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Abstract. A use-case is specified as a set of possible scenarios of interactions. 
Scenarios can be decomposed into workflows on different granularity levels. 
Use-cases are fundamentally a text-based documentation form written in natural 
language text. The textual description of a complicated scenario can be ambig-
uous, incomplete and inconsistent. In this paper we demonstrate a conceptual 
modeling method for representing use-case descriptions by using a graphical 
language. Simple interaction loops are viewed as fundamental elements for 
composition of scenarios. Each interaction loop is analyzed separately and 
therefore it provides a natural way of decomposition. Modeling of overlaying 
interaction flows between organizational and technical components enables 
separation of crosscutting concerns in system engineering without requirement 
to specify a complete solution. The goal of this paper is to demonstrate the ad-
vantages of conceptual modeling approach, which allows to introduce evolu-
tionary extensions and to construct use-case scenarios with a comprehensible 
structure.  

Keywords: Interaction dependencies, separation of concerns, basic pattern of a 
transaction, interaction loops, scenarios.  

1   Introduction 

Use-cases are a way to capture requirements. It is the form of requirements engineer-
ing [1]. According to Cockburn [2] a use-case is a description of the possible se-
quences of interactions between the system and its external actors. Each sequence of 
interaction events can be viewed as a scenario. Every use-case contains a set of possi-
ble scenarios related to the goal of a primary actor. Historically use-cases descriptions 
are written as text-based documentation. Natural language is verbose and flexible to 
use in conversations, but it is really problematic when it comes to system modeling as 
natural language is notoriously ambiguous in its meaning [3]. Especially, complex 
scenarios may result in ambiguous, incomplete and inconsistent textual descriptions.  
 According to Jacobson [4], use-cases can be seen as different stakeholders con-
cerns, which are important to understand while exploring and collecting the require-
ments for the system. Very often a certain concern is spread across multiple compo-
nents. It means that the realization of functional requirements, which are usually 
specified as use-cases can cut across multiple components. Inability to keep crosscut-



 
 
 
 
ting concerns separate causes problems for system designers when the requirements 
are modified. The designer must identify all related components and to find out how 
these components are affected by introduced changes. Especially, modifying the re-
quirements, which are related to a big number of diagrams, is quite problematic. Poor 
understanding of crosscutting concerns makes it difficult to make even simple evolu-
tionary extensions of information system (IS) specifications.  
 The scope of scenario can vary. It may include all business events, or it may in-
clude just some events, which are of interest to one specific actor. Scenarios can be 
used to define workflows on different granularity levels. Our studies indicate that 
simple interaction loops [5] can be viewed as fundamental elements for the composi-
tion of scenarios. Each interaction loop can be analyzed separately as it is required by 
the principle of separation of concerns. In such a way, interaction loops provide a 
natural way of decomposition. Two related loops can be used for analyzing integrity 
between static and dynamic aspects of some scenario. They are also useful as a con-
cern composition mechanism. A scenario is an excellent means for describing the 
order of interactions. It can be conceptualized as a combination of several loops be-
tween a set of loosely coupled actors.  
 Use-cases can be described on different levels of abstraction and they can be com-
bined into scenarios in various ways. In the object-oriented modeling approaches, a 
scenario is typically specified by a textual narrative description. A textual description 
of a complicated scenario can be incomplete and inconsistent with other representa-
tions. One of the goals of this paper is to demonstrate how use-case scenarios can be 
expressed by using Semantically Integrated Conceptual Modeling (SICM) method 
[6]. This approach puts into a foreground the modeling of interactions [7] among 
actors [8]. Interaction dependencies are used to preserve the modularity of concerns 
and to integrate behavioral effects with structural changes in various classes of ob-
jects.  
 Use-cases can be viewed as slices, which are analogous to overlays. Such overlays 
can be stacked on top of each other. In this way, overlays can be understood as a 
concern separation technique [4]. Use-case slices define the behavior that extends the 
element structure. So, it looks like use-case composition mechanism and concern 
separation principles are quite obvious. However, introducing evolutionary changes, 
which are related to a big number of diagrams, is quite problematic in object-oriented 
approach using Unified Modeling Language (UML). It is common to all system anal-
ysis and design methods to separate disparate views [9], because a human mind al-
lows focusing on a particular type of diagram at a time. Designers are typically deal-
ing with one type of diagram, which defines behavioral, interactive or structural 
aspects of a system in isolation. Therefore, it is difficult to take into account semantic 
dependencies between the static and dynamic aspects related to a particular concern in 
a very early modeling phase. That is why most conventional IS design methods are 
not so useful for the detection of inconsistency or incompleteness in various use-cases 
specifications. In this paper, we will demonstrate how interaction dependencies can be 
used to construct unambiguous graphical descriptions of scenarios with sequential, 
iterative, synchronized and alternative behavior. Most of information system method-
ologies are quite weak in representing the alternative scenarios and the consequences 
if commitments between actors are broken.  



