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Abstract. Adaptability is regarded as an essential capability for negotiating 
agent to deal with dynamic environments. In current literatures, however, little 
attention has been paid on improving this capability. This paper presents a 
new agent architecture to support adaptive negotiation, and discusses the 
mechanisms of protocol parsing and strategy generation in detail. An 
experiment is carried out on JADE platform to test the feasibility of this 
architecture, and the results validate that agents can adaptively understand 
protocols and respond with optimal strategies. 

1 Introduction 

With the amount of online commercial transactions increasing at a spectacular rate, 
automated negotiation has become a key technique in developing intelligent and 
flexible agent-mediated e-commerce (AMEC) systems  [1]. Broadly speaking, current 
research concentrates mainly on the autonomy and intelligence of negotiating agents, 
aiming at empowering agents with capability of solving particular negotiating 
scenarios with predefined protocols and specifically tailored strategies. In such open 
and dynamic environments as Internet, however, adaptability is also essential. An 
adaptive agent should have such capacities as (1) dealing with the interoperability 
problem caused by heterogeneous knowledge sources; (2) understanding various 
user-defined protocols and adapting to their dynamic changes; (3) generating optimal 
strategies for arbitrary protocols without human intervention. Currently, the first 
capacity can be obtained from the mapping of domain ontologies [2]. However, little 
attention has so far been paid on the latter two problems. 

The absence of adaptability hampers the real application of AMEC paradigm to 
a large extent. This can be embodied from two facts: Firstly, negotiation protocols 
are usually hard-coded implicitly in agents’ code. As a result, agents can understand 
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only predefined protocols and any modification to the protocol implies that agents 
must be taken offline to be reprogrammed. Secondly, it is hard for agents to respond 
an arbitrary protocol with optimal strategies. Two strategy-reasoning approaches are 
currently in use. One is deliberative agents’ complex reasoning based on the logical 
argumentation and the other is reactive agents’ direct response according to the past 
experience or predefined heuristic functions. Each has its drawbacks. The former is 
difficult to be realized for its high complexity while the latter usually generates sub-
optimal strategies. Therefore, in order to improve adaptability, these two problems 
must be solved. 

In this paper, an adaptive architecture of negotiating agents is put forward and 
tested on JADE platform. Our solution borrows some ideas from semantic web and 
co-evolutionary computation. In this architecture, negotiation protocol is annotated 
with semantic in terms of an explicit and shared protocol ontology so that it can be 
understandable to negotiating agent and separated from the agent kernel; Meanwhile, 
co-evolution is used to help the agent to generate optimal strategies adaptively. 

The remainder of this paper is organized as follows: Section 2 introduces briefly 
the protocol ontology and co-evolution; Section 3 describes the agent architecture. 
Section 4 and 5 discuss the working principles of the protocol parser and the strategy 
generator respectively. A preliminary experiment is presented in section 6 based on 
JADE platform. Finally, section 7 concludes. 

2 Theoretical Underpinnings 

2.1 Protocol Ontology 

Negotiation protocol is a set of rules that govern the interaction. To ensure an 
adaptive negotiation, a protocol should be: (1) Public. Unlike strategies are usually 
private, protocol must be public and explicit; (2) Sharable. Protocol should provide a 
common understanding to all agents; (3) Flexible. Protocol should be capable of 
being defined and modified dynamically without agents’ code reprogrammed. 

The emergence of ontology technique provides a perfect solution to satisfy above 
requirements. Ontology is a hot topic in semantic web and can be defined as a formal 
and explicit specification of a shared conceptualization [3]. In fact, each negotiating 
agent has its private ontology of negotiation protocol [4]. Thus their understandings of 
a same protocol may differ due to the structural or semantic heterogeneities between 
these ontologies. In this case, a common ontology is necessary, to which a mapping 
should be established to the private ontologies to ensure a common understanding. In 
dynamic scenarios, various concrete protocols can be instantialized and modified in 
terms of the common ontology. In this way, a negotiation protocol can be considered 
as a plug-in and consequently separated from the agent kernel. 
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2.2 Co-evolution  

