
A Method for Conceptual Modeling of
Semantically Integrated Use-case Scenarios

Remigijus Gustas and Prima Gustiene

Department of Information Systems, Karlstad University, Sweden

{Remigijus.Gustas, Prima.Gustiene}@kau.se

Abstract. A use-case is specified as a set of possible scenarios of interactions.
Scenarios can be decomposed into workflows on different granularity levels.
Use-cases are fundamentally a text-based documentation form written in natural
language text. The textual description of a complicated scenario can be ambig-
uous, incomplete and inconsistent. In this paper we demonstrate a conceptual
modeling method for representing use-case descriptions by using a graphical
language. Simple interaction loops are viewed as fundamental elements for
composition of scenarios. Each interaction loop is analyzed separately and
therefore it provides a natural way of decomposition. Modeling of overlaying
interaction flows between organizational and technical components enables
separation of crosscutting concerns in system engineering without requirement
to specify a complete solution. The goal of this paper is to demonstrate the ad-
vantages of conceptual modeling approach, which allows to introduce evolu-
tionary extensions and to construct use-case scenarios with a comprehensible
structure.

Keywords: Interaction dependencies, separation of concerns, basic pattern of a
transaction, interaction loops, scenarios.

1 Introduction

Use-cases are a way to capture requirements. It is the form of requirements engineer-
ing [1]. According to Cockburn [2] a use-case is a description of the possible se-
quences of interactions between the system and its external actors. Each sequence of
interaction events can be viewed as a scenario. Every use-case contains a set of possi-
ble scenarios related to the goal of a primary actor. Historically use-cases descriptions
are written as text-based documentation. Natural language is verbose and flexible to
use in conversations, but it is really problematic when it comes to system modeling as
natural language is notoriously ambiguous in its meaning [3]. Especially, complex
scenarios may result in ambiguous, incomplete and inconsistent textual descriptions.
 According to Jacobson [4], use-cases can be seen as different stakeholders con-
cerns, which are important to understand while exploring and collecting the require-
ments for the system. Very often a certain concern is spread across multiple compo-
nents. It means that the realization of functional requirements, which are usually
specified as use-cases can cut across multiple components. Inability to keep crosscut-

ting concerns separate causes problems for system designers when the requirements
are modified. The designer must identify all related components and to find out how
these components are affected by introduced changes. Especially, modifying the re-
quirements, which are related to a big number of diagrams, is quite problematic. Poor
understanding of crosscutting concerns makes it difficult to make even simple evolu-
tionary extensions of information system (IS) specifications.
 The scope of scenario can vary. It may include all business events, or it may in-
clude just some events, which are of interest to one specific actor. Scenarios can be
used to define workflows on different granularity levels. Our studies indicate that
simple interaction loops [5] can be viewed as fundamental elements for the composi-
tion of scenarios. Each interaction loop can be analyzed separately as it is required by
the principle of separation of concerns. In such a way, interaction loops provide a
natural way of decomposition. Two related loops can be used for analyzing integrity
between static and dynamic aspects of some scenario. They are also useful as a con-
cern composition mechanism. A scenario is an excellent means for describing the
order of interactions. It can be conceptualized as a combination of several loops be-
tween a set of loosely coupled actors.
 Use-cases can be described on different levels of abstraction and they can be com-
bined into scenarios in various ways. In the object-oriented modeling approaches, a
scenario is typically specified by a textual narrative description. A textual description
of a complicated scenario can be incomplete and inconsistent with other representa-
tions. One of the goals of this paper is to demonstrate how use-case scenarios can be
expressed by using Semantically Integrated Conceptual Modeling (SICM) method
[6]. This approach puts into a foreground the modeling of interactions [7] among
actors [8]. Interaction dependencies are used to preserve the modularity of concerns
and to integrate behavioral effects with structural changes in various classes of ob-
jects.
 Use-cases can be viewed as slices, which are analogous to overlays. Such overlays
can be stacked on top of each other. In this way, overlays can be understood as a
concern separation technique [4]. Use-case slices define the behavior that extends the
element structure. So, it looks like use-case composition mechanism and concern
separation principles are quite obvious. However, introducing evolutionary changes,
which are related to a big number of diagrams, is quite problematic in object-oriented
approach using Unified Modeling Language (UML). It is common to all system anal-
ysis and design methods to separate disparate views [9], because a human mind al-
lows focusing on a particular type of diagram at a time. Designers are typically deal-
ing with one type of diagram, which defines behavioral, interactive or structural
aspects of a system in isolation. Therefore, it is difficult to take into account semantic
dependencies between the static and dynamic aspects related to a particular concern in
a very early modeling phase. That is why most conventional IS design methods are
not so useful for the detection of inconsistency or incompleteness in various use-cases
specifications. In this paper, we will demonstrate how interaction dependencies can be
used to construct unambiguous graphical descriptions of scenarios with sequential,
iterative, synchronized and alternative behavior. Most of information system method-
ologies are quite weak in representing the alternative scenarios and the consequences
if commitments between actors are broken.

