers @O02: Offers
Supplier * Supplier * Offer *
Sid P Price Delivery Sk (o]] Ol P Price Discount
o 1t M007 - "1 o1 " 1 1007 vg
"s1” p2” 200 b "s3" 02" "02" p2’ "2107 "10”
e p1° 90" e
@P3: Parts @O03: Offers
Part* Offer *
Pl Offers Old Sk Price Delivery? Discount?
. s 000 e g
o ij Wt hepr "egr e
p1 _”_:; i3 's1” 200" B
o2 - i4" "s3" "210 10
"4
Figure 1. Schemas and leaf values of sample XML documents
QP3:
<Parts> <Part>
<Part> <PId>p2</Pld>
<PId>pl</PId> <0ffers>
<0ffers> <0Id>i3</0Id>
<0Id>il1</0Id> <0Id>i4</0Id>
<0Id>i2</0Id> </0Qffers>
</0ffers> </Part>
</Part> </Parts>
Figure 2. Instance of the document schema @P3 from Figure 1

All the documents represent information about suppliers and parts. Ele-
ments SId, PId, Price, Delivery, and Discount represent, respectively,
supplier identifier, part identifier, price of a part being supplied, information
about delivery time, and about discount. The attribute 0Id is used to link sup-
pliers with their offers (in documents @S2 and @02) or to link parts with offers
concerning these parts (in documents @P3 and @03).

Note that information in two sources, i.e. in (@S1), and in (@52,002), may
overlap. If an offer appears only in one source, then we can have incomplete
information in the target (the lack of values for Delivery or Discount). In the
rest of the paper instances of @P3 and @03 will be treated as canonical virtual
instances derived from real instances of @51, @S2 and @02. It means that these
instances are not materialized. Further on it will be assumed that there are
three peers, P, P», and Pj, in a P2P system. Peers P and P, are source peers
that store data with schemas, respectively, {@S1} and {@S2,@02}. P3 does not
store any data but provides the schema {@P3,@03}.

486 Tadeusz Pankowski

2.2 Schema mapping specification based on Skolem
functions

The basic idea of our approach to schema mapping is shown in Figure 3. A
source schema consists of two document schemas @S2 and @02, and a target
schema has also two document schemas @P3 and @03 (see Figure 1). There
are four mapping functions shown in Figure 3, the total number of functions is
equal to the number of mapped nodes in the target schema trees, i.e. 13, 2 for
root nodes (root nodes are not visible) and 11 for ordinary labeled nodes (the
node Delivery will be not mapped for this source schema).

@S2: Suppliers @O02: Oﬁers
i liar * Zin *
Svin Supplier” [gy/01 = 521010 }9 e
Sk ~__ Oud (0]} Pl Price Discount
WS RNy PN !
I N N ///// / AN |
\ \\ \\\\ 7 yala N 1
\ N S // ™~ !
\ N i SESL N !
\ AN i Va S~ 2 13
\ N yad / / ~— N |
\ Sy 7 / / \\J N]
N 4 / ~~ N
\ PN / / S !
\ \y/ / \\%
o o / . \
@P3: Parts FPa/n/’ \ /,/ ‘/_ @O03: Offers \\F .
A \\1) // Fo\ﬁ;‘_~‘>0 r* \\ Discount
Part*
NG N _——| N«
Pid Offers Old Sk Price Delivery? Discount?
7
X “Fou ®
Old*
val(1,2)

Figure 3. Graphical illustration of schema mapping based on Skolem functions

Variables $y and $z are defined over the source schema, and their ranges
are sets of nodes determined by @S52/Suppliers and @02/0ffers/0ffer,
respectively. A constraint can be imposed on variable values (in the box). We
assume that there is a Skolem function for any node type from a target schema
tree. The function generates instances of this node type, i.e. nodes of this type
in a target data tree. In our approach, we are interested in arguments of the
function and not in how the function works. It is only important that a Skolem
function returns different nodes (node identifiers) for different arguments, and
the same values for equal arguments. It means that the value is uniquely deter-
mined by the function name and the value of argument list. Moreover, if two
functions have different names they will never return the same value [Abite-
boul et al., 2000]. In our approach, if a list of arguments is not empty then
every argument is the text value of a leaf node from a source data tree. This

Integration of XML data in peer-to-peer e-commerce applications 487

value is determined by a path expression specified over source schema tree. In
Figure 3, we have:

" Fp.+($z2/PID) generates instances of @P3/Parts/Part,

® Fprq($y/SId,$z/PID) generates instances of
@P3/Parts/Part/0ffers/0Id, and so on.