 
 
 
 
 

 
 

2 Use-Case Descriptions  

Use-case diagrams can be produced in two steps. The first task of the system analyst 
or project team member is writing use-case descriptions by using a natural language 
text. The second task is to translate the use-case descriptions into use-case diagrams. 
A use-case description should contain all needed information for building other UML 
diagrams. Unambiguity of use-case descriptions is important to validate the semantic 
integrity of the diagrams. The problem is that the narrative text, which defines flows 
of events of different use-cases, can be ambiguous, incomplete and inconsistent. 
There are three types of event flows, which are documented for a use-case: 1) Normal 
flow of events, 2) Subflows, and 3) Alternate flows.  
 A use-case can be understood as a transaction. Any transaction can be analyzed as 
a simple workflow loop [5], which captures service value exchange between two or 
more parties. Both requests and responses are viewed as necessary business events. 
According to Ferrario and Guarino [10], service interactions are not objects or prod-
ucts, they are events. Service responses cannot be delivered without initiating service 
requests. A response can be viewed in a number of ways. It can be represented by a 
promise to deliver a desirable result to service requester or it can be viewed as state-
ment, which brings a desired value flow [11] to service requester. Any workflow loop 
indicates that service provider receives service request and transforms it into service 
response. Service requester, request, service provider and response are minimal set of 
elements for defining any type of a service interaction loop. It is illustrated graphical-
ly in figure 1.  
 

 
 

Fig.1. Basic interaction loop 
  
The presented elementary interaction loop is a basic element, which can be used in a 
very early conceptual modeling phase for separation of concerns in information sys-
tem analysis and design. Two loosely coupled actors will be represented by the fol-
lowing expression [12]:  
 If Request(Service Requester Service Provider)  
 then Response(Service Provider  Service Requester).  
We will demonstrate the conceptualization of normal flow of events and alternate 
flows for the slightly modified case study example, which was analyzed by Jacobson 
and Ng [4]. In this example, the Reserve Room use-case is extended by the Handle 
Waiting List use-case. Both use-cases are represented in figure 2.  
 



 
 
 
 

 
 

Fig.2. Example of use-case diagram 
  
The Reserve Room use-case scenario can be graphically defined by two interaction 
loops between Customer and Hotel Reservation System. The primary interaction loop 
is composed of the underlying interaction loop. Both loops of the Reserve Room use-
case scenario are graphically defined in figure 3.  
 

 
 

Fig.3. Elementary interaction loops of the Reserve Room use-case 
 
The presented service requesters and service providers are actors. Actors are active 
concepts, which can only be motivated by a set of interaction dependencies that keep 
the enterprise system viable. Interaction dependency R(AB) indicates that actor 
A is an agent, which can perform action R on one or more recipients B. Interaction 
dependencies in the diagrams are graphically indicated by broken arrows. Broken 
arrows denote moving flows between actors such as information, decisions or materi-
als. Actors are represented by square rectangles and actions are represented by ellip-
ses. All actions are used to show the legal ways in which actors interact with each 
other. The first interaction loop (it is graphically represented in figure 3,a) cannot be 
executed without triggering the underlying interaction loop on the more specific gran-
ularity level (figure 3,b).  The second interaction loop is initiated by the Hotel Reser-
vation System.  
 Use-case scenarios are conceptualized by identifying the flow of interaction 
events. Each event makes about the same amount of progress towards completion of a 
use-case. The equivalent narrative text of the Reserve Room use-case normal flow of 
events (see figure 3) can be described as follows:  
1) The Customer requests room by entering the specific room requirements (includ-
ing the desired period of stay),  
2) The Hotel Reservation System offers various available rooms with different rates,  



