
Consumer Side Resource Accounting in the
Cloud

Ahmed Mihoob, Carlos Molina–Jimenez and Santosh Shrivastava

School of Computing Science, Newcastle University
Newcastle upon Tyne, NE1 7RU, UK

{a.m.mihoob, carlos.molina, santosh.shrivastava}@ncl.ac.uk

Abstract. The paper investigates the possibility of consumer side re-
source accounting of cloud services, meaning, whether it is possible for a
consumer to independently collect all the resource usage data required for
calculating billing charges for pay-per-use cloud services. The account-
ing models of two widely used cloud services are examined and possible
sources of difficulties are identified, including causes that could lead to
discrepancies between the metering data collected by the consumer and
the provider. The investigation is motivated by the fact that cloud ser-
vice providers perform their own measurements to collect usage data,
but as yet there are no equivalent facilities of consumer-trusted meter-
ing that are commonly provided by utility service providers like gas and
electricity. The paper goes on to suggest how cloud service providers can
improve their accounting models to facilitate the task of consumer side
resource accounting.

Keywords: cloud resource consumption, storage and computational re-
sources, resource metering and accounting models, Amazon Web Services

1 Introduction

Cloud computing services made available to consumers range from providing
basic computational resources such as storage and compute power (infrastructure
as a service, IaaS) to sophisticate enterprise application services (software as a
service SaaS) A common business model is to charge consumers on a pay-per-
use basis where they periodically pay for the resources they have consumed.
Needless to say that for each pay-per-use service, consumers should be provided
with an unambiguous resource accounting model that precisely describes all
the constituent chargeable resources of the service and how billing charges are
calculated from the resource usage (resource consumption) data collected on
behalf of the consumer over a given period. If the consumers have access to
such resource usage data then they can use it in many interesting ways, such as,
making their applications billing aware, IT budget planning, create brokering
services that automate the selection of services in line with user’s needs and
so forth. Indeed, it is in the interest of the service providers to make resource
consumption data available to consumers; incidentally all the providers that we
know of do make such data accessible to their consumers in a timely fashion.

An important issue that is raised is the accountability of the resource us-
age data: who performs the measurement to collect the resource usage data -
the provider, the consumer, a trusted third party (TTP), or some combination
of them1? The traditional utility providers such as water, gas and electricity
perform their own measurements to collect usage data using metering devices
(trusted by consumers) that are deployed in the consumers premises. Cloud
service providers also perform their own measurements to collect usage data,
although, as yet there are no equivalent facilities of consumer-trusted metering;
rather, consumers have no choice but to take whatever usage data that is made
available by the provider as trustworthy. A good introduction into the underlying
trust issues can be found in [12].

In light of the above discussion, it is worth investigating whether it is possible
for a consumer (or a TTP acting on behalf of the consumer) to independently
collect all the resource usage data required for calculating billing charges. In
effect, this means that a consumer (or a TTP) should be in a position to run
their own metering service for measuring resource consumption. If this were
possible, then consumers will be able to perform reasonableness checks on the
resource usage data available from service providers as well as raise alarms when
apparent discrepancies are suspected in consumption figures; furthermore, inno-
vative charging schemes can be constructed with confidence by consumers who
are themselves offering third party brokering services. In our earlier paper [11],
we developed the notion of a Consumer–centric Resource Accounting Model for
a cloud service. We say that a resource accounting model is weakly consumer–
centric if all the data that the model requires for calculating billing charges can
be queried programmatically from the provider. Further, we say that an account-
ing model is strongly consumer–centric if all the data that the model requires for
calculating billing charges can be collected independently by the consumer (or
a TTP). Strongly consumer–centric accounting models have the desirable prop-
erty of openness and transparency, since service users are in a position to verify
the charges billed to them. That paper also evaluated the accounting model of
Simple Storage Service, S3 from Amazon to see how well it matches the proposed
notion.

This paper contributes to the prior work in three ways: (i) the evaluation
work on accounting models is extended to include a compute service (Amazon
Elastic Compute Cloud, EC2) and we point out a few ambiguities in the EC2
model description (Section 3); (ii) we precisely identify the causes that could
lead to discrepancies between the metering data collected by the provider and
the consumer, and whether the discrepancies can be resolved (Section 4); and
(iii) we present ideas on how an accounting model should be constructed so as
to make them strongly consumer–centric (Section 5).