2 Use-Case Descriptions

Use-case diagrams can be produced in two steps. The first task of the system analyst
or project team member is writing use-case descriptions by using a natural language
text. The second task is to translate the use-case descriptions into use-case diagrams.
A use-case description should contain all needed information for building other UML
diagrams. Unambiguity of use-case descriptions is important to validate the semantic
integrity of the diagrams. The problem is that the narrative text, which defines flows
of events of different use-cases, can be ambiguous, incomplete and inconsistent.
There are three types of event flows, which are documented for a use-case: 1) Normal
flow of events, 2) Subflows, and 3) Alternate flows.
 A use-case can be understood as a transaction. Any transaction can be analyzed as
a simple workflow loop [5], which captures service value exchange between two or
more parties. Both requests and responses are viewed as necessary business events.
According to Ferrario and Guarino [10], service interactions are not objects or prod-
ucts, they are events. Service responses cannot be delivered without initiating service
requests. A response can be viewed in a number of ways. It can be represented by a
promise to deliver a desirable result to service requester or it can be viewed as state-
ment, which brings a desired value flow [11] to service requester. Any workflow loop
indicates that service provider receives service request and transforms it into service
response. Service requester, request, service provider and response are minimal set of
elements for defining any type of a service interaction loop. It is illustrated graphical-
ly in figure 1.

Fig.1. Basic interaction loop

The presented elementary interaction loop is a basic element, which can be used in a
very early conceptual modeling phase for separation of concerns in information sys-
tem analysis and design. Two loosely coupled actors will be represented by the fol-
lowing expression [12]:
 If Request(Service Requester Service Provider)
 then Response(Service Provider  Service Requester).
We will demonstrate the conceptualization of normal flow of events and alternate
flows for the slightly modified case study example, which was analyzed by Jacobson
and Ng [4]. In this example, the Reserve Room use-case is extended by the Handle
Waiting List use-case. Both use-cases are represented in figure 2.

Fig.2. Example of use-case diagram

The Reserve Room use-case scenario can be graphically defined by two interaction
loops between Customer and Hotel Reservation System. The primary interaction loop
is composed of the underlying interaction loop. Both loops of the Reserve Room use-
case scenario are graphically defined in figure 3.

Fig.3. Elementary interaction loops of the Reserve Room use-case

The presented service requesters and service providers are actors. Actors are active
concepts, which can only be motivated by a set of interaction dependencies that keep
the enterprise system viable. Interaction dependency R(AB) indicates that actor
A is an agent, which can perform action R on one or more recipients B. Interaction
dependencies in the diagrams are graphically indicated by broken arrows. Broken
arrows denote moving flows between actors such as information, decisions or materi-
als. Actors are represented by square rectangles and actions are represented by ellip-
ses. All actions are used to show the legal ways in which actors interact with each
other. The first interaction loop (it is graphically represented in figure 3,a) cannot be
executed without triggering the underlying interaction loop on the more specific gran-
ularity level (figure 3,b). The second interaction loop is initiated by the Hotel Reser-
vation System.
 Use-case scenarios are conceptualized by identifying the flow of interaction
events. Each event makes about the same amount of progress towards completion of a
use-case. The equivalent narrative text of the Reserve Room use-case normal flow of
events (see figure 3) can be described as follows:
1) The Customer requests room by entering the specific room requirements (includ-
ing the desired period of stay),
2) The Hotel Reservation System offers various available rooms with different rates,