 
 
 
 
 

 
 

3) The Customer selects the available room and enters the required information about 
an expected room guest. This step can be repeated several times. It means that more 
than one room can be selected,  
4) The Hotel Reservation System creates reservation with the details of all selected 
hotel rooms, displays reservation information to the Customer and consumes the 
selected types of available room.  
 Both graphical and textual descriptions in essence define the Reserve Room use-
case as the flow of interaction events. Events are identified by using two kinds of 
guidelines as far as the syntactic and semantic structure of sentence is concerned. The 
syntactic guideline has something to do with the form of sentence. Each individual 
event should be expressed as subject-verb-object and, optionally, preposition-indirect 
object [13]. Such constructions are useful in identifying actors, operations and classes. 
The second set of guidelines is related to the semantic roles various concepts play in 
the sentences. Normally, each event should define the requester or performer of the 
action. The use of request–response type of sentences results in user-centered re-
quirements documentation that can be useful for user training and testing. If the use-
case description is too complex, it should be decomposed into a set of more simple 
flows. Subflows or alternate flows can be used for this purpose. 

3 The Basic Constructs of SICM Approach 

Event flows can be defined in terms of essential interactions between organizational 
or technical components. Technical components correspond to enterprise subsystems 
such as machines, software and hardware. Organizational components can be humans, 
organizations, their divisions or roles, which denote the groups of people. Interaction 
dependencies among actors are important for the separation of crosscutting concerns. 
By following interaction dependencies, it is possible to explore various ways in which 
enterprise system components are used. Event flows can be analyzed as a set of work-
flow loops [5]. A workflow loop in SICM method [14] is considered as a basic ele-
ment of scenario, which describes interplay between service requesters and service 
providers. In its simplest form, any workflow loop is viewed as a response to request 
that creates promise or provides a value to service requester.  
 Interaction dependencies are extensively used in a foreground of enterprise engi-
neering methods [7]. These methods are rooted in the interaction pattern analysis and 
philosophy of language. The purpose of introducing them was initially motivated by 
the idea of creation computer-based tools for conducting conversations. The goal of 
this paper is different. We are going to demonstrate how to apply the interaction de-
pendencies in combination with the set of semantic dependencies, which can be used 
for the graphical description of use-case scenarios. The sequences of interaction 
events are crucial for analyzing scenarios, which are expressed in terms of requests 
and responses between actors. For example, Create Reservation action can be viewed 
as a promise in connection to Request Room action.  



 
 
 
 
 Behavioral and structural aspects of interactions can be analyzed in terms of their 
reclassification, creation or termination effects. When two subsystems interact one 
may affect the state of each other [15]. Structural changes of objects are defined in 
terms of object properties [16]. Interaction dependency R(AB) between two 
active concepts A and B indicates that A subsystem can perform action R on one or 
more B subsystems. An action typically manipulates properties of objects. Otherwise, 
this action is not purposeful. Property changes may trigger object transitions from one 
class to another. The behavioral effects of communication actions are expressed by 
using transition links (──) between various classes of objects. Reclassification of 
object can be defined in terms of communication action that is terminating an object 
in one class and creating it in another class. Sometimes, objects may pass several 
classes, and then they are terminated. Graphical notation of the reclassification con-
struct is graphically represented in figure 4.  
 

