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Abstract. The paper describes the design and implementation of an indepen-
dent, third party contract monitoring service called Contract Compliance Checker
(CCC). The CCC is provided with the specification of the contract in force, and is
capable of observing and logging the relevant business-to-business (B2B) interac-
tion events, in order to determine whether the actions of the business partners are
consistent with the contract. A contract specification language called EROP (for
Events, Rights, Obligations and Prohibitions) for the CCC has been developed
based on business rules, that provides constructs to specify what rights, obliga-
tion and prohibitions become active and inactive after the occurrence of events
related to the execution of business operations. The system has been designed to
work with B2B industry standards such as ebXML and RosettaNet.

1 Introduction

There is a growing interest - both within industry and academia - in exploring innova-
tive ways of automating the management and regulation of business interactions using
electronic contracting systems. By regulation we mean monitoring and/or enforcement
of business—to—business (B2B) interactions to ensure that they comply with the rights
(permissions), obligations and prohibitions stipulated in contract clauses. A well de-
signed electronic contracting system can play a central role in ensuring that the business
processes of partners perform actions that comply with the contract in force, detecting
violations, facilitating dispute resolution and determining liability by providing an au-
dit trail of business interactions. Within this context, we consider the design and im-
plementation of an independent, third party contract monitoring service called Contract
Compliance Checker (CCC). The CCC is provided with the specification of the contract
in force, and is capable of observing and logging the relevant B2B interaction events, as
well as determining whether the actions of the business partners are consistent with the
contract. We consider here the basic functionality of the CCC, that of a passive observer.
It is possible to extend this functionality to make the CCC into a contract enforcer that
ensures that business partners execute only those operations that are permitted by the
contract; however, this aspect is not considered in this paper.

To realise the third party service, the computer infrastructure of business partners
concerned with B2B messaging must be instrumented to create a monitoring channel
to the CCC for it to observe the relevant B2B events accurately. More precisely, we
assume the existence of a monitoring channel with the properties: (i) transmission and



processing delays of events originating at business partners to the CCC are bounded and
known; and (ii) events are delivered exactly once to the CCC in temporal order. We also
assume that all clocks within the system are synchronised to a known accuracy. Given
the above assumptions, we concentrate in this paper on how an appropriately structured
contract can be used to analyse the events collected at the CCC for compliance check-
ing. Subsequently we explain compliance checking in more detail as well as what B2B
events need to be collected at the CCC.

We have developed a contract specification language called EROP (for Events,
Rights, Obligations and Prohibitions) for the CCC, based on business rules, that pro-
vides constructs to specify what rights, obligation and prohibitions become active and
inactive after the occurrence of events related to the execution of business operations
[1,2]. Our language is particularly suited to the specification of exceptional (or con-
tingency) clauses that come in force when the delivery obligation stated in the ’pri-
mary clause’ is not fulfilled (breach or violation of the contract). As we argue in [2],
in electronic contracts it is important to distinguish violations caused by infrastructure
level problems, arising primarily because of the inherently distributed nature of the
underlying computations (e.g., clock skews, unpredictable transmission delays, mes-
sage loss, incorrect messages, node crashes etc.) from those that are not and are mostly
human/organisation related. Our language takes this factor into account and provides
intuitive ways of specifying the consequences of the above problems.

In this paper we describe the design and implementation of a CCC service for con-
tracts written in the EROP language. The service relies on the JBoss Rules [3], com-
monly known as Drools, for rule management. For each partner, the current set of busi-
ness operations that the partner can execute are classified into Rightful, Obligatory and
Prohibited and are explicitly stored in the current ROP set and available for consulta-
tion and update. Additional Java components for Drools implement the functionality
required for the manipulation of ROP sets, historical queries and timer management.

To be effective, a third party service must be able to work with standards compliant
B2B messaging systems. Our system has been designed to work with industry standards
such as ebXML [4] and RosettaNet [5]. Thus, we require that business interactions
between partners are based on the model presented in the next Section, that preserves
the essential aspects of these standards, abstracting away low level protocol details.

The rest of this paper is organized as follows. The next Section defines the basic
concepts of this work and presents a sample contract used further on to provide an
example; Section 3 introduces the architecture of the CCC. Section 4 focuses on the
implementation of the CCC itself. Section 5 elaborates on the translation of the EROP
language to Drools rule files; Section 6 discusses related work, and finally Section 7
presents concluding remarks.

