

An Algorithm for Semantic Web Services
Composition Based on Output and Input

Matching
Ying Li and Baotian Dong

School of Traffic and Transportation, Beijing Jiaotong University, Beijing,
100044, China

ling.ly@sohu.com

Abstract. Existed methods for automatic web services composition based on
output and input matching are limited to deal with simple Composition
Request (CR) which can only be satisfied by linear composition plan, but
complicated CR asks for netty plan because the structure of netty plan can be
complicated enough to deal with complicated problem while the structure of
linear plan is too simple to do that. In order to overcome the shortcoming of
the existed methods, a new algorithm is proposed in this paper which can deal
with not only simple CR but also complicated CR. A web services connection
matrix is used in the proposed algorithm. This matrix is constructed based on
the services which participate in a composition to express all output and input
matching relations among services. With this matrix, both simple CR and
complicated CR can be processed.

1 Introduction

Automatic Web Services composition becomes one of the most challenges in the
research area of web services because composing existed web services to form a new
one can add value to those web services. There are two fundamentally different ways
to handle automatic services composition[1]: one way is to start with the pre-defined
generic composition and perform 1-1 search to replace every generic element of a
composition with a real service; the other way is to describe a set of goals and try to
achieve them by building the whole process from scratch. In the second way, how to
build the whole process depends on the relation between services. There are several
types of relation between services, such as interoperation relation [2], effect and
precondition relation [3] and output and input matching relation [3, 4, 5]. The last
two relations can be judged through properties of service because IOPE (Input,

978 Ying Li and Baotian Dong

Output, Precondition and Effect) are properties of semantic web services while the
first relation can not. Furthermore, I/O parameters are the basic properties of services
while P/E parameters are not; therefore research of automatic services composition
focuses on output and input matching relation between services.

A composition plan can be expressed as a direction graph with service(s) as node
and relation as edge. Each node (except start node and end node) has only one prior
node and only one successive node in a linear plan while each node has at least one
prior node and at least one successive node in a netty plan. The existed methods for
automatic web services composition which are based on output and input matching
try to find out all composition plans for a Composition Request (CR), but just
acquires linear plans. These methods will be malfunction when they handle CR
which can only be satisfied by netty plan. Linear plan can only express simple
services composition while netty plan can express both simple composition and
complicated composition, so the existed composition methods which are limited to
deal with simple composition can not handle complicated composition. In order to
overcome the shortcoming of the existed methods, a new method for automatic
services composition based on output and input matching is proposed in this paper.
The new method can deal with CR satisfied not only by linear plans but also by netty
plans through using a web services connection matrix constructed on the services
which participate in the composition. In addition, this method is for the semantic
web service which is based on ontology [6] because web service is developing
toward semantic web service.

2 Assumptions and Expressions

2.1 Assumptions

z Using ontology to express input/output parameters of web services.
z A web service provides a single functionality.

2.2 Related Expressions

z An entity in ontology can be expressed as a set of attributes, that is H = {a1,
a2, …, an}, where H is an entity and ai (i =1, 2,..., n) is an attribute.

z I/O parameters of semantic web services based on ontology can be expressed as
entities of ontology. A kind of parameters of service is a set of entities, that is
P= {p1, p2,…, pn}, where P can be I/O and pi is a set because it is an entity. If a
service is w, its set of input parameters is w.I= { i1, i2,…, im}, and its set of
output parameters is w.O= {o1, o2,…, on}.

z Symbol “||” is used in this paper to denote the cardinality of a set, e.g. |X|
denotes cardinality of set X.

z Give two entities 1H ={ a1, a2,…, an }and 2H ={ b1, b2, … , bm }. (1) If� 1H .ai,
(� 2H .bj)(1H .ai= 2H .bj), then 1H � 2H ; if | 1H |=| 2H |, then 1H = 2H .

An Algorithm for Semantic Web Services Composition Based on Output and Input
Matching

979

z Give two entity sets 1G = {p1, p2, …, pm} and 2G = {q1, q2, … , qn}. (1) if � pi

ę 1G , (� qję 2G �ġ(pi � qj), then 1G �� 2G , it means 1G is approximately
subsumed by 2G . (2) if � pi ę 1G , (� qję 2G)� (pi � qj), then 1G ģ 2G Į� .

z Give a entity set G ={ p1, p2, …, pm } and a entity p, if (� pi�ęG)(pi � p),
then p�� G , it means p approximately belongs to G .