Co-evolution is a class of multi-population evolutionary algorithms dedicated to 
solve the dynamic self-adaptability problems in complex systems. According to the 
interspecies relationship, it can be classified into cooperative and competitive ones, 
which respectively imitate symbiosis and parasitism [5]. Currently, competitive co-
evolution is often used to search for the optimal agent behaviors in strategic contexts. 
Its basic idea is to encode the strategy spaces as co-evolving strategy populations one 
for each competing agent. The co-evolution process starts with randomly generated 
populations and updates these strategies in successive iterations. Genetic operations 
are limited within the respective populations while the fitness evaluation lies on the 
direct interactions among strategies of different populations. Thus, these populations 
compete with and adapt to each other to form an evolutionary “arm race”, and 
converge respectively. The optimal or approximate optimal strategy profiles are 
combinations of the best strategy individuals in the last generation. 

3 Negotiating Agent Architecture 

Technically speaking, a behavior-driven architecture is used in our design of the 
agent kernel. As is shown in figure 1, a negotiation task will be encapsulated into a 
composite behavior based on a finite state machine (FSM). A FSM behavior consists 
of a finite number of states and transition rules, and each state recursively contains a 
sub-behavior. Other functional components (represented by rectangular blocks) of 
the agent kernel coordinate to facilitate the generating, updating and scheduling of 
this FSM behavior.  

     
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1. The architecture of an adaptive negotiating agent 

As the functionalities of the above components are explicit, we hereby focus our 
emphasis on their coordination, which will be illustrated with a bilateral negotiation 
scenario. Typically, the negotiation process is as follows: 
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Step 1. As is shown in the left of figure 1, the initiating agent publishes the 
URLs of the CPO and CDO, defines a concrete negotiation protocol through 
instantiation from the CPO, and starts up a negotiation thread waiting for responders. 

Step 2. Responding agent activates its controller and joins the negotiation thread. 
Based on lexical and semantic similarities, it establishes a mapping from its private 
ontologies to the common ones. Then negotiation protocol is sent to protocol parser. 

Step 3. In terms of the CPO, the protocol parser parses the input protocol as a 
FSM behavior in which the sub-behavior of each state is empty. The strategy space 
of each agent is also generated and sent to the strategy generator.  

Step 4. Strategy generator encodes the input strategy spaces as some co-
evolving populations, and extracts current belief (especially of opponents) from the 
belief base as parameters of the co-evolution. Each population searches for one 
agent’s strategy space and converges to its optimal strategies. Using a particular 
criterion, the planner will select one strategy for execution from these generated 
strategies. This strategy is used to fill or update the sub-behavior in each state of the 
FSM behavior. A belief revision operation will be performed to update the belief 
base if necessary. 

Step 5. The FSM behavior is appended to the behavior queue, which is managed 
by the scheduler with a particular behavior-scheduling algorithm. Once the FSM 
behavior is executed, negotiation process begins. 

Step 6. During negotiation, step 4 and step 5 are performed repeatedly until a 
final state of the FSM behavior is reached. In case the negotiation protocol changes, 
the protocol parser will be invoked once again to generate a new FSM behavior and 
provide the strategy generator with new strategy spaces. 

4 The Protocol Parsing Mechanism 

This section will discuss the working principle of the protocol parser, which enables 
agents to understand various protocols dynamically. 

As stated above, the main goal of the protocol parser is to translate the protocol 
from an ontological format to an executable behavioral format. As a useful tool in 
modeling complex protocols, a FSM is used as a bridge to facilitate the translation. 
Figure 2 presents the flow of the overall parsing process, which includes three stages. 

 
 
 

Fig. 2.  The flow of the protocol parsing process 

The first stage is the instantiation of the negotiation protocol from CPO. This is a 
precondition of the parsing process, and can be regarded as the semantic annotation 
of the protocol. In this stage, CPO plays an importance role. As a shared view of the 
commonalities across different protocols, CPO must capture the common concepts 
and their relationships. The instantiated protocol can be built from the instances of 
these concepts, and will be stored in OWL documents. 
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In the second stage, the OWL protocol will be parsed into a FSM. This can be 
done with the help of Jena. Jena is a Java framework for building semantic web 
applications and provides a java API for OWL manipulation [6]. Using Jena model 
interface, the protocol parser can explore the document structure of the OWL 
protocol, and extract instances of the CPO classes. In this way, the instances in the 
input OWL document can be considered as building blocks, from which a FSM can 
be assembled. In addition, the strategy space of each agent will also be generated in 
this stage simply by aggregating all possible actions in each move. 