2 Contracts and Business Operations

Contract clauses state what business operations the partners are permitted (equivalently,
have the right), obliged and prohibited to execute. Informally, a right is something that
a business partner is allowed to do; an obligation is something that a business partner is
expected to do unless they wish to take the risk of being penalised; finally, a prohibition



is something that a business partner is not expected to do unless they are prepared to be
penalised. The clauses also stipulate when, in what order and by whom the operations
are to be executed. For instance, for a buyer-seller business partnership, the contract
would stipulate when purchase orders are to be submitted, within how many days of
receiving payment the goods have to be delivered, and so on.

As an example, a hypothetical contract between a buyer and seller is shown below.
In this example, clause C1 grants the buyer a right; similarly, clause C2 imposes an
obligation on the seller. Of particular interest is C7, which illustrates a clause that takes
into account problems caused by infrastructure level problems; our study of messag-
ing standards such as eBXML [4], RosettaNet [5] suggests that at the highest level of
specification (e.g., legal English), such problems can be referred to as business problems
(problems caused by semantic errors in business messages, preventing their processing)
and technical problems (problems caused by faults in networks and hardware/software
components). This aspect is discussed further below.

C1: The Buyer has the right to submit a Purchase Order, as long as the submission
happens from Monday to Friday and from 9am to Spm.

C2: The Seller has the obligation to either accept or refuse the Purchase Order
within 24 hours. Failure to satisfy this obligation will abort the business transaction for
an offline resolution.

C3: If the Order is accepted, the Seller has the obligation to submit an invoice within
24 hours. If the order is rejected, the business transaction is considered concluded.

C4: After receiving an invoice, the Buyer has the obligation to pay the due amount
within 7 days.

CS: Cancellation of a Purchase Order by the Buyer eliminates all obligations im-
posed on the Seller and the Buyer and concludes the business transaction. If a payment
had been received before a cancellation, it will be refunded.

C6: Once payment is received, the Seller has the obligation to ship the goods within
7 days. The shipment of goods will conclude the business transaction.

C7: If the payment fails for technical or business reasons, the Buyer’s deadline to
respond to the invoice is extended by seven days, but the Seller gains the right to cancel
the Purchase Order.

C8: The buyer and the Seller are obliged to stop the execution of the business trans-
action upon the detection of three consecutive failures to execute a given business op-
eration. Possible disputes shall be sorted offline.

We assume that interaction between partners takes place through a well defined set
of primitive business operations B = {bos,...,bo,} such as purchase order submis-
sion, invoice notification, and so on; each operation typically involves the transfer of
one or two business documents. A bo; is supported by a business conversation: a well
defined message interaction protocol with stringent message timing and validity con-
straints (normally, a business message is accepted for processing only if it is timely
and satisfies specific syntactic and semantic validity constraints). RosettaNet Partner
Interface Processes and ebXML industry standards serve as good examples of such
conversations.

We assume that the execution of a bo; generates an initiation outcome event, one
from the set {InitSucc, InitFail}, and if the initiation succeeds (the event is InitSucc),



an execution outcome event, one from the set {Success, BizFail, TecFail}. These are the
events (together with their attributes described subsequently) that are sent to the CCC.
The rationale is as follows.

B2B messaging is typically implemented using Message oriented Middleware (MoM)
that permits loose coupling between partners (e.g., the partners need not be online at the
same time), we assume what follows. To guarantee that a bo; conversation protocol is
started only when both business partners are ready for the execution of a business op-
eration, they execute an initiation protocol; the actual conversation protocol is executed
if initiation succeeds. We then assume that an initiation protocol for the execution of a
bo; generates an initiation outcome event from the set {InitSucc, InitFail} respectively
for initiation success or failure. Following ebXML specification [4], we assume that
once a conversation is started, it always completes to produce an execution outcome
event from the set {Success, BizFail, TecFail} which represent respectively a successful
conclusion, a business failure or a technical failure. BizFail and TecFuail events model
the (hopefully rare) execution outcomes when, after a successful initiation, a party is
unable to reach the normal end of a conversation due to exceptional situations. Tec-
Fail models protocol related failures detected at the middleware level, such as a late,
syntactically incorrect or missing message. BizFail models semantic errors in a mes-
sage detected at the business level, e.g., the goods-delivery address extracted from the
business document is invalid. For additional details, see [6, 7], that also describes the
details of synchronization required to ensure that the above events are mutually agreed
outcome events between the partners.