3 Web Services Connection Matrix (WSCM)

The relation of two services can be expressed by the connection degree between
them and the set of matching parameters (I/O) between them. WSCM is used to
express all the relations between random two services in a set of services.
Definition 3.1 (WSCM): suppose a set of services is S (|S|=N), its WSCM is a N×N
matrix with the sequence numbers of its rows/columns being all services from S; its
element mij is a duality tuple <X, Y>, X is the connection degree between wi and wj,
and Y is the set of matching parameters between wi and wj.

Connection degree is calculated by formula (1) while the set of matching
parameters is calculated by formula (2).

 1 2
1 2

2

| . . |
(,)

| . |

w O w I
ConDegree w w

w I

�
 (1).

In formula (1), � pi�w2.I, if � qj ę w1.O�ġ qj � pi, then pi �� (w1.Oģ w2.I).

1 2 2 1 2(,) { | . . ,1 | . |}i i iConPSet w w p p w I p w O i w I � � � d d� (2).
In formula (2), � pi � w2.I, if � qj � w1.O � qj � pi, then (pi � w2.I�ġ(pi ��
w1.O).

Note: WSCM can express a direction graph with service (expressed by row or
column) as node and element (Xz 0 and Yz � >) as edges. 3 properties of WSCM
are described as follows:

Property 1: WSCM is an asymmetry matrix with all diagonal elements being <0,
� >.

Property 2: Suppose service wj receives outputs from k services as its inputs, then
there are k elements mx ji

(i=1, 2,…, k) with mx ji
.X>0 and mx ji

.<Į� in WSCM;

Property 3: Suppose service wi provides its outputs to k services as their inputs,
then there are k elements mix j

(j=1, 2,…, k) in matrix with mix j
.X>0 and mix j

.<

Į� .

980 Ying Li and Baotian Dong

4 Composition Algorithm

4.1 Concepts and Theorems about Web Services Composition
Definition 4.1 (Graph for Web Services Composition, GWSC): give a CR, suppose
set of candidate services is c) , the set of user’s inputs in CR is UI while the set of
requested outputs is UO; G(V, E) is a direction graph with service from c) as its
node and the output and input matching relation between services as its edge. If G
satisfies: (1)The tail node wt and the head node wh of each edge satisfy: wt.O�ģ wh.I�
Į� ; (2)Is a connected graph; (3) has only one node called ws with only outward
edges and ws.I �� UI; and has only one node called we with only inward edges and
w.I �� UO; every service (except ws and we) comes from c) ; (4) the inputs of any
node except ws can be satisfied. Then G is a GWSC for CR based on c) .

Note: for simpleness, we do not strictly differentiate between service and node
because a node is a service in a GWSC for a CR. Proof about 5 theorems in this
paper is omitted for the limited space.

Theorem 1: suppose CR has a GWSC(V, E), the set of user's inputs is UI and the
set of requested outputs is UO, then Vˉ{ ws, we }

1,2,...,
Si

i N
* , and (1) � wię S1,

wi.I�� UI ; (2) � więSi (i=2,…,N), (�wjęSi-1)(wi.,ģ wj.2Į�); (3) c wi � SN,
wi.2ģUO z � , and

1 2
(.)

(...) O
N

w O Uxiw S S Sxi� � � �
�* � . S1 , S2 ,…,SN are called N

subset of services for GWSC, and Si is called the ith subset of services for GWSC.
Definition 4.2 (useless service): suppose a GWSC(V, E) for a CR, and �wi �V,

if wi.2ģUO� � and (� wj �V)(wi.O� wj.I�Į�), then wi is a useless service.
Definition 4.3 (prior service and successive service): suppose two services w1 and w2,
if � pi � w2.I � pi �� w1.O, then w1 is the prior service of w2 while w2 is the
successive service of w1.

Note: deleting a service in a GWSC for a CR may cause its prior service to
become a useless service and the inputs of its successive service to be unsatisfied. If
the inputs of a service can not be satisfied, it can not be executed normally, so the
inputs of its successive service can not be satisfied. Therefore deleting services may
cause a chain reaction of the inputs of its direction and indirection successive
services being unsatisfied.