1 A note on terminology: ’accountability’ refers to concepts such as responsibility,
answerability, trustworthiness; not to be confused with ’resource accounting’ that
refers to the process concerned with calculating financial charges.

2 Background

For resource accounting it is necessary to determine the amount of resources
consumed by a given consumer (also called client and subscriber) during given
time interval, for example, a billing period. Accounting systems are composed
of three basic services: metering, accounting and billing.

accounting
 data

accounting model

accounting service
billing
service

billing
 data

metering
 data

application

service
interface

accounting system

service
metering

provider

.

consumer

Fig. 1. Consumer side resource accounting system.

We show a consumer side accounting system in Fig.1. We assume that re-
sources are exposed as services through one or more service interfaces. As shown
in the figure, the metering service intercepts the message traffic between the
consumer application and the cloud services and extracts relevant data required
for calculating resource usage (for example, the message size which would be
required for calculating bandwidth usage). The metering service stores the col-
lected data for use by the accounting service. The accounting service retrieves the
metering data, computes resource consumption from the data using its account-
ing model and generates accounting data that is needed by the billing service to
calculate the billing data.

Accounting models are provider–specific in the sense that the functionality of
an accounting model is determined by the provider’s policies. These policies de-
termine how the metrics produced by his metering service are to be interpreted;
for example, 1.7 GB of storage consumption can be interpreted by the provider’s
accounting model either as 1 or 2 GB. The accounting models of cloud providers
are normally available from their web pages and in principle can be used by
subscriber to perform their own resource accounting. The difficulty here for the
subscriber is to extract the accounting model from their online documentation
as most providers that we know of, unnecessarily blur their accounting models
with metering and billing parameters. The parameters involved in accounting
models depend on the type of service (SaaS, PaaS, IaaS, etc.) offered. In this
paper we will examine, from the point of view of consumer side resource account-
ing, the accounting models of Amazons Simple Storage Service (S3) and Elastic
Compute Cloud (EC2). In the following discussion, we gloss over the fine details
of pricing, but concentrate on metering and accounting services.

3 Accounting of Resource Consumption

3.1 S3 Accounting Model

An S3 space is organised as a collection of buckets which are similar to folders. A
bucket can contain zero or more objects of up to 5 terabytes of data each. Both
buckets and objects are identified by names (keys in Amazon terminology) chosen
by the customer. S3 provides SOAP and RESTful interfaces. An S3 customer
is charged for: a) storage: storage space consumed by the objects that they
store in S3; b) bandwidth: network traffic generated by the operations that
the customer executes against the S3 interface; and c) operations: number of
operations that the customer executes against the S3 interface.

Storage: The key parameter in calculation of the storage bill is number of
byte hours accounted to the customer. Byte Hours (ByteHrs) is the the number
of bytes that a customer stores in their account for a given number of hours.

Amazon explains that the GB of storage billed in a month is the average
storage used throughout the month. This includes all object data and metadata
stored in buckets that you created under your account. We measure your usage in
TimedStorage–ByteHrs, which are added up at the end of the month to generate
your monthly charges. They further state that at least twice a day, we check
to see how much storage is used by all your Amazon S3 buckets. The result is
multiplied by the amount of time passed since the last checkpoint.

From the definition of ByteHrs it follows that to calculate their bill, a cus-
tomer needs to understand 1) how their byte consumption is measured, that is,
how the data and metadata that is uploaded is mapped into consumed bytes in
S3; and 2) how Amazon determines the number of hours that a given piece of
data was stored in S3 —this issue is directly related to the notion of a checkpoint.

Amazon explains that each object in S3 has, in addition to its data, system
metadata and user metadata; furthermore it explains that the system meta-
data is generated and used by S3, whereas user metadata is defined and used
only by the user and limited to 2 KB of size [1]. Unfortunately, Amazon does not
explain how to calculate the actual storage space taken by data and metadata.
To clarify the issue, we conducted a number of experiments (see [11]) involving
uploading of a number of objects of different names, data and user metadata
into an equal number of empty buckets.