3) The Customer selects the available room and enters the required information about
an expected room guest. This step can be repeated several times. It means that more
than one room can be selected,
4) The Hotel Reservation System creates reservation with the details of all selected
hotel rooms, displays reservation information to the Customer and consumes the
selected types of available room.
 Both graphical and textual descriptions in essence define the Reserve Room use-
case as the flow of interaction events. Events are identified by using two kinds of
guidelines as far as the syntactic and semantic structure of sentence is concerned. The
syntactic guideline has something to do with the form of sentence. Each individual
event should be expressed as subject-verb-object and, optionally, preposition-indirect
object [13]. Such constructions are useful in identifying actors, operations and classes.
The second set of guidelines is related to the semantic roles various concepts play in
the sentences. Normally, each event should define the requester or performer of the
action. The use of request–response type of sentences results in user-centered re-
quirements documentation that can be useful for user training and testing. If the use-
case description is too complex, it should be decomposed into a set of more simple
flows. Subflows or alternate flows can be used for this purpose.

3 The Basic Constructs of SICM Approach

Event flows can be defined in terms of essential interactions between organizational
or technical components. Technical components correspond to enterprise subsystems
such as machines, software and hardware. Organizational components can be humans,
organizations, their divisions or roles, which denote the groups of people. Interaction
dependencies among actors are important for the separation of crosscutting concerns.
By following interaction dependencies, it is possible to explore various ways in which
enterprise system components are used. Event flows can be analyzed as a set of work-
flow loops [5]. A workflow loop in SICM method [14] is considered as a basic ele-
ment of scenario, which describes interplay between service requesters and service
providers. In its simplest form, any workflow loop is viewed as a response to request
that creates promise or provides a value to service requester.
 Interaction dependencies are extensively used in a foreground of enterprise engi-
neering methods [7]. These methods are rooted in the interaction pattern analysis and
philosophy of language. The purpose of introducing them was initially motivated by
the idea of creation computer-based tools for conducting conversations. The goal of
this paper is different. We are going to demonstrate how to apply the interaction de-
pendencies in combination with the set of semantic dependencies, which can be used
for the graphical description of use-case scenarios. The sequences of interaction
events are crucial for analyzing scenarios, which are expressed in terms of requests
and responses between actors. For example, Create Reservation action can be viewed
as a promise in connection to Request Room action.

 Behavioral and structural aspects of interactions can be analyzed in terms of their
reclassification, creation or termination effects. When two subsystems interact one
may affect the state of each other [15]. Structural changes of objects are defined in
terms of object properties [16]. Interaction dependency R(AB) between two
active concepts A and B indicates that A subsystem can perform action R on one or
more B subsystems. An action typically manipulates properties of objects. Otherwise,
this action is not purposeful. Property changes may trigger object transitions from one
class to another. The behavioral effects of communication actions are expressed by
using transition links (──) between various classes of objects. Reclassification of
object can be defined in terms of communication action that is terminating an object
in one class and creating it in another class. Sometimes, objects may pass several
classes, and then they are terminated. Graphical notation of the reclassification con-
struct is graphically represented in figure 4.

Fig.4. Graphical notation of reclassification

Unbroken arrows indicate control flow of creation and termination effects. Object
classes represent a persistent or transient set of objects. Fundamentally two kinds of
changes are possible during any reclassification: termination and creation of an ob-
ject. A creation is denoted by outgoing transition arrow to a post-condition class. A
termination action is represented by a transition dependency directed from a pre-
condition object class. Before an object can be terminated, it must be created. A pre-
condition class in the termination construct is understood as final. For instance, when
the Hotel Reservation Request is created, it can be reclassified to the Hotel Reserva-
tion by using Create Reservation action.
 Structural changes of objects are manifested via static and dynamic properties.
Dynamic properties are represented as actions, which are connected to classes by
creation and termination links. Static properties can be represented by the mandatory
attributes. The mandatory attributes are linked to classes by the single-valued or by
multi-valued attribute dependencies. One significant difference of the presented mod-
eling approach is that the association ends of static relations are nameless. The justifi-
cation of this way of modeling can be found in some other papers [12], [17]. Seman-
tics of static dependencies are defined by cardinalities, which represent a minimum
and maximum number of objects in one class (B) that can be associated with the ob-
jects in another class (A). Single-valued dependency is defined by the following car-
dinalities: (0,1;1,1), (0,*;1,1) and (1,1;1,1). Multi-valued dependency denotes either
(0,1;1,*) or (1,1;1,*) cardinality. Graphical notation of various static dependencies is
represented in figure 5.