Definition 4.4 (The Biggest Graph of Web Services Composition, BGWSC):
suppose CR has a GWSC based on set of candidate services c) , N subsets of
GWSC are Si (i=1,2,…,N), if � wi�ę� c) ˉV) and wi.,ģ wj .2Į�˄(wj�ę�S1
ĢS2 ĢĂĢSN-1 �˅, then the GWSC is the BGWSC for CR based on c) .

An Algorithm for Semantic Web Services Composition Based on Output and Input
Matching

981

Definition 4.5 (the Smallest Graph of Web Services Composition, SGWSC):

suppose CR has a GWSC (V, E) based on set of candidate services c) , if we will be
deleted because of the chain reaction of inputs of services being unsatisfied caused
by deleting any service (except ws and we) in V, then the GWSC is a SGWSC for CR
based on c) .

Note: the deletion of we means that the quested outputs can not be acquired.
Definition 4.6 (a call to a service): Suppose service wi and its prior services is in set
T ={ wj| wj.O � wi., Į � }, if T has a subset cT ={ wj

| �(.) (()(.) .). .w O w I w w O w O w Ij i j i
w wj j

TD D
T T

� � � � � �
� �

�* * }, then cT is a call to service

wi.
Definition 4.7 (a list of calls for a set of services): suppose a set of services is wi

(i=1,2,…,k) and the calls to wi is set i\ ={ ijT |j=1,2,…,mi}, then [={< wi , ijT >| ijT

ę i\ ; i=1,2,…,k;��İMİmi } is a list of calls for wi (i=1,2,…,k).
Note: the number of different lists of calls to a set of services can be calculated by
formula (3). | |

1,2,..., ii k
\�

. (3)

Definition 4.8 (share service, valid edge and invalid edge): in a GWSC for a CR,
if a service has at least two calls to itself, it is a share service. Each edge between the
share service and one of its prior services which belongs to at least one call is a valid
edge. If an edge is not a valid one, it is an invalid edge.

Theorem 2: suppose CR has a GWSC based on set of candidate services c) , and
then CR will have only one BGWSC and at least one SGWSC based on c) .

Theorem 3: suppose a CR has k SGWSCs based on set of candidate services c) :
G1, G2,…, Gk, and the BGWSC for the CR based on c) is GMAX, then: � Gi (i=1,
2,…, k), Gi is a sub-graph of GMAX.

Theorem 4: suppose a CR has a GWSC based on a set of candidate services and
this GWSC has at least a share service, then the CR has at least two SGWSCs.

Theorem 5: suppose a CR has a GWSC, and service w in this GWSC has k prior
services wi (i=1, 2,…, k) and (,) 1

1,2,...,
ConDegree w wi

i k
¦ �

, then these k prior services

can not form a call to w.

4.2Mechanism of the Composition Algorithm

4.2.1 The method of searching for all SGWSCs from the BGWSC for a CR
 The BGWSC for a CR can be acquired according to theorem 1 and this BGWSC is
the only one according to theorem 2. All SGWSCs can be acquired from a BGWSC
according to theorem 3. Whether a BGWSC contains more than one SGWSC or not
can be judged based on theorem 4. The number of SGWSC of a CR can be

982 Ying Li and Baotian Dong

calculated by formula (3) because a list of calls for the set of share services in the
BGWSC decides a SGWSC. All different SGWSCs can be found through searching
for all different lists of calls for the set of share services in a BGWSC.

Useless services can be deleted from a BGWSC to decrease the number of
services before extracting SGWSCs. When extract a SGWSC, for each share service,
take one of its calls from a list of calls, and delete the edges which tail nodes
(services) do not belong to that call, then a share service becomes a non share service.
Deleting edges may result in useless services. Therefore, useless services checking
and deletion should be done after deleting an edge. Some non share services may
have invalid edges in a BGWSC, these invalid edges should be deleted after
transforming all share services to non share ones. When there are not share services,
useless services and invalid edges, there is no a service which can be deleted from
this GWSC, and this GWSC is a SGWSC.

Extracting a SGWSC from a BGWSC is done in the WSCM of the BGWSC for a
CR by deleting useless services and invalid edges and transforming share services to
non share services. The methods of doing so are given as follows:

(1) The method of deleting useless services
In the WSCM of a GWSC, if the connection degree value of every element in a

row is 0, the service corresponding to this row is a useless service. Scan the WSCM
to find out all such rows and delete them and their counterpart columns. Deleting
useless service may result in its prior services becoming invalid ones, so delete
useless services repeatedly until there is no more useless service in the WSCM.