Additionally, if a target node is a leaf node we also specify the text value for
it. The value is a text-valued function over arguments of the Skolem function
generating this node. Arguments of a text-valued function will be denoted by
indices of arguments in the argument list of the corresponding Skolem func-
tion. If the text-valued function is the identity function its name will be omit-
ted. In Figure 3 specifications of text values for leaf nodes are depicted in
ovals. If a Skolem function has more arguments then one, we index them by
integers labeling appropriate edges in Figure 3.

The following definition lays out the notational convention used for speci-
fying schema mappings. '

DEFINITION 1 A mapping between a source schema S and a target schema
T is an expression conforming to the following syntax
MS,T o=

foreach fi,..., fn

where &
exists sk; in P, [with val, (idz-seq,)],

skm in Py, [with val, (idz-seq,,)]
where f; is a range over S, ® is a conjunction of atomic formulas, sk; is a
Skolem function expression over S, P; is an absolute path in 'T, val; is a text-
valued function, idx-seq; is a sequence of indices of arguments of the Skolem
function occurring in sk; (applicable only if P; leads to a leaf node).

To explain our approach to schema mapping, we will use schemas from
Figure 1. Let us assume the following notations:

S;={@S1}, and S,={@S2,002} — source schemas,
S3={@P3,@03} — target schema,

I, = {I®51}, and I, = {I®52, 1®92} _ source instances,
M, 3, M3 3 —mappings from Sy and S,, respectively, to Ss.

Mappings M; 3 and M3 3 are specified in Figure 4 and Figure 5, respec-
tively. The mappings specify how elements from source XML data relate to
elements in the target.

According to these specifications, the root node @QP3/ is obtained by invo-
cation of the Skolem function Fp3() (with the empty list of arguments). The
unique node of type @P3/Parts is obtained by invocation of Fpg.+s().

488 Tadeusz Pankowski

Ml,gl

foreach $x in @S1/Suppliers/Supplier

exists
Fp3() in @P3/
Fparts () in @P3/Parts
Fpor ($x/P1d) in @P3/Parts/Part
Fprq($x/PId) in @P3/Parts/Part/PId with (1)
Foffers ($x/P1d) in @P3/Parts/Part/0ffers
Fora($x/S1d,$x/PId) in @P3/Parts/Part/0ffers/0Id with val(i,2)
Fos() in @03/
Foffers O in @3/0ffers
Foffer ($x/S1d,$x/PId) in @03/0ffers/Offer
Fb14($x/S1d,$x/PId) in @03/0ffers/0ffer/0Id with val(1,2)
Fs7a($x/51d,$x/PI1d) in @03/0ffers/0ffer/SId with (1)
Fprice ($x/S81d,$x/P1d,$x/Price) in @03/0ffers/0ffer/Price with (3)
Fpetivery ($x/S1d, $x/P1d, $x/Delivery) in @03/0ffers/0ffer/Delivery

with (3)

Figure 4. Mapping from source schema @S1 to target schema (@P3,@03)

Note that in @S1/Suppliers/Supplier/PId there can be many nodes of
type PId corresponding to the same real world part. In @P3, however, we want
to have exactly one node of type PId for one part. Thus, we assign the Skolem
function Fpry($x/PId) with the path @P3/Parts/Part/PId. The function
will return as many new nodes as many different values the expression $z/PId
has. In this way we merge source nodes with the same PId. In general, in our
approach criteria for merging are specified by appropriate construction of path
expressions determining arguments of Skolem functions.

The mapping specification allows for partial specification, i.e. some tar-
get absolute path might not be constraint in a mapping from a source schema
that does not have any corresponding information. For example, there is no
node generating dependency for the path @03/0ffers/0ffer/Discount in
the mapping M, 3, because there is no Discount element in @S1. Similarly
for @03/0ffers/0ffer/Delivery in mapping M3 3. The advantage of these
approach is that we can add, or remove the mapping constraints, when the
source schema is changed [Yu and Popa, 2004].