 

Fig.4. Graphical notation of reclassification  

Unbroken arrows indicate control flow of creation and termination effects. Object 
classes represent a persistent or transient set of objects. Fundamentally two kinds of 
changes are possible during any reclassification: termination and creation of an ob-
ject. A creation is denoted by outgoing transition arrow to a post-condition class. A 
termination action is represented by a transition dependency directed from a pre-
condition object class. Before an object can be terminated, it must be created. A pre-
condition class in the termination construct is understood as final. For instance, when 
the Hotel Reservation Request is created, it can be reclassified to the Hotel Reserva-
tion by using Create Reservation action.  
 Structural changes of objects are manifested via static and dynamic properties. 
Dynamic properties are represented as actions, which are connected to classes by 
creation and termination links. Static properties can be represented by the mandatory 
attributes. The mandatory attributes are linked to classes by the single-valued or by 
multi-valued attribute dependencies. One significant difference of the presented mod-
eling approach is that the association ends of static relations are nameless. The justifi-
cation of this way of modeling can be found in some other papers [12], [17]. Seman-
tics of static dependencies are defined by cardinalities, which represent a minimum 
and maximum number of objects in one class (B) that can be associated with the ob-
jects in another class (A). Single-valued dependency is defined by the following car-
dinalities: (0,1;1,1),  (0,*;1,1) and (1,1;1,1). Multi-valued dependency denotes either 
(0,1;1,*) or (1,1;1,*) cardinality. Graphical notation of various static dependencies is 
represented in figure 5.  



 
 
 
 
 

 
 

 
Fig.5. Notation of static dependencies between concepts 

  
The diagram presented in figure 3 does not provide any semantic details of control 
flows between communication actions. It shows only the necessary events in a Room 
Reservation scenario. The actions such as Request Room and Create Reservation 
should also specify the acceptable ways for structural changes to occur in different 
classes of objects. In general, communication actions can be sequential, iterative, 
alternative or synchronized with the secondary workflow loops. Triggering conditions 
of the secondary interaction loops may depend on the objects, which are created or 
terminated in the overlaying interaction loops. Pre-condition and post-condition clas-
ses are crucial to understand the dynamic aspects of interactions. A created object in 
one loop can be consumed in another. The creation and termination of objects allows 
constructing scenarios, which are enclosing optional or mandatory workflows. 
 Overlapping classes can be used to synchronize interaction loops together. For 
instance, Create Reservation action terminates Hotel Reservation Request object, 
which was created as a result of Request Room action, and creates Hotel Reservation 
object. These creation and termination effects are graphically described in figure 6.  
 

 

Fig.6. Overlaying description of the Reserve Room use-case scenario 

The corresponding Hotel Reservation and Hotel Reservation Request objects are 
composed of parts, which must be terminated and created at the same time. In this 
way, creation and termination effects define constraints on various types of objects in 
sending and receiving interaction flows between actors. Inheritance, composition and 
mandatory attribute dependencies can be used for reasoning about the consequences 
of object creation and termination effects. According to the conceptual modeling rules 
[6], the creation of Hotel Reservation is causing creation of at least one Hotel 



 
 
 
 
Room[Reserved] and expected Guest. It should be noted that the semantic power of 
UML object flow and sequence diagrams combined together is not sufficient for cap-
turing the equivalent effects.  

4 Composition of Interaction Loops 

Elementary interaction loops can be viewed as fundamental elements for defining 
scenarios [17]. Graphical representation of scenario is an excellent means for describ-
ing the order of interactions. More specific underlying interaction loops can be ana-
lyzed in the context of the overlaying loops on higher granularity levels as it is re-
quired by the principle of separation of concerns. It means that the scope of scenario 
can vary. A scenario may include just some events, which are of the interest to one 
specific actor. However, it can naturally be linked to all other overlaying business 
events. The natural language descriptions of such complex use-case scenarios require 
a lot of supplementary information, which specifies pre-conditions, post-conditions 
and other special constrains for inserting subflows into main flow of events. In this 
section, we demonstrate how to construct the graphical descriptions of scenarios with 
a more comprehensible structure.  
 The Reserve Room use-case scenario can be graphically defined by a number of 
interaction loops between Customer and Hotel Reservation System. The primary 
interaction loop (see figure 6) can be viewed as an overlay of secondary loop on more 
specific granularity level. Composition of two interaction loops of Reserve Room use-
case scenario is presented in figure 7.  
 