The last stage is to encode the FSM to an executable behavior. Fortunately, this 
can be done by the agent platform itself. The advantages of FSM lie not only in its 
rich expressive power, but also in the efficient supports from a variety of agent 
platforms. For instance, JADE [7], an open-source and fully FIPA compliant agent 
platform, provides a useful class jade.core.behaviours.FSMBehaviour which can 
translate from FSM to the corresponding FSM behavior conveniently. It is worth 
noting that in each state of the resulting FSM behavior, sub-behavior will be empty 
since only possible actions are specified in FSM. Which action is actually performed 
will be determined by the strategy generator. 

5   The Strategy Generation Mechanism 

This section presents the rationale of the co-evolutionary algorithm (CEA) used by 
strategy generator, which enables agents to generate optimal strategies adaptively. 

As stated above, the strategy generator aims at specifying a determinate action 
for each move of an agent to maximize its payoff. This can be achieved using CEA. 
Essentially speaking, the co-evolution can be considered as an iterative searching 
and learning process in strategy spaces. The strategy generator will maintain several 
populations co-evolving with coupled fitness. In each generation, new strategies 
arise to defeat old ones, and this creates new challenges for the opponent populations. 
Consequently, fitter strategies must be found in the opponent populations to adapt to 
the challenges. This process will lead to an evolutionary “arm race” and eventually 
converge to the optimal strategies.  
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Fig. 3. Pseudo code of the co-evolutionary algorithm 

The pseudo code of the detailed CEA is shown in figure 3. It consists of three 
main steps: strategy encoding, fitness evaluation and genetic operation. Specially, we 
will clarify the realization of the former two steps. 

Strategy encoding is a mapping process from agent’s strategy space to CEA’s 
code space. Generally speaking, each input strategy space from the protocol parser 
will be encoded as a strategy population, in which a strategy individual is encoded as 
a chromosome. An action in each move of this strategy will be encoded as a gene on 
the chromosome, and all possible actions on one move constitute alleles.  

Fitness evaluation of CEA differs from that of canonical evolutionary algorithm. 
Similarly as in [8], we use term “host” to refer to the population where the currently 
evaluated strategy is resided, and “parasites” to opponent populations. Each strategy 
of the host population competes against all the parasite strategies and its fitness will 
be the average payoff obtained against these parasite strategies. In this way, each 
population takes turns to be host and all strategies can be evaluated. 

6   Experiment and Results 

We implemented this adaptive agent architecture by integrating a protocol parser and 
a strategy generator with a JADE agent. In this section, we will carry out an 
experiment to validate that it can understand a simple protocol to which it has no 
prior knowledge, and respond with an optimal strategy. 

Input: An agentID id; Strategy spaces of N agents; Current belief; Instruction from the Planner;   
Output: An optimal strategy of agentid. 
Begin 

Use the current belief to initialize the parameters of the co-evolution and set generation = 0; 
For i = 1 to N do Begin // Step 1: strategy encoding 

Encode agenti’s strategy space into a population Pi containing pi random strategies; 
    End; 

While (generation <= maximum generation) do // Iterative co-evolution 
     For i =1 to N do Begin // Step 2: fitness evaluation 
          For j =1 to pi do Begin 

Select the j’th strategy sj from Pi; //Host strategy 
Repeat  //Negotiate with all parasite strategies 

Select an untested strategy from each opponent population; //Parasite strategies 
Calculate the payoff of sj after negotiating with these strategies; 

Until (all opponent strategies are tested). 
Fitness of sj = the average payoff obtained against all the opponent strategies; 

           End; 
     End; 
     For i=1 to N do Begin // Step 3: genetic operation 
           Perform the selection operation on Pi based on the fitness; 
           For j=1 to pi do Perform the crossover and mutation operation on strategy sj. 
     End; 
     Set generation = generation+1; 
End; 
Select an optimal strategy from the individuals in Pid under the Planner’s instruction and output it. 

end 
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6.1 Experiment Scenario 

The experiment scenario involves two agents negotiating over a single issue. As is 
shown in figure 4(a), we initialized JADE with three containers: A main container 
serves as the E-market and two attached containers as the buyer host and seller host. 
The buyer and seller agents, denoted as Bag  and Sag  respectively, reside on their 
own host container initially and will migrate to the E-market later on. For simplicity, 
assume they are homogeneous and each has complete information about its opponent. 
In this case, ontology mapping and belief revision will not be taken into account.  