A with clause specifies text value for an absolute path leading to a leaf
node. The value is obtained from arguments of the Skolem function indi-
cated by a sequence of integers written on the right hand side of the keyword
with. If the sequence is (ki, ..., k) it means that the value is obtained by
value(Ey,, ..., Ey,), where E; is the i-th argument of a corresponding Skolem
function, and value() is a text-valued function. For h = 1 we assume that
value() is the identity function and its name will be omitted. For example:
Forq($x/S1d,$x/PId) in @P3/Parts/Part/0ffers/0Id with val(1,2)

Integration of XML data in peer-to-peer e-commerce applications 489

specifies that the text value of the path @03/0ffers/0ffer/0Id is equal to
val($x/81d, $x/PId), so, it is determined by the first and the second argu-
ments of the Skolem function Fprg.
Value constraints can impose equalities between some target values. For

example (see Figure 5), values of nodes in

@P3/Parts/Part/0ffers/01d, and in

@03/0ffers/0ffer/01d
are determined by the expression val($y/SI1d, $z/PI1d). Thus, the value equal-
ity between leaf nodes from these two different paths is imposed. That allows
for joining corresponding target elements.

ngg:
foreach $y:@S2/Suppliers/Supplier
$z:002/0ffers/Offer

where
$y/01d=$z/0id

exists
Fp3() in @P3/
FParts () in @PB/Parts
Fpart ($2/P1d) in @P3/Parts/Part
Fp14($z/P1d) in @P3/Parts/Part/PId with (1)
Foffers ($2/PId) in @P3/Parts/Part/0ffers
Forqa($y/51d,$z/PId) in @P3/Parts/Part/0ffers/0Id with val(1,2)
Fos () in @03/
FOffers OO in @03/0ffers
Foffer ($y/51d,$2/PId) in @03/0ffers/Offer
F5,4($y/81d,$z/P1d) in @03/0ffers/0ffer/0Id with val(1,2)
Fsrq($y/81d,$z/PId) in @03/0ffers/0ffer/SId with (1)
Fprice ($y/S1d,$2z/P1d,$z/Price) in @03/0ffers/0Offer/Price with (3)
Fpiscount ($y/S1d,$z/P1d,$z/Discount) in @03/0ffers/0ffer/Discount

with (3)

Figure 5. Mapping from source schema (@S2,@02) to target schema (@P3,@03)

3. Rewriting rules

Rewriting rules determine how a target query (on a target schema T) should
be translated into a source query (on a target schema S) taking into account a
mapping between these source and target schemas. For our running example
we have the following interpretation.

Let @ be a target query over S3. We want to find rewritings 7, 5, and 7, 4
such that: 74, ;(Q) is a source query over Sy, Ta,,(Q) is a source query
over Sy, and for any instances I; and I of schemas S; and S, respectively,
the following equality holds:

Q(Ma3(11) UMa3(I2)) = 7, 5(Q) (1) U Tan, 5 (@) (I2),

490 Tadeusz Pankowski

where M(I) denotes the canonical target instance corresponding to I with re-
spect to M, and U denotes an operation of merging two XML documents.

We will consider queries that have the following XQuery-like form [XQuery
1.0: An XML Query Language. W3C Working Draft, 2002]:

DEFINITION 2 A query is an expression of the form

q = <tag>for fi,..., f2
where w1 A ... A wm
return r</tag>

where each f; is a range, the where clause is a conjunction of atomic for-
mulas, and return clause is an expression defined by the grammar r ::=
<tag>r</tag>|e | er | q, where e .:= <tag>$x/P</tag>, and the path
$x /P ends at a leaf node. Each variable occurring in q is defined either in a
range f; or in a superquery in which q is nested.

In Figure 6 we define rewriting rules for reformulating a target query into a
source query based on a mapping specification. A rewriting rule is a collection
of premises and conclusions, written respectively above and below a dividing
line. The premise part of a rule is a set of conditions which implies rewriting
actions connected with the conclusion part.

There are three type of conditions: target query conditions, mapping condi-
tions, and variable mapping conditions (by A we denote an absolute path).

1 A target query condition is an expression of one of the following forms
F, : e, Wy : e, or Ry : e, and asserts that e is an expression'within,
respectively, the for, where, or return part of the target query. The e ex-
pression is to be rewritten by a (sequence of) source query expression(s)
defined in the conclusion of the rule.