Select

Hotel Room

Available
Customer

Offer
Rooms Available Hotel 

Rooms

Hotel 
Reserva-

tion System 

Room Guest
Data

Hotel 
Reservation

Hotel Room

Reserved

Customer

Room 
Requirements

Request 
Room

Hotel Reservation 
Request

Hotel 
Reserva-

tion System 

Create 
Reservation

Reservation

Customer

Type of Room 

Desirable

Customer

Identified

Offer

Guest

 

Fig.7. Integrated conceptual representation of the Reserve Room scenario  



 
 
 
 
 

 
 

The primary loop of the Reserve Room use-case is synchronized with the underlying 
interaction loop. It defines the functionality of offering and selecting available hotel 
rooms. The underlying interaction loop is as follows:  
 If Offer Rooms(Hotel Reservation System Customer)  
 then Select(Customer  Hotel Reservation System).  
According to the presented control flow, the Select room action cannot be triggered 
prior to Offer Rooms action. Select action can only be performed in parallel with the 
Create Reservation action, because the creation of Hotel Reservation is synchronized 
with the creation of its compositional part Hotel Room[Reserved]. The termination of 
Hotel Reservation Request is synchronized with the reclassification of Type of 
Room[Desirable] to Offer, which is composed of at least one Hotel Room [Availa-
ble].  
 A simple interaction loop between service requester and provider in the SICM 
method is viewed as the basic element of any communication process [5]. Interaction 
loops may be composed together into more complex interaction webs by using crea-
tion and termination links. If the object transition effects cannot be conceptualized by 
using pre-condition or post-condition classes, then the communication action is not 
purposeful. Interaction dependencies without purposeful actions make no sense and 
should be eliminated. The modeling of interactions and object transition effects to-
gether is critical for reaching semantic integrity among static and dynamic aspects of 
IS specifications. In the presented example, object creation, termination and reclassi-
fication effects show very important semantic details of unambiguous scenario in 
which two interaction loops are composed together. The more specific workflow loop 
is underlying the primary interaction loop. The underlying loop is required for the 
selection of desirable room type and for providing necessary data about guest. Under-
lying loops can be mandatory or optional. By following the interaction dependencies 
between actors, designers are able to understand the creation and termination effect in 
various classes of objects. In this way, the transition links are used to capture the 
dynamic dependencies between interaction loops.  

5 Bridging from SICM constructs to the Basic Pattern of a Transaction  

Interaction dependencies are successfully used in the area of enterprise engineering 
[7]. Our intention is to apply the interaction dependencies in combination with the 
conventional semantic relations, which are used in the area of system analysis and 
design. Interaction loops can be expressed by interplay of coordination or production 
events, which appear to occur in a particular pattern. The idea behind a conversation 
for action schema [18] can be explained as turn-taking. Requester (R) initiates a re-
quest (R: Request) action and then is waiting for a particular promise (P: Promise) or 
a service provision (P: State) action from Performer (P). Request, Promise and Ac-
ceptance are typical coordination actions, which are triggered by the corresponding 
types of basic events. Coordination events are always related to some specific produc-
tion event. Both coordination and production events can be combined together into 



 
 
 
 
scenarios, which represent an expected sequence of interactions between requester 
and performer. We will show how creation, termination or reclassification constructs 
of the SICM method can be used to define the new facts, which result from the main 
types of events of the basic transaction pattern [7]. Four basic events and related re-
classification effects are represented in figure 8. 
 