The contract stipulates how and when rights, obligations and prohibitions are granted
or revoked to business partners. We call ROP sets the sets of rights, obligations and pro-
hibitions currently in force for a participant. A business operation is said to be contract
compliant if it matches the ROP set of the participant that executes it, while also match-
ing the constraints set by the contract clauses for its execution. A bo; € B is said to be
out of context if it does not. Unknown business operations, not present in B, are taken
to be non-contract compliant. The task of the CCC during the execution of a contract
consists in verifying that the operations executed by the participants are contract com-
pliant by matching them with their ROP sets and verifying their contractual constraints,
and in modifying those ROP sets as specified by the contract clauses.

2.1 The EROP Language

The EROP language describes business contracts with ECA rules that explicitly manip-
ulate the partners’ ROP sets, which are then used to monitor contract compliance. This
section will present a brief tutorial for the language.

We use the keywords roleplayer, businessoperation and compoblig as follows.
Roleplayer declares a list of role players involved in the contract; for example, role-
player buyer, seller declares the two role players of our example.

businessoperation declares a list of known business operations, for example, busi-
nessoperation PurchaseOrderSubmission, InvoicePayment.

A composite obligation is a tuple of obligations with a single deadline, to be exe-
cuted OR—exclusively to satisfy the composite obligation. We use compoblig to specify
and name composite obligations; for example, the composite obligation from clause



C2 of our contract example that stipulates that upon receiving a purchase order, a
seller is obliged to either accept or refuse it, can be specified as compoblig RespondTo-
Order(POAcceptance, PORejection), where RespondToOrder is the name of the com-
posite obligation.

Structure of Rules and Trigger Blocks A rule follows the syntax rule ruleName when
triggerBlock then actionBlock end. The expression triggerBlock contains an event match
and a list (possibly empty) of conditions; a rule is relevant only when the event match
and the conditions are satisfied. The event match takes the form e matches (field oper-
ator value [, field operator value]*), where e is a placeholder for the event object being
currently processed, and field is any of botype (the business operation type), outcome
(the outcome of the operation), originator and responder (the role players initiating
and responding to the operation), and timestamp. An operator is a boolean comparison
operator: ==, !=, <, >, and so on. A value is a legitimate constant expression for that
comparison.

Conditions are Boolean expressions that restrict the cases where a rule triggers.
They verify the compliance of a business operation with a participant’s ROP set and can
also evaluate historical queries. Historical queries search for events in the historical log
that match certain constraint, and can be boolean or numeric, respectively if they verify
their presence or if they count the number of occurrences. Boolean queries take the form
happened(businessOp, originator, responder, outcome, timeConstraint), where “*” can
be used as a wildcard. Numeric queries have the counthappened keyword in place of
happened.

The compliance of a business operation with the ROP set of a participant can be
tested with businessOperation in roleplayer. The keyword in can also be employed to
test the presence of composite obligations in a participant’s obligation set.

The Action Block The actionBlock is a list of actions where each action is + =,
— =, pass or terminate. Actions + = and — = respectively add and remove busi-
ness operations or composite obligations from the ROP sets; pass has no effect, while
terminate concludes the execution of a contract. The use of + = and — = to add or
remove rights, prohibitions and obligations (simple or composite) is demonstrated in
the following statements:

roleplayer.rights += BusinessOper(expiry); roleplayer.rights -= BusinessOper;
roleplayer.prohibs += BusinessOper(expiry); roleplayer.prohibs -= BusinessOper;
roleplayer.obligs += BusinessOper(expiry); roleplayer.obligs -= BusinessOper;
roleplayer.obligs += Obligation(expiry); roleplayer.obligs -= Obligation;

expiry is a deadline constraint imposed on a role player to honour his contractual
right, obligations and prohibitions; the absence of a deadline indicates a duration up
until the contract terminates. Notice that obligations with no deadlines are pointless as
their fulfillment cannot be verified.

Conditional statements can also appear in the actionBlock of a rule, using the syntax
if conditions then actionBlock [else actionBlock] endif. Conditions of if-statements are
the same ones used in a trigger block.



In an actionBlock the status guards Success, InitFail, BizFail, TecFail, Otherwise
can be used to group actions for conditional execution according to the outcome of a
business operation, with Otherwise used as a catchall case.

2.2 Language Example

In order to showcase the EROP language, we will present in this Section some signi-
ficative rules of the EROP version of the sample contract given earlier. First of all, the
declaration section:

roleplayer buyer, seller;

businessoperation POSubmission, Invoice, Payment, POCancellation, Refund;
businessoperation GoodsDelivery, POAcceptance, PORejection;

compoblig RespondToPO (POAcceptance, PORejection);

Here follow the rules derived from clauses C3, C4, C6 and C7 of the sample contract
in Section 2. Note that in general the mapping between rules and clauses is IV to NV; in
some cases, several clauses are mapped into a single rule, while in others many rules
derive from a single clause. In the simplest case the mapping is one to one.