2 A mapping condition is an expression of one of the following forms
MFd, MY d, M® : dor M? : d, and asserts that d is an expression
occurring in the mapping specification under consideration. The expres-
sion d may be: a source range occurring in the foreach part of M, a con-
junction of atomic formulas occurring in the where part of M, a node
generating dependency SF(...) in P, occurring in the exists-in part of
M or a value dependency P with val(...) occurring in the exists-with
part of M. The superscript of M denotes the kind of d.

3 A variable mapping condition is an expression of the form w [$t —
(8s1, ..., $s5,)], where $t is a target variable defined in the target query
Q:, and $s1, ..., $s, are source variables invented for the source query
Qs. The premise is valid if the mapping [$¢ — ($s1, ..., $s,)] has been
defined in a conclusion part of a preceding rewriting rule.

Integration of XML data in peer-to-peer e-commerce applications 491

Ft . $t_]2 A

M : SF(8z1/Pi,...,8,/P,)in A
Mf : $11?1 ;g Al, ...,$:vn _l_g An
MY <I:'$z:;l,.u,$z:n

(BY) 5t 851, 850)]
Fs: MP[$21 — $51,..., 820 — $sn]
Ws : M¥[$z1 — 851, ..., 8zn — $sn]
F,:tint'/P
ME : SF1($.’L‘1/P1, ceny $:l!n/Pn) in type($t)
M SF2($.’L‘1/P1, --~,$$Un—k/Pn—k) in type($t')
Mf . $.’L‘1 i_QAl, ,$zn 1_g An
M <I’$zl,...,$zn
w: [§t — (854, ..., 850 _1)]
2
(R2) w: [$t — (831, ..., 85,)]
Fo: Mf[$21 — $51, ..., 820 — $54)
Ws : M¥[8z1 — $s1,...,87n — $sa] A
A$s1/P = $SII/P1 A e N 88n—k/Pp-k = $an_k/Pn—lc
(R3) Wi 8t1/Py = $t2/ Py
Fs H R5($t1/P1).F; Fs : R5($t2/P2)F
W, : R5(8t1/P1).W A R5($t2/P2).W
Ws : R5($t1/P1)R = R5($t2/P2)R
R; : $t/P
M®: SF($x1/ P, ...,82,/Pn) in type($t/P)
MY : type($t/ P) with value(k, ..., kn)
(R4)
F, : R5($t/P).F
W. : R5(8t/P).W
R, : value((R5(8t/P).R)[k1, ..., kn])
Val : $t/P
M€ : SFi(821/ Py, ..., 82,/ Pr) in type($t/P)
Me : SFy (821 /Py, ..., 870k / Pn—y) in type($t)
M? 8z in Ay, ..., 8z, in A,
M ®$zl,...,$z"
(R5) w: [8t— (8s1,..., 85n—k)]

F: $S;1_k+1 lg An——k+1, ...,$8:1 m An
W :Mw[$(£1 i $S1, ...,$.’L‘n_k - $Sn—k,

$xn—k+l — $S;1—k+17 ...,$a:n i $an]
R:(851/P1y...;88n—k/Pr-k,85n _ki1/Pr-k+1,-.., 850/ Pn)

Figure 6. Rewriting rules for query reformulation

The conclusion part of a rule consists of a variable mapping and a set of
source query elements that are of the form Fy : ey, W, : ey, or R, : €, and
represent the for, where, or return parts of a source query, respectively.

492 Tadeusz Pankowski

4. Example of rewriting

Now, we will show how rewriting rules from Figure 6 can be used to refor-
mulate a target query. The query @ from Figure 7 is a target query over tar-
get schema (@P3,@03). Some steps of reformulating @) according to schema
mapping M 3 using rewriting rules (R1)-(R4) and the auxiliary rule (R5), are
given in Figure 10. The result of rewriting is the query in Figure 9.

Q:
<Result>
for $p in @P3/Parts/Part
$s in $p/Offers
$o in @O3/Offers/Offer
where $s/0OId = $0/01d
return
<Part>
<Partld>$p/PId</Partld>
<Supplier>$o/SId</Supplier>
<Price>$o/Price</Price>
<Discount>$o/Discount</Discount>
</Part>
</Result>

Figure 7. Example of a target query

In Figure 8 we show three kinds of data integration scenarios that can be
realized within our approach to P2P data sharing systems.

We assume that P; provides a schema S3. There are two other peers, P; and
P,, that store local data with schemas S; and S», respectively. We also assume
that there are schema mappings M, 3, My 3 and M , globally available to
all peers.