(2) The method of deleting invalid edges
Deleting invalid edges is to find out valid edges for a node in fact. Searching for

valid edges follows criterion 1: every service in a GWSC should receive outputs
from its prior services as few as possible. Following this criterion, the number of
nodes in a GWSC can be decreased and the execution efficient of the GWSC can be
improved. The method of searching for valid edges following criterion 1 is described
as follows:
In the WSCM of a GWSC, for wj:
A. if mij .X=1, then edge <wi, wj> is a valid edge.

B. if i(.) (()(.) .). .
1 1

ij j ij j j
N N

j
i i

m Y w I m Y m Y w Im DD�� � � �
d d d d

�* * , then edge < wi,

wj > ��İLİ1) is a valid edge.
(3) The method of transforming a share service to a non share service
Transforming a share service to a non share service is to delete those prior

services which do not belong to specified call of the share service. After
transforming, useless services checking and deletion should be done because
deleting service may result in useless services.
4.2.2 The method of searching for all calls to a share service
 A prior service whose connection degree value with the share service is equal 1 can
form a call to the share service by itself. According to theorem 5, only the prior
service whose connection degree value with the share service is less than 1 needs to
join with other services to form a call to the share service. Different combinations of
prior services form different calls. Use multitree with weight to find out all different

An Algorithm for Semantic Web Services Composition Based on Output and Input
Matching

983

combinations of prior services of a share services. The weight of the multitree is the
connection degree.

Put all prior services whose connection degree value with the share service are
less than 1 in set wT . Construct a multitree with weight for every service in wT .
Suppose the share service is wj and a prior service of wj is wi, then the multitree
constructed for wi is called wj - wi tree. The way to construct such a tree by BFS
(Breadth First Search) is described as follows:

(1) The root node of the tree is a null service and wi is the only child node of the
root node.

(2) Scan all leaf nodes from left to right. If a leaf node and all its ancestor node
(except the root node) can form a call to wj, then this node can not have a child any
more; otherwise, select from wT all services which are neither the ancestor nodes of
the leaf node nor the brother nodes on the left side of the leaf node to be child nodes
of this leaf node. If neither one service can be selected from wT , this leaf node can
not have a child any more. Repeat 2 until all leaf nodes can not have any child node.

Get all calls containing wi from wj - wi tree and put them in set Ci, combine Ci
(i=1, 2,…,| wT |) and delete repeated calls and get a new set which is the set of calls
to wj). If two calls are the same or one call subsumes another call, they are repeated
calls.
4.2.3 The method of finding out all lists of calls for a set of share services
Suppose there are m share services w1, w2,…, wm in a GWSC, and the set of calls to
wi is i\ (i=1, 2,…, m). Use multitree which is created by BFS to search for all
different lists of calls for these m share services. The multitree has m+1 levels and its
null root node is in level 0. Each node in level i-1 has <wi, ijT > (ijT � i\ ; j=1,
2,…,| i\ |) as its all child nodes, so nodes in the same level have the same child
nodes. Each leaf node and all its ancestor nodes (except the root node) form a list of
calls for these share services. Two random lists of calls are not the same because
nodes in each level are different.

 4.3 Steps of the Algorithm

 (1) Sub-algorithm of deleting useless services: DeleteUServ (WSCM,)),) is the
set of services of WSCM.

Step 1: Scan each row in WSCM. If � wię) (i=1, 2,…, |) |), � mij.X=0
(j=1,2,…,|) |), return; otherwise delete row wi and column wi from WSCM,) =)
ˉ{ wi }, go to step 1.

(2)Steps of composition algorithm
Give set of candidate services c) , the set of user’s inputs UI and the set of user’

requested outputs UO. CallsToAserv () and ListsOfCalls () are sub-algorithms. The
first one is to get all calls to a share service and the second is to get all lists of calls
for all share services in a GWSC.

984 Ying Li and Baotian Dong

Setp1: if UI � UO, go to step 2; otherwise if c) z � , get a service w from c) ,
if w.I i� UI, let s) = s) � {w}, c) = c) ˉ {w}, UI = UI � w.O. If (c) =�)
� (UI �� UO), return the message of composition failure and terminate the algorithm;
otherwise go to step 1.