Rules R3, R4 and RS presented below could also be written using status guards in
the action block and removing the constraint on the outcome from the event matches.
Both forms are equivalent, and choosing one over the other comes down to style pref-
erences. Rule 3 below derives from clause C3, while Rule 4 derives from clause C4.

rule "R3" rule "R4"
when when
e matches (botype == "POAcceptance", e matches (botype == "Invoice",
outcome == "Success" outcome == "Success",
originator == "seller", originator == "seller",
responder == "buyer") responder == "buyer")
RespondToP0 in seller.obligs Invoice in seller.obligs

then then
seller.obligs -= RespondToPO; seller.obligs -= Invoice;
seller.obligs += Invoice("24h"); buyer.obligs += Payment("7d");
end end

Rule 6 derives from clauses C6 and C7, while Rule 8 derives from clause C8.

rule "R6" rule "R8"
when e matches (botype == "Payment", when
originator == "buyer", e matches (botype == "Payment,
responder == "seller") "originator == "buyer",
Payment in buyer.obligs responder == "seller")
then e.outcome != "Success"
Success: counthappened ("Payment", "buyer",

buyer.obligs -= Payment;

seller.obligs += GoodsDelivery("7d");

TecFail:
BizFail:

buyer.obligs -= Payment;
buyer.obligs += Payment("7d");
seller.rights += POCancellation();
Otherwise:

pass;

end

3 Architecture of the CCC

The events supplied by the business partners to the CCC (shown in Fig. 1) carry in-
formation on undertaken business operations: the outcome, one of InitSucc or InitFail

"seller", "InitFail", "x*")

+ counthappened("Payment", "buyer",
"seller", "TecFail", "x")

+ counthappened("Payment", "buyer",
"seller", "BizFail", "x") >= 3

then
terminate("TecFail");
end
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Fig. 1. The Contract Compliance Checker.

for initiation outcomes, and, if initiation succeeds, one from the set {Success, BizFuail,
TecFail}, the operation’s originator and responder, and a timestamp. Events are for-
warded to the Event Logger, that keeps a history of the business interaction as seen
by the CCC, to be queried when evaluating rules with historical constraints. The Event
Queue holds all events awaiting to be processed. The current ROP sets are the sets of
rights, obligations and prohibitions currently assigned to the role players (to the buyer
and seller in our example). The Time Keeper keeps track of the deadlines of rights,
obligations and prohibitions. When a timeout expires (e.g. obligation deadline expira-
tion), the Time Keeper generates a timeout event and forwards it to the Event Logger
and the Event Queue. The Relevance Engine analyses queued events and triggers any
relevant rules among those it holds in its working memory, following this algorithm:

1. Fetch the first event e from the Event Queue;

2. Identify the relevant rules for e;

3. For each relevant rule r, execute the actions listed in its right hand side, either ROP
set manipulation or termination of a contract instance.

4 Implementation of the CCC

Figure 2 presents a diagram of the implementation of the CCC. Its main components
were identified in Section 3 as the Event Queue, the Time Keeper, the Event Logger and
the Relevance Engine. The Event Queue, defined in the class EventQueue, is a First In,
First Out queue of incoming Event objects, owned by the Relevance Engine. The Event
Queue offers two operations: adding an Event to the end of the queue, and taking an
Event out of the head of the queue. Events are added by the participants (simulated in
our prototype), and by the Time Keeper (timeout events). Only the Relevance Engine
removes Events from the Event Queue.

The Time Keeper, defined in the class TimeKeeper, manages the deadlines for the
expiry of ROP Entities, and offers two operations: adding and removing a deadline.
Deadlines are internally represented using Java Timers, stored in a hash table indexed
by the name and type of the ROP Entity they refer to, and the involved role players.
Whenever a deadline expires, its corresponding Java Timer notifies the Time Keeper,
passing as parameters the relevant data - Business Operation type, relevant Role Play-
ers, and so on. The Time Keeper then instantiates a new Event of the relevant type,
appending Timeout to the name. The outcome of the new Event object is set to timeout.
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Fig. 2. Implementation Details for the Contract Compliance Checker

The Event Logger maintains the historical database and offers three operations:
logging events in the database, submitting boolean queries and submitting numerical
queries. The Relevance Engine (RE) relies on an instance of the Drools rule engine
[3] to power its decision making capability. It offers four operations: adding an Event
for processing, initializing a contract instantiation to start a new business interaction,
processing the Event queue and verifying that the Event queue is empty. As anticipated
earlier on, the RE’s algorithm presented in Section 3 to trigger relevant rules is imple-
mented using the recognize-act cycle of the Drools engine: the RE inserts the events
retrieved from the Event Queue in Drools’ working memory, to trigger a recognize-act
cycle to identify any relevant rule and executes their right-hand-side actions.