Three conclusions can be drawn from these experiments: first, the mapping
between bytes uploaded (as measured by intercepting upload requests) and bytes
stored in S3 correspond one to one; second, the storage space occupied by system
metadata is the sum of the lengths (in Bytes) of object and bucket names and
incur storage consumption; third, user metadata does not impact storage con-
sumption. In summary, for a given uploaded object, the consumer can accurately
measure the total number of bytes that will be used for calculating ByteHrs.

Next, we need to measure the ’Hrs’ of ’ByteHrs’. As stated earlier, Amazon
states that at least twice a day they check the amount of storage consumed by
a customer. However, Amazon does not stipulate exactly when the checkpoints
take place.

To clarify the situation, we conducted a number of experiments that consisted
in uploading to and deleting files from S3 and studying the Usage Reports of
our account to detect when the impact of the PUT and DELETE operations
were accounted by Amazon. Our findings are summarised in Fig.2. It seems that,
currently, Amazon does not actually check customers’ storage consumption twice
a day as they specify in their Calculating Your Bill document, but only once.
From our observations, it emerged that the time of the checkpoint is decided
randomly by Amazon within the 00:00:00Z and 23:59:59Z time interval2.

In the figure, CP stands for checkpoint, thus CP30 : 2GB indicate that CP30

was conducted on the 30th day of the month at the time specified by the arrow
and reported that at that time the customer had 2 GB stored in S3. SC stands
for Storage Consumption and is explained below.

SC for the 30th

2x24=48GBHrs

30 01 02

CP : 5GB

5x24=120GBHrs

CP : 3GB

3x24=72GBHrs

31 01

31 Mar

SC for the 1stSC for the 31st

30
CP : 2GB

Fig. 2. Amazon’s checkpoints.

As shown in the figure, Amazon uses the results produced by a checkpoint
of a given day, to account the customer for the 24 hrs of that day, regardless of
the operations that the customer might perform during the time left between
the checkpoint and the 23:59:59Z hours of the day. For example, the storage
consumption for the 30th will be taken as 2×24 = 48 GBHrs; where 2 represents
the 2GB that the customer uploaded on the 30th and 24 represents the 24 hrs
of the day.

Bandwidth: Amazon charges for the network data transferred from the
customer to S3 (’DataTransfer–In’, the request message of an operation) and
the network data transferred from S3 to the customer (the corresponding re-
sponse message, ’DataTransfer–Out’). It is however not clear from the available
information how the size of of the message is calculated. We therefore conducted
several experiments involving uploading, downloading, deleting etc. of objects us-
ing both RESTful and SOAP interfaces and compared the information extracted
from the intercepted messages with the information available from Amazon us-
age reports. It turns out that for RESTful operations, only the size of the object
(in DataTransfer–In for PUT, and DataTransfer–Out for GET) is taken into
account and system and user metadata is not part of the overhead, whereas for
SOAP operations, the total size of the message is taken into account.

2 S3 servers are synchronised to the Universal Time Coordinated (UTC) which is also
known as the Zulu Time (Z time) and in practice equivalent to the Greenwich Mean
Time (GMT).

Operations: It is straightforward for a consumer to count the type and
number of operations performed on S3. We note that an operation might fail to
complete successfully. The error response in general contains information that
helps identify the party responsible for the failure: the customer or the S3 infras-
tructure. For example, NoSuckBucket errors are caused by the customer when
they try to upload a file into a non-existent bucket; whereas an InternalError
code indicates that S3 is experiencing internal problems. Our understanding is
that the consumer is charged for an operation, whether the operation succeeded
or not.

3.2 EC2 Accounting Model

EC2 is a computation service offered by Amazon as an IaaS [4]. The service
offers raw virtual CPUs (also called a Virtual Machine or VM) to subscribers. A
subscriber is granted administrative privileges over his VM, that he can exercice
by means of sending remote comands to the Amazon Cloud from his desktop
computer. For example, he is expected to configure, launch, stop, re–launch,
terminate, backup, etc. his VM. In return, the subscriber is free to choose the
operating system (eg Windows or Linux) and applications to run. In EC2 termi-
nology, a running virtual CPU is called an instance whereas the frozen bundle
of software on disk that contains the libraries, applications and initial configura-
tion settings that are used to launch an instance is called the Amazon Machine
Image (AMI).