When Pj receives a query () formulated over its schema (a target query)
then the following situations may occur [Tatarinov and Halevy, 2004]:

Mis2oMsay

IS

Figure 8 Three scenarios of data integration in P2P -system

Integration of XML data in peer-to-peer e-commerce applications 493

(@)

(b)

(©)

Q'

P; starts from the querying its own data (if it stores any) and reformu-
lates @) over its immediate neighbors, Figure 8(a). This reformulation
can be performed using available schema mappings. In our case M, 3
and My 3 are used to obtain Q' (a source query over P;) and Q" (a
source query over P,). The reformulation processes for) with respect
to mapping M 3 is illustrated in Figure 10.

P; reformulates () over some neighbor peers (P, in our case). Each
such a peer can also play the role of mediator and reformulates obtained
query Q' over its neighbor peers (P in our case), and so on, until all
the relevant data sources are reached, Figure 8(b). In this way the initial
query () is reformulated across all peers participating in the data sharing
system, and answers are in turn merged and sent back to the starting
peer.

It may happen that instead of successive reformulation we have to per-
form reformulation based on a composition of mappings, as was illus-
trated in Figure 8(c), where peer P, is not available. Composing schema
mappings is a new challenging problem formulated recently in [Fagin
et al., 2004; Madhavan and Halevy, 2003]: given a schema mapping
M 2 from schema S; to schema Sy, and a schema mapping M3 3 from
schema S to schema S3, derive a schema mapping M, 3 from schema
S: to schema S3 that is "equivalent” to the successive application of
My 3 and My, ie. M3 = Mz 0 Mjy3. (Schema composition is
not addressed in this paper.)

<Result>
for $p’ in @S 1/Suppliers/Supplier

$s’ in @S1/Suppliers/Supplier,
$0’ in @S1/Suppliers/Supplier

where $p’/PId = $s°/PId and $s’/Old = $0°/OId and $s’/SId = $0°/SId
return
<Part>

<Partld>$p’/PId</Partld >
<Supplier>$0°’/SId</Supplier>
<Price>$0’/Price</Price>

</Part>
</Result>

Figure 9. Reformulated query Q with respect to mapping M 3

494 Tadeusz Pankowski

F; : $p in QP3/Parts/Part

M? : Fpore($2/PId) in QP3/Parts/Part

MY ;82 in @S1/Suppliers/Supplier
w:[$p— $p']; Fs:$p in @S1/Suppliers/Supplier

(R1-1)

F; :8sin$p/Of fers
M® : Foffers(32/PId) in QP3/Parts/Part/Of fers
M : Fpar¢($2/P1d) in @P3/Parts/Part
M : $z in @S1/Suppliers/Supplier; w : [$p — $p']
w: (85— 85]; Fs:$s’ in @S1/Suppliers/Supplier
W. : $p'/PId = $s' | PId
Fi : $0in @O3/0Of fers/Of fer
MC : Fogser(82/81d, $2/PI1d) in @O3/Of fers/Of fer
M : $z in @S1/Suppliers/Supplier
w: [$o 80']; Fs:$0 in @S1/Suppliers/Supplier
W; :8s/01d = $0/0Id
Ws:8s'/PId = $0' /PIdA$s'/SId = $0'/SId
Val : $s/01d
M . Fora($8z/SId, $z/PId) in QP3/Parts/Part/Of fers/OId
M : Foffers($8z/PId) in QP3/Parts/Part/Of fers
M : 8z in @S1/Suppliers/Supplier; w : [$s — $s']
R: (8s'/SId,$s'/PId)

(R2—2)

(R1-3)

(R3—4)

(R5-4)

R; : $p/PId
M?®: Fprqa($z/PId) in @P3/Parts/Part/PId
M : QP3/Parts/Part/PId = (1)

R, : $p'/PId

(R4—5)

Figure 10. Reformulation of query Q using mapping M, 3 and rewriting rules from Figure 6

5. Conclusion

This paper presents a novel approach to XML query reformulation based
on Skolem functions and its application to data integration and data sharing
in the context of P2P e-commerce systems. We propose a new method for
schema mapping specification between heterogeneous data sources and rewrit-
ing rules for query reformulation in an environment of cooperating peers. Such
advanced data management features provide a new facility in the field of in-
tegration, interchange and transformation of data across global marketplace.
The described method is a part of our work on data integration [Pankowski and
Hunt, 2005] and transformation of heterogeneous data sources [Pankowski,
2004]. Current work is devoted to evaluate algorithms in real word scenarios.