4.1 Implementation of the Relevance Engine

Drools powers the decision making capability of the Relevance Engine. A rule engine is
a software system that uses a set of rules to define and direct its own activity, instead of
relying on static, hardcoded knowledge like a conventional system. Knowledge is there-
fore separated from the rest of the execution environment, and segregated in a rule base,
or knowledge base, so as to be altered by users when needed without having to alter the
execution environment. Drools is a forward chaining [8] rule engine, where facts, items
of knowledge that are atomic from the perspective of the system, are brought in and
stored for evaluation in the working memory, a buffer area separated from the rule base.
Every time the working memory is altered by adding, removing or modifying facts,
the rule engine starts a recognise-act cycle, examining all rules to find those for which
the left hand side conditions match the current state of the working memory (triggered
rules). The actions in the right hand side of these rules are then executed, and the facts
that triggered any rules are removed from the working memory. This generally alters
the working memory, so the recognise-act cycle is restarted, until no rule is triggered.
Drools also allows the definition of globals, objects that reside in a special area
of the working memory and persist between recognise-act cycles, not triggering new
ones even if they are altered. Globals usually act as hooks to external services, and are
therefore the only channel to the outside world that a running Drools system has. To
implement our system, we have a global for a reference to the running RE, used for
housekeeping purposes, and one for a reference to the Event Logger, used to provide
access to the historical log. There also is a global for each Role Player and their ROP



Sets. Events in the Event Queue awaiting processing are inserted one by one in Drools’
working memory to start a recognise-act cycle, which implements the rule matching
and triggering algorithm described in Section 3.

The reason for choosing a rule engine to power the Relevance Engine is the small
semantic gap between EROP rules and business rules; EROP rules are fundamentally
business rules that make use of the EROP ontology introduced in Section 4.2. This
makes the translation process from EROP to Drools relatively straightforward, as shown
in Section 5.

The reasons for choosing Drools as the particular rule engine in our system are its
availability with an Open Source license, and a number of useful features, notably its
use of Forgy’s Rete algorithm [9], a relatively efficient algorithm to search the knowl-
edge base for relevant rules, which is the most computationally intensive task in a rule
engine. Another notable feature is the possibility to write the right hand sides of rules
directly in a programming language (specifically Java, Python or Groovy). This last
feature allows a more direct, simpler mapping to the implementation of the EROP on-
tology.

4.2 The EROP Ontology

The EROP ontology is a set of the concepts and relationships within the domain of B2B
interaction employed to model the execution of business operations between partners,
to reason about the compliance of their actions with their stated objectives in their
agreements. The EROP ontology includes the following classes:

Role Player: an agent, not necessarily human, employed by one of the interacting
parties, that takes on and plays a role defined in the contract.

Business Operation: a specific activity defined in the contract for the purpose of
producing value.

Right: A Business Operation that a Role Player is allowed to execute.

Obligation (Simple): A Business Operation that a Role Player must execute.

Prohibition: A Business Operation that a Role Player must not execute.

Composite Obligation: A set of Obligations with a single deadline; a Role Player
must execute exactly one of the set to satisfy the Composite Obligation.

ROP Entity: A right, obligation or prohibition.

Deadline: A time constraint that can be imposed on rights, and prohibitions and is
always imposed on both simple and composite obligations.

ROP Set: A set (possibly empty) of rights, obligations and prohibitions belonging
to a Role Player. Each Role Player has exactly one ROP Set.

Event: A message carrying a record about the occurrence of a business activity,
such as initiating or concluding a business operation, the expiry of a deadline, and so
on.

The classes of the EROP ontology are implemented by the Java classes RolePlayer,
BusinessOperation, Right, Obligation, Prohibition, CompositeObligation, ROPEntity,
Deadline, ROPSet and Event. The class ROPEntity is the parent of classes Right, Obli-
gation and Prohibition, and the ancestor of CompositeObligation, as shown in the UML
diagram presented in Figure 3.
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The remaining classes, Event, BusinessOperation, RolePlayer and ROPSet, do not
belong to an inheritance hierarchy.