Currently, Amazon offers six types of instances that differ from each other
in four initial configuration parameters that cannot be changed at running time:
amount of EC2 compute units that it delivers, size of their memory and local
storage (also called ephemeral and instance storage) and the type of platform
(32 or 64 bits). An EC2 compute unit is an Amazon unit and is defined as the
equivalent CPU capacity of a 1.0–1.2 GHz 2007 Opteron or 2007 Xeon processor.
Thus Amazon offer small, large, extra large and other types of instances. For
example, the default instance type is the Small Instance and is a 32 bit platform
that delivers 1 EC2 compute unit and provided with 1.7 GB of memory and 160
GB of local storage. These types of instances are offered to subscribers under
several billing models: on–demand instances, reserved instances and spot
instances. In our discussion we will focus on on–demand instances.

Under the on–demand billing model, Amazon defines the unit of consumption
of an instance as the instance hour (instanceHrs). Currently, the cost of an
instance hour of a small instance running Linux or Windows, is, respectively,
9.5 and 12 cents. On top of charges for instance hours, instance subscribers
normally incur additional charges for data tranfer that the instances generates
(Data Transfer In and Data Transfer Out) and for addtional infrastructure that
the instance might need such as disk storage, IP addresses, monitoring facilities
and others. As these additional charges are accounted and billed separately, we
will leave them out of our discussion and focus only on instance hours charges.

The figures above imply that if a subscriber accrues 10 instanceHrs of a small
instance consumption, running Linux, during a month, he will incur a charge of
95 cents at the end of the month.

In principle, the pricing tables publicly available from Amazon web pages
should allow a subscriber to independently conduct his own accounting of EC2
consumption. In the absence of a well defined accounting model this is not a
trivial exercise.

Insights into the EC2 accounting model are spread over several on–line docu-
ments from Amazon. Some insight into the definition of instance hour is provided
in the Amazon EC2 Pricing document [3] (see just below the table of On–demand
Instances) where it is stated that Pricing is per instance–hour consumed for each
instance, from the time an instance is launched until it is terminated. Each par-
tial instance–hour consumed will be billed as a full hour. This statement suggests
that once an instance is launched it will incur at least an instance hours of con-
sumption. For example, if the instance runs continuouly for 5 minutes, it will
incur 1 instanceHrs; likewise, if the instance runs continuously for 90 minutes,
it will incur 2 instanceHrs.

The problem with this definition is that it does not clarify when an instance
is considered to be launched and terminated. Additional information about this
issue is provided in the Billing section of FAQs [2], Paying for What You Use
of the Amazon Elastic Compute (Amazon EC2) document [4] and in the How
You’re Charged section of the User Guide [5]. For example, in [4] it is stated
that Each instance will store its actual launch time. Thereafter, each instance
will charge for its hours of execution at the beginning of each hour relative to the
time it launched.

From information extracted from the documents cited above it is clear that
Amazon starts and stops counting instance hours as the instance is driven by
the subscriber, through different states. Also, it is clear that Amazon instance
hours are accrued from the execution of one or more individual sessions executed
by the subscriber during the billing period. Within this context, a session starts
and terminates when the subscriber launches and terminates, respectively, an
instance.

Session–based accounting models for resources that involve several events and
states that incur different consumptions, are conveniently described by Finite
State Machines (FSMs). We will use a FSM to describe EC2 accounting model.

States of an instance session The states that an instance can reach during
a session depend on the type of memory used by the AMI to store its boot (also
called root) device. Currently, Amazon supports S3–backed and EBS–backed
instances. EBS stands for Elastic Block Store and is a persistent storage that
can be attached to an instance. The subscriber chooses between S3 or EBS
backed instances at AMI creation time.

Unfortunatelly, the states that an instance can reach during a session are
not well documented by Amazon. Yet after a careful examination of Amazon’s
online documentation we managed to build the FSM shown in Fig. 3–a).

rebooting

application
commands

stopped

timer=0
failure/

timer=0
stop/

timer=0
failure/

timer=0
terminate/

rebooting

application
commands

stopped

timer=0
failure/

timer=0
stop/

timer=0
failure/

timer=0
terminate/

stopping stopping

timer=60min/
NinsHrs++; timer=0;
starttimer

timer=60min/
NinsHrs++; timer=0;
starttimer

running

shutting
down

pending

running

configured
AMI

shutting
down

pending

reboot

terminate

NinsHrs=1; timer=0; starttimer

launch/

launch/

b)

reboot

NinsHrs=1; timer=0; starttimer

launch/
NinsHrs=1; timer=0; starttimer

launch/

terminate

a)

terminated

configured
AMI

terminated

Fig. 3. Session of an Amazon instance represented as FSM.