Fig.5. Notation of static dependencies between concepts

The diagram presented in figure 3 does not provide any semantic details of control
flows between communication actions. It shows only the necessary events in a Room
Reservation scenario. The actions such as Request Room and Create Reservation
should also specify the acceptable ways for structural changes to occur in different
classes of objects. In general, communication actions can be sequential, iterative,
alternative or synchronized with the secondary workflow loops. Triggering conditions
of the secondary interaction loops may depend on the objects, which are created or
terminated in the overlaying interaction loops. Pre-condition and post-condition clas-
ses are crucial to understand the dynamic aspects of interactions. A created object in
one loop can be consumed in another. The creation and termination of objects allows
constructing scenarios, which are enclosing optional or mandatory workflows.
 Overlapping classes can be used to synchronize interaction loops together. For
instance, Create Reservation action terminates Hotel Reservation Request object,
which was created as a result of Request Room action, and creates Hotel Reservation
object. These creation and termination effects are graphically described in figure 6.

Fig.6. Overlaying description of the Reserve Room use-case scenario

The corresponding Hotel Reservation and Hotel Reservation Request objects are
composed of parts, which must be terminated and created at the same time. In this
way, creation and termination effects define constraints on various types of objects in
sending and receiving interaction flows between actors. Inheritance, composition and
mandatory attribute dependencies can be used for reasoning about the consequences
of object creation and termination effects. According to the conceptual modeling rules
[6], the creation of Hotel Reservation is causing creation of at least one Hotel

Room[Reserved] and expected Guest. It should be noted that the semantic power of
UML object flow and sequence diagrams combined together is not sufficient for cap-
turing the equivalent effects.

4 Composition of Interaction Loops

Elementary interaction loops can be viewed as fundamental elements for defining
scenarios [17]. Graphical representation of scenario is an excellent means for describ-
ing the order of interactions. More specific underlying interaction loops can be ana-
lyzed in the context of the overlaying loops on higher granularity levels as it is re-
quired by the principle of separation of concerns. It means that the scope of scenario
can vary. A scenario may include just some events, which are of the interest to one
specific actor. However, it can naturally be linked to all other overlaying business
events. The natural language descriptions of such complex use-case scenarios require
a lot of supplementary information, which specifies pre-conditions, post-conditions
and other special constrains for inserting subflows into main flow of events. In this
section, we demonstrate how to construct the graphical descriptions of scenarios with
a more comprehensible structure.
 The Reserve Room use-case scenario can be graphically defined by a number of
interaction loops between Customer and Hotel Reservation System. The primary
interaction loop (see figure 6) can be viewed as an overlay of secondary loop on more
specific granularity level. Composition of two interaction loops of Reserve Room use-
case scenario is presented in figure 7.

Select

Hotel Room

Available
Customer

Offer
Rooms Available Hotel

Rooms

Hotel
Reserva-

tion System

Room Guest
Data

Hotel
Reservation

Hotel Room

Reserved

Customer

Room
Requirements

Request
Room

Hotel Reservation
Request

Hotel
Reserva-

tion System

Create
Reservation

Reservation

Customer

Type of Room

Desirable

Customer

Identified

Offer

Guest

Fig.7. Integrated conceptual representation of the Reserve Room scenario

The primary loop of the Reserve Room use-case is synchronized with the underlying
interaction loop. It defines the functionality of offering and selecting available hotel
rooms. The underlying interaction loop is as follows:
 If Offer Rooms(Hotel Reservation System Customer)
 then Select(Customer  Hotel Reservation System).
According to the presented control flow, the Select room action cannot be triggered
prior to Offer Rooms action. Select action can only be performed in parallel with the
Create Reservation action, because the creation of Hotel Reservation is synchronized
with the creation of its compositional part Hotel Room[Reserved]. The termination of
Hotel Reservation Request is synchronized with the reclassification of Type of
Room[Desirable] to Offer, which is composed of at least one Hotel Room [Availa-
ble].
 A simple interaction loop between service requester and provider in the SICM
method is viewed as the basic element of any communication process [5]. Interaction
loops may be composed together into more complex interaction webs by using crea-
tion and termination links. If the object transition effects cannot be conceptualized by
using pre-condition or post-condition classes, then the communication action is not
purposeful. Interaction dependencies without purposeful actions make no sense and
should be eliminated. The modeling of interactions and object transition effects to-
gether is critical for reaching semantic integrity among static and dynamic aspects of
IS specifications. In the presented example, object creation, termination and reclassi-
fication effects show very important semantic details of unambiguous scenario in
which two interaction loops are composed together. The more specific workflow loop
is underlying the primary interaction loop. The underlying loop is required for the
selection of desirable room type and for providing necessary data about guest. Under-
lying loops can be mandatory or optional. By following the interaction dependencies
between actors, designers are able to understand the creation and termination effect in
various classes of objects. In this way, the transition links are used to capture the
dynamic dependencies between interaction loops.