4.3 The Historical Database

The Historical Database contains four tables: one for the Role Players, one for the
relevant Event types, one for the possible status outcomes, and one for the Event history
proper. The first three tables remain unaltered by the CCC for all its lifetime, and are
supposed to be prepared in advance by an ancillary application. The fourth table, the
actual Event history, is created empty before the first run of the system, and is filled
during the contract’s lifetime. Whether it has to be emptied between successive runs
of the same contract depends on the conditions in the contract itself; it makes sense
to allow for the possibility of writing clauses that refer to past iterations of the same
contract to alter the ROP sets of the participants, e.g., a clause providing a 10% discount
to buyers with at least three successfully completed purchase orders that were paid on
time. Therefore there is no special provision to erase the the Event history, in order to
leave the choice to do this to the involved parties.

As explained in Section 2, historical queries can be classified into two main cate-
gories: boolean queries, verifying whether an Event matching a given set of constraints
is logged in the historical database, and numeric queries that count the number of oc-
currences of such logged Events.

In either case, the set of constraints is the same: the business operation type, the
originating and responding Role Players, the Event’s outcome, and a temporal con-
straint. An example of an acceptable set of historical constraints would be originator
= “buyer”, responder = “seller”, type = “PurchaseOrder”, status = “Success”, time-
Constraint = “timestamp < ’15/12/2009 10:00:00°”. The given set of constraints is
used to build a SQL query, and the answer of the database server is then analysed to
generate the appropriate response. Rule R8, presented in Section 2 includes a numeric
query; this maps to the method countHappened() of the class EventLogger after trans-
lation. Similarly, a boolean query would map to happened(). These methods build the
SQL statements for the historical database from the received parameters, submit them to
the database server, then parse the results and return them. So the numerical query in R8
is translated into the SQL statement SELECT COUNT(*) FROM eventhistory WHERE



type="Payment’ AND originator="buyer’ AND responder="seller’ AND timestamp >=
"1 Jan 2008 AND outcome="success’. The result of the query, as per the SQL standard,
is the number of rows in the eventhistory table that record events within the desired
constraints.

5 Translation to Drools

The Java implementation of the EROP ontology presented earlier extends the rule lan-
guage offered by Drools to reason about contract compliance; we call this extended
language Augmented Drools (AD). Because of its origin, Augmented Drools is more
verbose and Java-like than the EROP language, as well as less abstract and human-
readable. It also needs to have additional code for housekeeping purposes, necessary
to manipulate the EROP ontology, such as lines to instantiate and assign objects and
arrays.

The EROP language maps completely into Augmented Drools; it is possible to write
contracts in AD with the same expressive power of EROP, but, as mentioned above,
the resulting code is more implementation-aware yet less declarative in style and less
readable. Most importantly, however, AD can run on available software - the Drools rule
engine. The problem of creating a compiler for the EROP language therefore reduces
to the translation of EROP to AD. Such a translator has not yet been implemented,
however it is seen to be a straightforward task that we are planning to complete in the
future. The rest of this section will show how EROP statements map into AD statements.

5.1 Declarations in Augmented Drools and EROP

A rule file in Augmented Drools starts, like in EROP, with the declaration of the objects
and entities used in the file: Role Players, Business Operations and Composite Obliga-
tions, together with be declarations of the Role Players’ ROP Sets, and of the currently
running Relevance Engine and Event Logger for reference in the rules. The definition
of global indentifiers is done with the global Drools keyword, followed by the class of
the object to declare, its name and a semicolon. As an example, here is the part of a
sample contract where identifiers are declared:

global RelevanceEngine engine; global BusinessOperation purchaseOrder;
global EventLogger logger; global BusinessOperation finePayment;
global RolePlayer buyer; global BusinessOperation payment;
global RolePlayer seller; global BusinessOperation poAcceptance;
global ROPSet ropBuyer; global BusinessOperation poRejection;
global ROPSet ropSeller; global BusinessOperation goodsDelivery;

Here we declare the instances of the Relevance Engine and Event Logger to use,
two Role Players, buyer and seller, their two ROP Sets, and the Business operations
used in subsequent rules. Business Operation names begin in lowercase here as they are
Java objects and follow Java style rules; po stands for Purchase Order.

The syntax to define rules is the same in Drools and EROP, as the second is derived
from the first: rule RuleName when triggerBlock then actionBlock end. Rule names
must be unique within a rule file. Comments in AD, like in Drools, are preceded by a
hash sign (#), and continue until the end of the line.