The FSM of an Amazon instance includes two types of states: permanent
and transient states. Permanent states (represented by large circles, e.g. run-
ning) can be remotely manipulated by commands issued by the subscriber; once
the FSM reaches a permanent state, it remains there until the subscribers is-
sues a command to force the FSM to progress to another state. Transient states
(represented by small circles, e.g. stopping) are states that the FSM visits tem-
porarily as it progresses from a permanent state into another. The subscriber
has no control over the time spent in a transient state; this is why there are no
labels on the outgoing arrows of these states.

We have labeled the transitions of the FSM with event/action notations.
The event is the cause of the transition whereas the action represents the set
(possibly empty) of operations that Amazon executes when the event occurs, to
count the numbers of instance hours consumed by the instance.

There are two types of events: subscriber’s and internal to the FSM events.
The subscriber’s events are the comands (launch, application commands, reboot,
stop and terminate) that the subscribers issues to operate his instance; like-
wise, internal events are events that occur independently from the subscriber’s
commands, namely, timer = 60min and failure.

AMI configured: is the initial state. It is reached when the subscriber
sucessfully configures his AMI so that it is ready to be launched. running: is
the state where the instance can perform useful computation for the subscriber,
for example, it can respond to application commands issued by the subscriber.
terminated: is the final state and represents the end of the life cycle of the
instance. Once this state is reached the instance is destroyed. To perform ad-
ditional computation after entering this state the subscriber needs to configure
another AMI. The terminated state is reached when the subscribed issues the
terminate command, the instance fails when it is in running state or the instance

fails to reach running state. shuttingdown: is reached when the subscriber is-
sues the terminate command. stopped: this state is supported only EBS–backed
instances (S3–backed instances cannot be stopped) and is reached when the user
issues stop command, say for example, to perform backup duties. rebooting: is
reached when the subscriber issues the reboot command.

States and and instance hours: In the figure, NinstHrs is used to count
the number of instance hours consumed by an instance during a single session.
The number of instance hours consumed by an instance is determined by the
integer value stored in NinstHrs when the instance reaches the terminated state.
timer is Amazon’s timer to count 60 minutes intervals; it can be set to zero
(timer = 0) and started (starttimer).

In the FSM, the charging operations are executed as suggested by the Ama-
zon’s on line documentation. For example, in Paying for What You Use Section
of [4], Amazon states that the beginning of an instance hour is relative to the
launch time. Consequently, the FSM sets NinstHrs = 1 when the subscriber
executes a launch command from the AMI configured state. At the same time,
timer is set to zero and started. NinstHrs = 1 indicates that once a subscriber
executes a launch command, he will incur at least one instance hour. If the sub-
scriber leaves his instance in the running state for 60 minutes (timer = 60min)
the FSM increments NinstHrs by one, sets the timer to zero and starts it again.
From running state the timer is set to zero when the subscriber decides to ter-
minate his instance (terminate command) or when the instance fails (failure
event). Although Amazon’s documentation does not discuss it, we believe that
the possibility of an instance not reaching the running state cannot be ignore,
therefore we have included a transition from pending to terminated state; the
FSM sets the timer to zero when this abnormal event occurs.

As explained in Basics of Amazon ESB–Backed AMIs and Instances and
How You’re Charged of [5], a running ESB–backed instance can be stopped by
the subscriber by means of the stop command and drive it to the stopped state.
As indicated by timer = 0 operation executed when the subscribed issues a
stop command, an instance in stopped state incurs no instance hours. However,
though it is not shown in the figure as this is a different issue, Amazon charges
for EBS storage and other addtional services related to the stopped instance.
The subscriber can drive an instance from the stopped to the terminated state.
Alternatively he can re–launch his instance. In fact, the subscriber can launch,
stop and launch his instance as many times as he needs to. However, as indicated
by the NinstHrs + + , timer = 0 and starttimer operations over the arrow,
every transition from stopped to pending state accrues an instance hours of
consumption, irrespectively of the time elapsed between each pair of consecutive
launch commands.