Integration of XML data in peer-to-peer e-commerce applications 495

References

Abiteboul, S., Buneman, P., and Suciu, D. (2000). Data on the Web. From Relational to Semistruc-
tured Data and XML. Morgan Kaufmann, San Francisco.

Bernstein, P. A., Giunchiglia, F., Kementsietsidis, A., Mylopoulos, J., Serafini, L., and Za-
ihrayeu, 1. (2002). Data management for peer-to-peer computing: A vision. In Proc. of the
Sth International Workshop on the Web and Databases (WebDB 2002), pages 1-6.

Calvanese, D., Giacomo, G. D., Lenzerini, M., and Rosati, R. (2004). Logical Foundations of
Peer-To-Peer Data Integration. In Proc. of the 23rd ACM SIGMOD Symposium on Principles
of Database Systems (PODS 2004), pages 241-251.

Fagin, R, Popa, L., Kolaitis, P., and Tan, W.-C. (2004). Composing schema mappings: Second-
order dependencies to the rescue. In Proc. of the 23th ACM SIGMOD Symposium on Princi-
ples of Database Systems (PODS 2004), pages 83-94.

Halevy, A. Y. (2001). Answering queries using views: A survey. VLDB Journal, 10(4):270-294.
Lenzerini, M. (2002). Data integration: a theoretical perspective. In Proc. of the 21th ACM
SIGMOD Symposium on Principles of Database Systems (PODS 2002), pages 233-246.
Madhavan, J. and Halevy, A. Y. (2003). Composing mappings among data sources. In Proc. of
the 29th International Conference on Very Large Data Bases, VLDB 2003, Berlin, Germany,

pages 572-583.

Miller, R. J., Haas, L. M., and Hernandez:, M. A. (2000). Schema mapping as query discovery.
In Proc. of the 26th International Conference on Very Large Data Bases, VL.DB 2000, Cairo,
Egypt, pages 77-88.

Pankowski, T. (2004). A High-Level Language for Specifying XML Data Transformations, In:
Advances in Databases and Information Systems, ADBIS 2004. Lecture Notes in Computer
Science, 3255:159-172.

Pankowski, T. (2005). Specifying Schema Mappings for Query Reformulation in Data Inte-
gration Systems. In Proc. of the 3-rd Atlantic Web Intelligence Conference - AWIC 2005,
Lecture Notes in Artificial Intelligence 3528, Springer-Verlag, pages 361-365.

Pankowski, T. and Hunt, E. (2005). Data merging in life science data integration systems. In
Intelligent Information Systems, New Trends in Intelligent Information Processing and Web
Mining. Advances in Soft Computing, Springer Verlag, pages 279-288.

Popa, L., Velegrakis, Y., Miller, R. J., Hernandez, M. A., and Fagin, R. (2002). Translating web
data. In Proc. of the 28th International Conference on Very Large Data Bases, VLDB 2002,
Hong Kong, China, pages 598—609.

Quix, C., Schoop, M., and Jeusfeld, M. A. (2002). Business Data Management for B2B Elec-
tronic Commerce. SIGMOD Record, 31(1):49-54.

Rahm, E. and Bernstein, P. A. (2001). A survey of approaches to automatic schema matching.
The VLDB Journal, 10(4):334-350.

Sheth, A. P. and Larson, J. A. (1990). Federated database systems for managing distributed,
heterogeneous, and autonomous databases. ACM Computing Surveys, 22(3):183-236.

Tatarinov, 1. and Halevy, A. (2004). Efficient query reformulation in peer data management
systems. In Proc. of the 2004 ACM SIGMOD International Conference on Management of
Data, pages 539-550.

Ullman, J. D. (1997). Information integration using logical views. in: Database Theory - ICDT
1997. Lecture Notes in Computer Science, 1186:19—40.

XQuery 1.0: An XML Query Language. W3C Working Draft (2002). www.w3.0rg/TR/ xquery.

XQuery 1.0 and XPath 2.0 Data Model. W3C Working Draft (2002). www.w3.0rg/TR/ query-
datamodel.

Yu, C. and Popa, L. (2004). Constraint-based XML query rewriting for data integration. In Proc.
of the 2004 ACM SIGMOD Conference, pages 371-382.