 
 
 
 
 
 
 
 
 
 
        (a) Screen capture of the JADE GUI               (b) The alternating-offer protocol of agB 

Fig. 4. The JADE set-up and the negotiation protocol 

A finite-horizon version of the alternating-offer protocol depicted in [9] is used 
in our experiment. It has a unique sub-game perfect equilibrium (SPE), which can be 
used to check the optimality of strategies. In this protocol, agents offer alternately in 
discrete rounds 1,2,...,t T  until reaching the deadline or agreement. Agents’ time 
preferences are expressed by discount factors, denoted as BG  and SG  respectively. 
Without loss of generality, assume Bag  makes the first offer with a CFP message. 
The states and transitions of Bag  are depicted in figure 4(b), and those of Sag  can 
be obtained simply by exchanging the Send and Recv (abbr. of Receive) predicates.  

6.2 Experiment Results 

Let us first present the FSM behavior generated by the protocol parser. As stated 
above, this protocol must be semantically annotated based on CPO to be understood 
by agents. Due to space constraints, the class hierarchy of CPO will be omitted here. 
However, we think the concepts and instances below are sufficient to characterize 
this simple protocol: 1) six instances of class state from S0 to S5; 2) nine instances of 
class transition, each corresponding to an arrow in figure 4(b); 3) nine instances of 
class action, and each action triggers a transition; 4) seven instances of class message, 
each attached to a Send or Recv predicate. 
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Fig. 5. The code of the generated FSM behavior 

Figure 5 presents the FSM behavior generated from parsing these instances. We 
can see that each piece of code registers an instance of class state or transition within 
agent. The instances of class action and message are encapsulated in a sub-behavior 
of each state, whose return values will be used to decide the next state of a transition 

 

 

 

 
 

 
 (a) Screen capture of the sniffer agent               (b) Average fitness of strategy 
populations 
Fig. 6. Negotiation results 

Next we will check the optimality of strategies resulting from the co-evolution 
in the strategy generator. Figure 6 shows the negotiation results in case the deadline 

3T   and discount factors 0.8B SG G  . Similarly as in [9], if we assume the 
total negotiation surplus is equal to unity, the SPE in this case will be “Negotiation 
ends in the first round, and Sag  gets payoff 0.84 while Bag  gets the rest 0.16”.  

Figure 6(a) depicts the messages on the E-market container captured by a JADE 
sniffer agent. Obviously, negotiation will begin with the fifth CFP message. Bag  
accepts the first offer of Sag , and negotiation ends immediately. Figure 6(b) shows 
the average fitness of each agent’s strategy population during the co-evolution. Here 
average fitness can be used to predict and interpret agent’s payoff, and they converge 
stably to 0.84 and 0.16 respectively. These results are consistent with the SPE, which 
validates that optimal strategies have been obtained from the co-evolution. 

registerFirstState(new S0Behavior(), S0); registerDefaultTransition(S0,S1); 
registerState(new S1Behavior(), S1); registerTransition(S1,S2,1); registerTransition(S1,S4,2); 

registerTransition(S1,S5,3); // 1,2,3 are return values of S1Behavior(); 
registerState(new S2Behavior(), S2); registerTransition(S2,S1,1); registerTransition(S2,S3,2); 

registerTransition(S2,S5,3); // 1 2,3 are return values of S2Behavior(); 
registerState(new S3Behavior(), S3); registerDefaultTransition(S3,S5); 
registerState(new S4Behavior(), S4); registerDefaultTransition(S4,S5); 
registerLastState(new S5Behavior(), S5);      
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7   Conclusions 

This paper presents a new agent architecture capable of negotiating adaptively. Such 
techniques as ontology and co-evolution are employed to empower agents with 
capabilities of understanding ever-changing protocols and responding with optimal 
strategies adaptively. An experiment carried out on JADE platform indicates that this 
architecture is feasible and efficient. In the future work, we plan to experiment with 
more complex protocols and develop a practical AMEC prototype system. 
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