Experiments with Amazon instances: To verify that the accounting
model described by the FSM of Fig. 3–a) matches Amazon’s description, we (as
subscribers) conducted a series of practical experiments. In particular, our aim
was to verify how the number of instance hours is counted by Amazon.

The experiments involved 1) configuration of different AMIs; 2) launch of
instances; 3) execution of remote commands to drive the instances through the
different states shown in the FSM. For example, we configured AMIs, launched
and run them for periods of different lengths and terminated them. Likewise, we
launched instances and terminated them as soon as they reached the running
state.

To calculate the number of instance hours consumed by the instances, we
recorded the time of execution of the remote commands launch, stop, terminate
and reboot, and the time of reaching both transient and permanent states. For
comparison, we collected data (start and end time of an instance hour, and
number of instance hours consumed) from Amazon EC2 usage report.

A comparison of data collected from our experiments against Amazon’s data
from their usage report reveals that currently, the beginning of an instance hour
is not the execution time of the subscriber’s launch command, as documented
by Amazon, but the time when the instance reaches the running state. These
findings imply that the current accounting model currently in use is the one
described by the FSM of Fig. 3–b). As shown in the figure, the NinstHrs is
incremented when the instance reaches the running state.

4 Potential Causes of Discrepancies

4.1 Storage

Since, for the calculation of ByteHrs, the time of the checkpoint is decided ran-
domly by Amazon within the 00:00:00Z and 23:59:59Z time interval, the time
used at the consumer’s side need not match that at the provider’s side: a poten-
tial cause for discrepancy. This is illustrated with the help of Fig.4.

30
CP : 6GB

30
cp : 6GB

31
cp : 7GB CP : 7GB

31

SC for Mar= 6x24 + 7x24= 312GBHrs
sc for Mar= 6x24 + 7x24= 312GBHrs

30
PUT 2GB
PUT 1GB

DEL3GB

0131 Mar

PUT 5GBPUT 3GB PUT 4GB

a)

30
CP : 6GB

30
cp : 3GB

31
cp : 3GB CP : 7GB

31

SC for Mar= 6x24 + 7x24= 312GBHrs
sc for Mar= 3x24 + 3x24= 144GBHrs

30
PUT 2GB
PUT 1GB

DEL3GB

01

PUT 5GB

31 Mar

PUT 3GB PUT 4GB

b)

Fig. 4. Impact of checkpoints.

The figure shows the execution time of four PUT and one DEL operations
executed by an S3 consumer during the last two days of March. The first day of
April is also shown for completeness. For simplicity, the figure assumes that the
earliest PUT operation is the very first executed by the consumer after opening
his S3 account. The figure also shows the specific points in time when checkpoints
are conducted independently by two parties, namely, Amazon and a consumer.

Thus, CP and cp represent, respectively, Amazon’s and the consumer’s check-
points; the Giga Bytes shown next to CP and cp indicate the storage consump-
tion detected by the checkpoint. For example, on the 30th, Amazon conducted
its checkpoint about five in the morning and detected that, at that time, the
customer had 6 GB stored (CP30 : 6GB). On the same day, the consumer con-
ducted his checkpoint just after midday and detected that, at that time, he had
6 GB stored (cp30 : 6GB). SC and sc represent, respectively, the storage con-
sumption for the month of March, calculated by Amazon and consumer, based
on their checkpoints.

The figure demonstrates that the storage consumption calculated by Amazon
and consumer might differ significantly depending on the number and nature of
the operations conducted within the time interval determined by the two parties’
checkpoints, for example, within CP31 and cp31.

Scenario a) shows an ideal situation where no consumer’s operations are
executed within the pair of checkpoints conducted on the 30th or 31st. The
result is that both parties calculate equal storage consumptions. In contrast,
b) shows a worse–case scenario where the DEL operation is missed by CP30

and counted by cp30 and the PUT operation is missed by cp31 and counted by
CP31; the result of this is that Amazon and the consumer, calculate SC and sc,
respectively, as 312 GB and 144 GB.