 

 
Fig.8. The basic pattern of a transaction 

 
New facts resulting from four basic events are instantiated by such classes of objects 
as Request, Promise, Stated Result and Accepted Result. Two interaction loops be-
tween Requester and Performer of the basic transaction pattern are composed togeth-
er. A promise is created in the first interaction loop. It can be consumed in the next 
interaction loop. Created or terminated objects and their properties are interpreted as 
facts, which represent requests, promises and statements about delivered or accepted 
results. For instance, the Create Reservation action in figure 6 can be interpreted as a 
Hotel’s promise to Provide Hotel Room. Request Room and Create Reservation are 
typical coordination actions, which can be viewed as triggering events for a corre-
sponding production action.  
 Two interaction loops, which are illustrated in figure 9, represent one example of 
the basic pattern of a transaction. It is obvious from the presented example that the 
Provide Hotel Room business event is viewed as a production event. It creates effects, 
which can be associated with the transition P: State in the conversation schema (see 
figure 8). Production event creates the new fact of Stated Result. For example, an 
Assigned Hotel Room is supposed to create a value for a Room Guest. 
 



 
 
 
 
 

 
 

 
Fig.9. Example of the basic transaction pattern  

 
It is often the case in practice that the promise or acceptance actions are missing, 
because they are performed tacitly. For instance, the Create Reservation and Accept 
Room actions are missing in the following service interaction loop:  
 If Request Room(Room Guest Hotel)  
 then Provide Hotel Room(Hotel  Room Guest).  
 The pattern, which is illustrated in figure 8, defines the case when service re-
quester and performer are consenting to each other’s communication actions. For a 
communication action to be successfully performed an agent initiates the interaction 
flow and a recipient agrees to accept it. An enterprise system can be analyzed as the 
composition of the autonomous interacting components, which may not necessarily 
consent with each other. Actors can be involved in various interaction loops, because 
they want to get rid of problems or to achieve their goals. Goals, problems and oppor-
tunities [14] may help to understand why different actors act, react or not act at all. 
For instance, an agent may be not interested to initiate any interaction, or a recipient 
may refuse to accept the interaction flow. There are many other alternative business 
events [7], which may take be superimposed on the basic transaction pattern.  

6 Alternative Interaction Loops  

Alternative interaction loops should be introduced to handle possible breakdowns in 
the basic interaction pattern. These alternatives are represented by such reclassifica-
tion actions as Reject and Decline in the standard pattern of a transaction. The alterna-
tive actions are necessary for actors involved in the business process to deal with 
unexpected situations. For instance, a performer may fail to deliver a desired result on 
time. A performer may experience difficulties in satisfying a request. For example, 



 
 
 
 
Hotel Reservation System may Reject Request, because the request requirements 
were simply incorrect or incomplete. Instead of promising, the performer may re-
spond by rejecting request. Requester may also express disappointment in stated re-
sult and decline it. Decline is represented by the termination of Stated Result and 
creation of Declined Result object. For instance, the Hotel Guest may decline the 
assigned hotel room, which was assigned by the Provide Hotel Room action. The 
basic transaction pattern can be supplemented with two dissent patterns, which are 
represented in figure 10. This extended schema is known as the standard pattern [7]. 
  

 
Fig.10. The standard transaction pattern 

 
Alternative actions can be represented by different reclassification, creation or termi-
nation events with the same object. For example, Request can be either reclassified to 
Promise or to Rejection. It means that Promise and Reject actions are exclusive. The 
creation of Promise or creation of Rejection object can only be performed once. The 
alternative actions must be introduced to handle the breakdowns in the main interac-
tion pattern. For instance, the normal Reserve Room use-case scenario can be accom-
plished if and only if one or more desirable types of rooms are available for the re-
quired period of stay. This flow of events would fail when there are no available 
rooms, which can be offered. The alternative flow is inserted when the normal flow of 
events fails. The Handle Waiting List use-case represents such alternative, which can 
be described as follows:  
 1) If desirable type of room is not available (failure to offer at least one available 
room), then the Hotel Reservation System offers waiting list possibility.  
 2) If customer rejects waiting, then the Hotel Reservation System declines hotel 
reservation request by Reject Request action.  
 3) If customer accepts waiting, then the system puts customer on a waiting list 
and preserves information about his Hotel Reservation Request.  