5 Bridging from SICM constructs to the Basic Pattern of a Transaction

Interaction dependencies are successfully used in the area of enterprise engineering
[7]. Our intention is to apply the interaction dependencies in combination with the
conventional semantic relations, which are used in the area of system analysis and
design. Interaction loops can be expressed by interplay of coordination or production
events, which appear to occur in a particular pattern. The idea behind a conversation
for action schema [18] can be explained as turn-taking. Requester (R) initiates a re-
quest (R: Request) action and then is waiting for a particular promise (P: Promise) or
a service provision (P: State) action from Performer (P). Request, Promise and Ac-
ceptance are typical coordination actions, which are triggered by the corresponding
types of basic events. Coordination events are always related to some specific produc-
tion event. Both coordination and production events can be combined together into

scenarios, which represent an expected sequence of interactions between requester
and performer. We will show how creation, termination or reclassification constructs
of the SICM method can be used to define the new facts, which result from the main
types of events of the basic transaction pattern [7]. Four basic events and related re-
classification effects are represented in figure 8.

Fig.8. The basic pattern of a transaction

New facts resulting from four basic events are instantiated by such classes of objects
as Request, Promise, Stated Result and Accepted Result. Two interaction loops be-
tween Requester and Performer of the basic transaction pattern are composed togeth-
er. A promise is created in the first interaction loop. It can be consumed in the next
interaction loop. Created or terminated objects and their properties are interpreted as
facts, which represent requests, promises and statements about delivered or accepted
results. For instance, the Create Reservation action in figure 6 can be interpreted as a
Hotel’s promise to Provide Hotel Room. Request Room and Create Reservation are
typical coordination actions, which can be viewed as triggering events for a corre-
sponding production action.
 Two interaction loops, which are illustrated in figure 9, represent one example of
the basic pattern of a transaction. It is obvious from the presented example that the
Provide Hotel Room business event is viewed as a production event. It creates effects,
which can be associated with the transition P: State in the conversation schema (see
figure 8). Production event creates the new fact of Stated Result. For example, an
Assigned Hotel Room is supposed to create a value for a Room Guest.

Fig.9. Example of the basic transaction pattern

It is often the case in practice that the promise or acceptance actions are missing,
because they are performed tacitly. For instance, the Create Reservation and Accept
Room actions are missing in the following service interaction loop:
 If Request Room(Room Guest Hotel)
 then Provide Hotel Room(Hotel  Room Guest).
 The pattern, which is illustrated in figure 8, defines the case when service re-
quester and performer are consenting to each other’s communication actions. For a
communication action to be successfully performed an agent initiates the interaction
flow and a recipient agrees to accept it. An enterprise system can be analyzed as the
composition of the autonomous interacting components, which may not necessarily
consent with each other. Actors can be involved in various interaction loops, because
they want to get rid of problems or to achieve their goals. Goals, problems and oppor-
tunities [14] may help to understand why different actors act, react or not act at all.
For instance, an agent may be not interested to initiate any interaction, or a recipient
may refuse to accept the interaction flow. There are many other alternative business
events [7], which may take be superimposed on the basic transaction pattern.

6 Alternative Interaction Loops

Alternative interaction loops should be introduced to handle possible breakdowns in
the basic interaction pattern. These alternatives are represented by such reclassifica-
tion actions as Reject and Decline in the standard pattern of a transaction. The alterna-
tive actions are necessary for actors involved in the business process to deal with
unexpected situations. For instance, a performer may fail to deliver a desired result on
time. A performer may experience difficulties in satisfying a request. For example,

Hotel Reservation System may Reject Request, because the request requirements
were simply incorrect or incomplete. Instead of promising, the performer may re-
spond by rejecting request. Requester may also express disappointment in stated re-
sult and decline it. Decline is represented by the termination of Stated Result and
creation of Declined Result object. For instance, the Hotel Guest may decline the
assigned hotel room, which was assigned by the Provide Hotel Room action. The
basic transaction pattern can be supplemented with two dissent patterns, which are
represented in figure 10. This extended schema is known as the standard pattern [7].