Event matching, done in EROP with the syntax e matches (attribute == value,
[attribute == value]*) (see Section 2), translates to the AD syntax $e: Event (attribute
== value, [attribute == value]*), where $e is an event placeholder variable.

Other conditions outside the event match are written using the Drools construct eval,
that evaluates boolean expressions in the left hand side of rules. Therefore, historical
queries of the form happened(businessOperation, originator, responder, status, time-
Constraint) would map to eval (eventLogger.happened (businessOperation, originator,
responder, status, timeConstraint)), where eventLogger is the running instance of the
class EventLogger. Numerical queries would similarly translate in a similar fashion to
calls to the countHappened() method using eval.

The test for the presence of a ROP Entity in a Role Player’s ROP Set, expressed in
EROP with ROPEntity in rolePlayer.rop where rop is one of rights, obligs or prohibs,
maps to AD as a method call of the class ROPSet; eval(playersROPSet.matchesRights
(BOType)) for rights, and so on. Eval is here used again to evaluate a boolean method
call.

5.2 Actions in EROP and Augmented Drools

ROP sets are manipulated in EROP with the += and -= operators, e.g. seller.obligs
+= Invoice("24h"). This maps in AD to a method call of the class ROPSet, such as
ropSeller.addObligation("Invoice", "24h").

The EROP keyword ferminate maps to the AD statement engine.terminate(), where
engine is the current instance of the RE; the argument of terminate is passed to this
method. Executing engine.terminate() concludes the current contract instance and noti-
fies its participants of the termination and of its outcome.

5.3 Conditional structures

In general, EROP rules using if-then-else statements or status guards generally map to
more than one rule in AD. So an EROP rule with status guards maps to as many AD
rules as the number of guards used in it; each of those AD rules will have a constraint
on the outcome of the event under scrutiny added to its trigger block matching the
corresponding status guard. So a rule of the form

rule "RuleForManyOutcomes"
when e matches (botype == SomeB0)
then
Success:
actionBlockl
TecFail:
actionBlock2
Otherwise:
actionBlock3
end

would be mapped to the following rules:

rule "RuleForSuccess" rule "RuleForTechnicalFail"
when when
e matches (botype == SomeB0, e matches (botype == SomeBO,
outcome == "success") outcome == "tecfail")
then actionBlockl then actionBlock2

end end



rule "RuleForOther"
when e matches (botype == SomeB0)
((e.outcome != "success")||(e.outcome != "tecfail"))
then actionBlock3
end

A rule with an if-then-else statement would be similarly mapped to two AD rules,
one with the then-block and one with the else-block.

5.4 Examples of Translation to Augmented Drools

To offer a translation example from EROP to Augmented Drools, we will now show
how rules R3 and R8 from the sample contract fragment discussed in Section 2 are
mapped to Augmented Drools.

rule "R3"
when
$e: Event (type=="POAcceptance", originator=="seller",
responder=="buyer", outcome=="Success")
eval (ropSeller.matchesObligations ("RespondToP0")) ;
then
ropSeller.removeObligation("ReactToP0") ;
ropBuyer.addObligation(payment, "24h");

end
rule "R8"
when
$e: Event (type=="Payment", originator=="buyer",
responder=="seller", outcome=="success"
eval (ropBuyer .matchesObligations (payment))
eval(eventLogger.countHappened("Payment", "buyer", "*", "InitFail", "x")
+eventLogger.countHappened ("Payment", "buyer", "*", "TecFail", "x")
+eventLogger.countHappened ("Payment", "buyer", "*", "BizFail", "x")
>=3)
then
engine.terminate ("BizFail");
end

5.5 Performance Considerations

The CCC depends on the Drools rule engine to perform the most computationally inten-
sive task, the selection of the relevant rules for incoming events. This is accomplished
by the recognize-act cycle of the rule engine, using the Rete algorithm presented in [9].
The performance of the Rete algorithm depends on the number of facts in the work-
ing memory and in the characteristics of the rule base; in our system, only one fact is
evaluated at a time, and so the number of facts in the working memory is not an issue.
Performance is therefore determined by the characteristics of the rule base; specifically,
by its size, and by how much overlap there is between the conditions on the left hand
sides of rules. In general, the time needed for a recognize-act cycle grows as the size of
a rule base grows; the effects of the size of a rule base on performance are discussed in
[10].