Step 2: calculate the web services connection matrix for s) and let the matrix to
be sWSCM) .

Step 3: DeleteUServ (sWSCM) , s)), let tmp) = s) , Y =� , N=0, SGWSCF =� ,
: =� .

Step 4: if tmp) =� , go to step 7; otherwise get a service wj from tmp) , and

let tmp) = tmp) ˉ { jw }. Scan column wj in sWSCM) , and let jV = {wi|mij.X=1},

'
jV = { wi |0< mij.X<1}. If | '

jV _ı� and
'

.i
wi j

w O
V�
* i� wj.I, let tmpV = '

jV , if

| jV |>0, j\ = {{ }}i
wi j

w
V�
* , go to step 5; otherwise if (| jV |>1�ġ�

'
.i

wi j

w O
V�
* ��

jw .I�, j\ = {{ }}i
wi j

w
V�
* ; else if (| jV |>0� ġ �

'
.i

wi j

w O
V�
* i� jw .I�,

j\ = {{ }}i
wi j

w
V�
* Ĥ^

'
jV `. Go to step 4.

Step 5: if tmpV =� , if | j\ |>1, let Y =Y � {<N+1, jw , j\ >}, go to step 4;

otherwise get a service Rw from tmpV , and let tmpV = tmpV ˉ{ Rw }, '\ = � ,

CHZ = '
jV ˉ{ Rw }, V=� , E=� , '\ =CallsToAserv(Rw , CHZ , '\ ,V, E).

Step 6: if '\ = � , go to step 5; otherwise get an element D from '\ , let
'\ = '\ ˉ^D `. If (� E)(E � j\)� (E � D), let j\ = (j\ ˉ{ E })� {D };

Otherwise if (� E)(E � j\)� (E =D), let j\ = j\ � {D }. Go to step 6.

Step 7: if Y =� , let 'WSCM) = sWSCM) , ') = s) , go to step 10; otherwise let

Rv = t (t is the root node of the tree and it is also an empty node), get a element

<x, xw , x\ > from Y , let l=0, H=| Y |, V= � , E= � , : =ListsOfCalls

(Rv , xw , x\ ,Y , l, H,V, E).
Step 8: if: =� , go to step14; otherwise get an element [from: , let : =:ˉ

{[}.

An Algorithm for Semantic Web Services Composition Based on Output and Input
Matching

985

Step 9: if [� , let M = ') , go to step 10; otherwise get an element <wj, jT >

from [, let [[�^<wj, jT >`,Z ={ wi |(wi � jT �ġ�wi.2ģwj.,Į�), 1İiİ

| ') |}, if |Z |>0, let mij =<0,� >(wi �Z ,1İiİ| ') |) in 'WSCM) . DeleteUServ

('WSCM) , ')), and go to step 9.
Step 10: if M =� , go to step 13; otherwise get a service wj from M , let M =Mˉ

{ wj }, if � jmD .X=1, let ijm =<0,� >((0<i<| ') _�ġLĮD); Otherwise let K =
{wi|0<mij.X<1}. If |K |>0, let T =wj.I, go to step 11; otherwise go to step 13.

Step 11: ifT =� , go to step 12; otherwise get a service wD from K , let K =Kˉ

{ wD }, let wD satisfy |T ˉ jmD .Y | =
'1,2,...,| |

{| . . |}
i

MAX w I m Yj ij
)

� , let I =I � { wD },

T = wj.Iˉ jmD .Y, go to step 11.

Step 12: Z ={wi|(wi �I �ġ�wi.2ģwj.,Į�)}, let mij =<0,� >(więZ }�

mij.Xz 0, 1d id | ') |). DeleteUServ ('WSCM) , ')), and Go to step 10.

Step 13: SGWSCF = SGWSCF � { ') }, if : =� , go to step 14; Otherwise let
'WSCM) =WSCM) , ') = s) , go to step 8.

Step 14: Get all SGWSCs from SGWSCF , and calculate the QoS (Quality of
Service) value for each SGWSC according to certain selection policy. Return the
SGWSC with the optimized QoS value and terminate the algorithm.