Fig.10. The standard transaction pattern

Alternative actions can be represented by different reclassification, creation or termi-
nation events with the same object. For example, Request can be either reclassified to
Promise or to Rejection. It means that Promise and Reject actions are exclusive. The
creation of Promise or creation of Rejection object can only be performed once. The
alternative actions must be introduced to handle the breakdowns in the main interac-
tion pattern. For instance, the normal Reserve Room use-case scenario can be accom-
plished if and only if one or more desirable types of rooms are available for the re-
quired period of stay. This flow of events would fail when there are no available
rooms, which can be offered. The alternative flow is inserted when the normal flow of
events fails. The Handle Waiting List use-case represents such alternative, which can
be described as follows:
 1) If desirable type of room is not available (failure to offer at least one available
room), then the Hotel Reservation System offers waiting list possibility.
 2) If customer rejects waiting, then the Hotel Reservation System declines hotel
reservation request by Reject Request action.
 3) If customer accepts waiting, then the system puts customer on a waiting list
and preserves information about his Hotel Reservation Request.

Two different alternatives for handling a Hotel Reservation Request are represented in
figure 11 by Reject Request and Handle Waiting List actions.

Fig.11. Two alternatives of handling Hotel Reservation Request

Create Reservation action is an event of the expected scenario. It can be performed
successfully on a condition that Hotel Reservation is created. Possibility of failure to
compose the Hotel Reservation of at least one Hotel Room[Reserved] would cause a
breakdown in the basic transaction pattern, which requires the definition of at least
one alternative event. The first alternative is represented by Handle Waiting List ac-
tion, which defines the reclassification effects of Hotel Reservation Request object.
The second alternative is the termination of Hotel Reservation Request by Reject
Request action. This option may be caused by a failure of the Handle Waiting List
action. Please note that Customer[On Waiting List] object can be created just in case
the Customer agrees to Accept Waiting in the underlying interaction loop.
 In practice, it is also common that either requester or performer is willing to com-
pletely revoke some events. For example, the requester may withdraw his own re-
quest. There are four cancellation patterns [7], which may lead to partial or complete
rollback of a transaction. Every cancellation action can be performed if the corre-
sponding fact exists. For instance, the Withdraw Request action can be triggered, if a
request was created by the Request action. In our example, Withdraw Request action
is missing. Nevertheless, it is reasonable and should be introduced. The possibility to
superimpose four cancellation patters on the standard pattern is not the only ad-
vantage of the presented modeling approach. The SICM method has sufficient expres-

sive power to cover the other special cases, which are not matching the standard pat-
tern and four cancellation patterns. For instance, it is unclear how the methodology
for design and engineering of organizations [7] would cope with the Handle Waiting
List alternative, which is represented in figure 11. This option is also excessive in
comparison with all legal transitions, which are defined by the conversation for action
schema [18].