 
 
 
 
 

 
 

Two different alternatives for handling a Hotel Reservation Request are represented in 
figure 11 by Reject Request and Handle Waiting List actions.  
 

 
Fig.11. Two alternatives of handling Hotel Reservation Request 

 
Create Reservation action is an event of the expected scenario. It can be performed 
successfully on a condition that Hotel Reservation is created. Possibility of failure to 
compose the Hotel Reservation of at least one Hotel Room[Reserved] would cause a 
breakdown in the basic transaction pattern, which requires the definition of at least 
one alternative event. The first alternative is represented by Handle Waiting List ac-
tion, which defines the reclassification effects of Hotel Reservation Request object. 
The second alternative is the termination of Hotel Reservation Request by Reject 
Request action. This option may be caused by a failure of the Handle Waiting List 
action. Please note that Customer[On Waiting List] object can be created just in case 
the Customer agrees to Accept Waiting in the underlying interaction loop.   
 In practice, it is also common that either requester or performer is willing to com-
pletely revoke some events. For example, the requester may withdraw his own re-
quest. There are four cancellation patterns [7], which may lead to partial or complete 
rollback of a transaction. Every cancellation action can be performed if the corre-
sponding fact exists. For instance, the Withdraw Request action can be triggered, if a 
request was created by the Request action. In our example, Withdraw Request action 
is missing. Nevertheless, it is reasonable and should be introduced. The possibility to 
superimpose four cancellation patters on the standard pattern is not the only ad-
vantage of the presented modeling approach. The SICM method has sufficient expres-



 
 
 
 
sive power to cover the other special cases, which are not matching the standard pat-
tern and four cancellation patterns. For instance, it is unclear how the methodology 
for design and engineering of organizations [7] would cope with the Handle Waiting 
List alternative, which is represented in figure 11. This option is also excessive in 
comparison with all legal transitions, which are defined by the conversation for action 
schema [18].  

7 Concluding Remarks 

The goal of this paper was to demonstrate the advantages of conceptual modeling 
approach, which allows introducing evolutionary extensions of use-case scenarios. 
We have demonstrated how use-case narrative descriptions can be replaced by graph-
ical representations. Integrated conceptual modeling method was used to visualize 
event flows in terms of underlying, sequential and alternative interaction loops, which 
are fundamental elements for composition of use-cases scenarios. Elementary interac-
tion loops are important for system architects to construct scenarios, which have an 
understandable structure. The networks of interaction loops may span across several 
organizations or partnerships. Each interaction loop can be analyzed separately as it is 
required by the principle of separation of concerns. In such a way, interaction loops 
provide a natural way of decomposition of use-case scenarios.  
 Introducing underlying interaction loops allows system designers to meet evolving 
needs of stakeholders and to avoid scenario breakdowns, which can be viewed as 
hidden requirements defects. The breakdowns in the main scenario can be eliminated 
by introducing the alternative actions, which are necessary to deal with failures. The 
presented way of interaction loop composition suggests a flexible way for managing 
the complexity of conceptual representations. We have demonstrated by examples 
some basic principles of a non-traditional conceptual modeling approach, which al-
lows designers to visualize and to analyze semantic integrity between conceptual 
representations of use-case scenarios. The advantage of such conceptual representa-
tions is that interaction loops can be gradually enhanced or effectively replaced on 
demand.  
 Semantic integrity problems in the early system development stages are one 
source of errors, because use-case descriptions touch several classes. It is very diffi-
cult to achieve semantic integrity between the static and dynamic aspects of complex 
scenarios, because the conventional conceptual modeling methods are developed for 
analyzing business processes and business data in isolation. Most graphical modeling 
techniques are not flexible for the visualization of interplay among behavioral, inter-
active aspects and structural changes of objects. It was also demonstrated how se-
quential, iterative, parallel and alternative behavior is captured by identifying the 
transition dependencies between classes in various interaction loops. Separation of 
concerns is achieved by decomposing complex scenarios into simple underlying 
loops, which can be analyzed in isolation. The presented graphical descriptions of 
scenarios are easier to understand, extend and maintain.  
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