 In the algorithm describe above, step 1 acquires BGWSC; step 2 calculates
WSCM for BGWSC; step 3 deletes useless service in BGWSC; step 4, 5 and 6 find
out all share services from BGWSC and the sets of calls to each share service; step 7
acquires the set of lists of calls for all the share services; step 8 and 9 transform
every share service to non share service; step 10, 11 and 12 delete invalid edges; step
13 puts a SGWSC into the set of all SGWSCs; step 14 acquires the SGWSC with the
optimized QoS value. If there is not any proper composition which can meet the CR,
the algorithm will return the failure information.

5 Related Works

Method in [4] uses heuristics to select the most proper service from the discovered
services in each services discovery phase and acquires only one linear composition
plan which contains the least services. Therefore, this method is used in the case that
all the composition plans are linear for a CR and the CR requires the optimized
composition plan which contains the least services.

Method in [7] uses entity matching to select the most similar service in the
candidate services and acquires a composition as a tree. This tree is created from leaf

986 Ying Li and Baotian Dong

nodes to the root node and a composition plan is a path from the root node to a leaf
node of the tree. Some composition plans may be omitted during the discovery of
services in non leaf nodes. This may cause the optimized plan for a CR to be lost.

Methods in [3, 5] acquire a composition as an expression in which services are
linked by sequence or nondeterminism operator while the parallel operator is used to
link two inputs. An expression without any nondeterminism operator is a
composition plan, so an expression with any nondeterminism operator will be
divided into several expressions. Therefore, the composition plan is also linear.

In conclusion, the methods which use output and input matching to find out
composition plan for a CR can only get linear composition plan, so they are limited
to particular cases that CRs can only be satisfied by linear composition plans.
Furthermore, method in [4] is limited to plan which contains the least services,
method in [7] is likely to lose some plans. The method in this paper is more general
than the existed methods for it can get not only linear but also netty plan so it can be
used in general case, moreover this method will not lost any plan.

6 Conclusion and Future Work

It is a very important method for non predefined composition to utilize the output
and input matching between services. The existed methods based on such matching
can only deal with those CR which can be satisfied by linear composition plan, and
it will be malfunction when the CR can only be satisfied by netty composition plan.
In order to overcome the limitation of the existed methods, a new method is
proposed in this paper which is also based on the output and input matching. The
existed methods only focus on services discovery but ignore relation discovery, so
they can only acquire linear plans with simple structure. On the contrary, the
proposed method in this paper focuses on both services discovery and relations
discovery because it searches for all relations among services after services
discovery. The proposed method can acquire not only linear composition plans but
also the netty plans just because it finds out all relations among the discovered
services. In the proposed method, the set of selected services is found first; then a
connection matrix for the set is constructed to find out all relations among the
selected services; next certain operations are done to the matrix to find out all
composition plans for a CR. The optimized plan is acquired by calculating QoS
value for each plan and selecting the optimized one.

In future work, we will research on how to improve the efficiency of our method
when the services which participate in a composition are on the increase.

References

1.N. Milanovic and M. Malek, “Architectural Support for Automatic Service
Composition” , Proceedings of the 2005 IEEE International Conference on Services
Computing (SCC’05), 2,133-140(2005).

An Algorithm for Semantic Web Services Composition Based on Output and Input
Matching

987

2.B. Medjahed and A.Bouguettaya, “A Multilevel Composability Model for

Semantic Web Services”, IEEE Trans. Knowledge and Data Eng, 17(7),954-
968(2005).

3. L. Freddy, L. Alain and N.S. Ecole, “Semantic Web Service Composition
through a Matchmaking of Domain”, European Conference on Web Services
(ECOWS'06) ,33-242(2006).

4. S.C. oh, B.W. On , E.J Larson and D. Lee, “Web Services Discovery and
Composition as graph search problem”, Proceedings of 2005 IEEE International
Conference on e-Technology, e-commence and e-servic ,784-786(2005).

5. L. Freddy, L. Alain and N.S. Ecole , “Semantic Web Service Composition
Based on a Closed World Assumption”, European Conference on Web Services,
(ECOWS'06) 171-180(2006).

6. T.R. Gruber, “A Translation Approach to Portable Ontology Specifications”,
Knowledge Acquistion, 5(2), 199-220(1993).

7. A. Lerina, C. Gerardo and C. Anna, “An algorithm for Web service discovery
through their composition”, Proceedings of the IEEE International Conference on
Web Services (ICWS’04) , 332-339(2004).