7 Concluding Remarks

The goal of this paper was to demonstrate the advantages of conceptual modeling
approach, which allows introducing evolutionary extensions of use-case scenarios.
We have demonstrated how use-case narrative descriptions can be replaced by graph-
ical representations. Integrated conceptual modeling method was used to visualize
event flows in terms of underlying, sequential and alternative interaction loops, which
are fundamental elements for composition of use-cases scenarios. Elementary interac-
tion loops are important for system architects to construct scenarios, which have an
understandable structure. The networks of interaction loops may span across several
organizations or partnerships. Each interaction loop can be analyzed separately as it is
required by the principle of separation of concerns. In such a way, interaction loops
provide a natural way of decomposition of use-case scenarios.
 Introducing underlying interaction loops allows system designers to meet evolving
needs of stakeholders and to avoid scenario breakdowns, which can be viewed as
hidden requirements defects. The breakdowns in the main scenario can be eliminated
by introducing the alternative actions, which are necessary to deal with failures. The
presented way of interaction loop composition suggests a flexible way for managing
the complexity of conceptual representations. We have demonstrated by examples
some basic principles of a non-traditional conceptual modeling approach, which al-
lows designers to visualize and to analyze semantic integrity between conceptual
representations of use-case scenarios. The advantage of such conceptual representa-
tions is that interaction loops can be gradually enhanced or effectively replaced on
demand.
 Semantic integrity problems in the early system development stages are one
source of errors, because use-case descriptions touch several classes. It is very diffi-
cult to achieve semantic integrity between the static and dynamic aspects of complex
scenarios, because the conventional conceptual modeling methods are developed for
analyzing business processes and business data in isolation. Most graphical modeling
techniques are not flexible for the visualization of interplay among behavioral, inter-
active aspects and structural changes of objects. It was also demonstrated how se-
quential, iterative, parallel and alternative behavior is captured by identifying the
transition dependencies between classes in various interaction loops. Separation of
concerns is achieved by decomposing complex scenarios into simple underlying
loops, which can be analyzed in isolation. The presented graphical descriptions of
scenarios are easier to understand, extend and maintain.

References

1. Arlow, J. and I. Neustadt, UML 2 and the Unified Process. Practical object-oriented analy-
sis and design. 2009: Pearson Education, Inc.

2. Cockburn, A., Writing Effective Use Cases. 2001, Boston: Addison- Wesley.
3. Miles, R. and K. Hamilton, Learning UML 2.0. 2006, Sebastopol, CA: O'Reilly.
4. Jacobson, I. and P.-W. Ng, Aspect-Oriented Software Development with Use Cases. 2005,

New Jersey: Pearson.
5. Denning, P.J. and R. Medina-Mora, Completing the Loops. Interfaces, 1995. 25(3): p. 42-

57.
6. Gustas, R., Modeling Approach for Integration and Evolution of Information System Con-

ceptualizations. International Journal of Information Systems Modeling and Design, 2011.
2(1): p. 45-73.

7. Dietz, J., Enterprise Ontology: Theory and Methodology. 2006, Berlin: Springer. 256.
8. Wagner, G., The Agent-Object-Relationship Metamodel: Towards a Unified View of State

and Behavior. Information Systems 2003. 28(5).
9. Zachman, J.A., A Framework for Information Systems Architecture. IBM System Journal,

1987. 26(3): p. 276-292.
10. Ferrario, R. and N. Guarino, Towards an Ontological Foundation for Service Science, in

Future Internet-FIS2008:The First Internet Symposium, FIS 2008 Vienna, Austria. Revised
Selected Papers. 2008, Springer: Berlin. p. 152-169.

11. Gordijn, J., H. Akkermans, and H. van Vliet, Business Modelling is not Process Modelling,
in Conceptual Modeling for E-business and the Web. 2000, Springer: Berlin. p. 40-51.

12. Gustas, R., Conceptual Modeling and Integration of Static and Dynamic Aspects of Service
Architectures, in International Workshop on Ontology, Conceptualization and Epistemology
for Information Systems, Software Engineering and Service Sciences. 2010, Springer:
Hammamet, Tunisia. p. 17-32.

13. Dennis, A., B. Wixom, and D. Tegarden, System Analysis and Design with UML. An Ob-
ject-Oriented Approach. Third edition ed. 2010: John Wiley & Sons.

14. Gustas, R. and P. Gustiené, Pragmatic - Driven Approach for Service-Oriented Analysis
and Design, in Information Systems Engineering: From Data Analysis to Process Networks,
P. Johannesson and E. Söderström, Editors. 2008, IGI Global: New York. p. 97-128.

15. Evermann, J. and Y. Wand, Ontology Based Object-Oriented Domain Modeling: Represent-
ing Behavior. Journal of Database Management, 2009. 20(1): p. 48-77.

16. Bunge, M.A., Treatise on Basic Philosophy: A World of Systems Ontology II. Vol. 4 1979,
Dordrecht: D. Reidel.

17. Gustas, R., Overlaying Conceptualizations for Managing Complexity of Scenario Specifica-
tions, in IFIP WG8.1 Working Conference on Exploring Modeling Methods for System
Analysis and Design. 2011: London, UK.

18. Winograd, T. and F. Flores, Understanding Computers and Cognition: A New Foundation
for Design. 1986, Norwood: Ablex.