Ideally, Amazon’s checkpoint times should be made known to consumers to
prevent any such errors. Providing this information for upcoming checkpoints is
perhaps not a sensible option for a storage provider, as the information could be
’misused’ by a consumer by placing deletes and puts around the checkpoints in
a manner that artificially reduces the consumption figures. An alternative would
be to make the times of past checkpoints available (e.g., by releasing them the
next day).

Impact of network and operation latencies: In the previous discussion
concerning calculation of ByteHrs (illustrated using Fig. 4), we have implic-
itly assumed that the execution of a PUT (respectively a DELETE) operation
is an atomic event whose time of occurrence is either less or greater than the
checkpoint time (i.e., the operation happens either before or after the check-
point). This allowed us to say that if the checkpoint time used at the provider is
known to the consumer, then the consumer can match the ByteHrs figures of the
provider. However, this assumption is over simplifying the distributed nature of
the PUT (respectively a DELETE) operation. In Fig.5 we explicitly show net-
work and operation execution latencies for a given operation, say PUT; also, i,
j, k and l are provider side checkpoint times used for illustration. Assume that
at the provider side, only the completed operations are taken into account for
the calculation of ByteHrs; so a checkpoint taken at time i or j will not include
the PUT operation (PUT has not yet completed), whereas a checkpoint taken a
time k or l will. What happens at the consumer side will depend on which event
(sending of the request or reception of the response) is taken to represent the
occurrence of PUT. If the timestamp of the request message (PUT) is regarded
as the time of occurrence of PUT, then the consumer side ByteHrs calculation

for a checkpoint at time i or j will include the PUT operation, a discrepancy
since the provider did not! On the other hand, if the timestamp of the response
message is regarded as the time of occurrence of PUT, then a checkpoint at
time k will not include the PUT operation (whereas the provider has), again
a discrepancy. In short, for the operations that occur ’sufficiently close’ to the
checkpoint time, there is no guarantee that they get ordered identically at both
the sides with respect to the checkpoint time.

25/05/2011 1

Provider

Consumer

i j k l

Fig. 5. Network and operation latencies.

Operations: Earlier we stated that it is straightforward for a consumer to
count the type and number of operations performed on S3. There is a potential
for discrepancy caused by network latency: operations that are invoked ’suffi-
ciently close’ to the end of an accounting period (say i) and counted by the
consumer for that period, might get counted as performed in the next period
(say j) by the provider if due to the latency, these invocation messages arrive in
period j. This will lead to the accumulated charges for the two period not being
the same. This is actually not an issue, as the Amazon uses the timestamp of
the invocation message for resolution, so the consumer can match the provider’s
figure.

One likely source of difficulty about the charges for operations is determining
the liable party for failed operations. Currently, this decision is taken unilater-
ally by Amazon. In this regard, we anticipate two potential sources of conflicts:
DNS and propagation delays. As explained by Amazon, some requests might fail
and produce a Temporary Redirect (HTTP code 307 error) due to temporary
routing errors which are caused by the use of alternative DNS names and re-
quest redirection techniques [13]. Amazon’s advice is to design applications that
can handle redirect errors, for example, by resending a request after receiving
a 307 code(see [1], Request Routing section). Strictly speaking these errors are
not caused by the customer as the 307 code suggests. It is not clear to us who
bears the cost of the re–tried operations.

4.2 EC2

The mismatch between Amazon’s documented accounting model and the one
currently in use (Fig. 3–a and b, respectively) might result in discrepances be-
tween the subscriber’s and Amazon’s calculations of instance hours. For example,
imagine that it takes five minutes to reach the running state. Now imagine that

the subscriber launches an instance, leaves it running for 57 minutes and then
terminates it. The subscriber’s NinstHours will be equal to two: NinstHrs = 1
at launch time and then NinstHrs is incremented when timer = 60min. In con-
trast, to the subscriber’s satisfaction, Amazon’s usage records will show only one
instance hour of consumption. One can argue that this discrepancy is not of the
subscriber’s concern since, economically, it always favours him.