The Rete algorithm uses a dataflow network to represent the left hand side condi-
tions of the rules. Rules with common conditions share nodes in this network; the more
conditions are shared, the more nodes are shared, and the more efficient a recognize-
act cycle is. In our system rules are written taking a contract in natural language as a



starting point. While it is reasonable to expect a certain amount of overlap between rule
conditions (e.g., all rules about operations initiated by a given role player are going to
share a condition asserting that role player’s identity as the initiator), our experiments
did not readily suggest criteria to predict the exact amount of overlap. Much depends
on the definition of business operations and on writing style; equivalent contracts can
be written with strongly diverging rule bases. Future work on EROP will include an
investigation on the best practices of contract writing in order to achieve more efficient
dataflow networks for the Rete algorithm.

Our experiments showed, however, that the code for the CCC only adds a very small
constant factor to the time needed for recognize-act cycles, and so its impact on effi-
ciency can be neglected. The overall time needed to process an event remained of the
order of magnitude of milliseconds; considering that time scales in business relation-
ships are of the order of magnitude of hours, days, or even longer, efficiency does not
appear to be a limiting factor for our system.

6 Related Work

The implementation of languages for specification and monitoring of electronic con-
tracts is an active research topic; however formal treatments and abstract models have
received greater attention. In [11], a mediating entity, the Synchronization Point (SP),
has a similar role to our CCC, hosting a knowledge base of contract clauses, consulted
whenever the participants send an event at the conclusion of a business operation. The
knowledge base is written as ECA rules using Protege [12], and interrogated using its
query language PAL. The authors describe a method to generate ECA rules from an
abstract model of a contract; however, the semantic distance between the model and
the business rules in a natural language contract appears to be greater than the distance
between our EROP rules and natural language rules.

Heimdabhl [13] is another ECA-based work comparable to ours. It employs a policy
monitor similar to our CCC to decide which actions are legal, and to enforce the con-
tractual clauses. Enforcement involves asserting the presence of certain events in the
future if certain events occur in the present; the monitor executes compensatory actions
if the expected future events do not occur. Heimdahl’s focus is on the monitoring and
enforcing of SLA, so there is not much scope for the concepts of business operations
and mechanisms for exception handling as offered by EROP.

Law-Governed Interaction [14, 15] is an early work in the implementation of an
architecture for contract monitoring and enforcement. The Moses middleware presented
in [14] has Controllers located between the interacting parties, receiving events and
taking actions based on a knowledge base of rules; rules are stored by Law Servers and
can be written in customized versions of Prolog or Java. Moses is an integrated system
that requires Moses components to be installed within all the participants; this is in
contrast to the CCC that has been designed to act as a third party service.

Compliance monitoring is investigated in [16] within the context of service based
systems — systems composed dynamically from autonomous web services and coordi-
nated by a composition process. A framework is proposed for the monitoring of com-
pliance of such composite systems with a set of behavioural properties extracted from



a BPEL specification of the composition process. At runtime, the events exchanged be-
tween the interacting parties are intercepted and processed similarly to what our CCC
does, watching for violations of specified behaviour in a non-intrusive manner. Cur-
rently the specification of requirements to monitor are expressed in an abstract event
calculus language that is not suitable for use by non technical people in a business
environment.

Non intrusive monitoring for agent-based contract systems is investigated in [17],
as part of the EU Contract Project [18]. In this work, a group of observers monitor the
messages exchanged by the interacting agents, and the observed communications pat-
terns are then matched with expected patterns derived from running contracts to detect
violations. It is assumed that all messages relevant to the ongoing business transactions
are visible and comprehensible to the observers.

Work on contract monitoring from the perspective of a model-driven approach is
presented in [19]. The paper presents a metamodel level discussion on a variety of top-
ics, including sub-contracting, simultaneous execution of several interleaving contract
instances, nested executions, multiple monitoring and so on. Our work can be consid-
ered a concrete instance of some of the metamodels of the paper, that takes into con-
sideration a number of practical issues not touched upon there, such as the treatment of
deadlines, and of technical and business failures.

7 Conclusion and Future Work

In this paper we have presented the implementation of a prototype for a Contract Com-
pliance Checker supporting contracts written in the EROP language. Our system is de-
signed as a third party service monitoring B2B interactions for compliance. Our current
design operates under the assumption that the business partners operate in good faith:
they do not knowingly generate malicious events. Enhancements required to prevent
abuse of the service is a topic for further investigation. Future work will also include
completing a translator for EROP into Augmented Drools, an evaluation of the sys-
tem in realistic settings, an investigation into the impact of contract writing style on
efficiency and validation of the rule bases for consistency.
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