More challenging and closer to the subscriber’s concern are discrepancies
caused by failures. Amazon’s documentation does not stipulates how instances
that fail accrue instance hours. For example, examine Fig. 3–a) and imagine
that an instance suddenly crashes after spending 2 hrs and 15 min in running
state. It is not clear to us whether Amazon will charge for the last 15 min of
the execution as a whole instance hour. As a second example, imagine that
after being launched either from AMI configured or stopped states, an instance
progresses to pending state and from there, due to a failure, to terminated. It
is not clear to us if Amazon will charge for the last instance hour counted by
NinstHrs.

We believe that, apart from these omissions about failure situations, the
accounting model of Fig. 3–a) can be implemented and used by the subscriber to
produce accurate accounting. A salient feature of this model is that all the events
(launch, stop and terminate) that impact the NinstHrs counter are generated
by subscriber. The only exeception if the timer = 60min event, but that can be
visible to the subscriber if he synchronises his clock to UTC time.

The accounting model that Amazon actually uses (Fig. 3–b) is not impacted
by failures of instances to reach running state because in this model, NinsHrs
is incremented when the instance reaches running state. However, this model is
harder for the subscriber to implement since the event that causes the instance
to progress from pending to running state is not under the subscriber’s control.

5 Related Work

An architecture for accounting and billing for resources consumed in a federated
Grid infrastructure is suggested in [9]. The paper provides a valuable insight into
the requirements (resource re–deployment, SLA awareness, pre–paid and post–
paid billing, standardised records and others) that accounting and billing services
should meet. In [6], the author discuss similar requirements for accounting and
billing services, but within the context of federated network of telecommunica-
tion providers. Both papers overlook the need to provide consumers with means
of performing consumer–side accounting. A detailed discussion of an account-
ing system similar to the one shown in Fig. 1 but aimed at telecommunication
services is provided in [10].

Accounting models are fundamental to subscribers interested in planning for
minimisation of expenditures on cloud resources. The questions raised are what
workload to outsource, to which provider, what resources to rent, when, and so
on. Examples of research results in this direction are reported in [14, 7]. In [7]
the authors discuss how an accouting service deployed within an organisation

can be used to control expenditures on public cloud resources; their accounting
service relies on data downloaded from the cloud provider instead of calculating
it locally.

In [8], the authors take Amazon cloud as an example of cloud provider and
estimate the performance and monetary–cost to compute a data–intensive (ter-
abytes) workflow that requires hours of CPU time. The study is analytical (as
opposite to experimental) and based on the authors’ accouting model. For in-
stance, to produce actual CPU–hours, they ignore the granularity of Amazon
instance hours and assume CPU seconds of computation. This work stresses the
relevance of accounting models.

6 Concluding Remarks

We investigated whether it is possible for a consumer (or a TTP acting on
behalf of the consumer) to independently collect, for a given cloud service, all
the resource usage data required for calculating billing charges. We examined
two main IaaS services: storage and compute from Amazon; our investigation
revealed the causes that could lead to discrepancies between the metering data
collected by the the consumer not matching that of the provider. Essentially
these causes can be classed into three categories discussed below.

1. Incompleteness and ambiguities: We pointed out several cases where an ac-
counting model specification was ambiguous or not complete. For example,
regarding bandwidth consumption, it is not clear from the available informa-
tion what constitutes the size of of a message. It is only through experiments
we worked out that for RESTful operations, only the size of the object is
taken into account and system and user metadata is not part of the message
size, whereas for SOAP operations, the total size of the message is taken into
account. Failure handling is another area where there is lack of information
and/or clarity: for example, concerning EC2, it is not clear how instances
that fail accrue instance hours.

2. Unobservable events: If an accounting model uses one or more events that
impact resource consumption, but these events are not observable to (or
their occurrence cannot be deduced accurately by) the consumer, then the
data collected at the consumer side could differ from the that of the provider.
Calculation of storage consumption in S3 (ByteHrs) is a good example: here,
the checkpoint event is not observable.

3. Differences in the measurement process: Difference can arise if the two sides
use different techniques for data collection. Calculation of BytHrs again
serves as a good example. We expect that for a checkpoint, the provider will
directly measure the storage space actually occupied, whereas, for a given
checkpoint time , the consumer will mimic the process by adding (for PUT)
and subtracting (for DELETE) to calculate the space, and as we discussed
with respect to Fig. 5, discrepancies are possible.

Issues raised by clauses 1 and 2 can be directly addressed by the providers.
A provider should evaluate their accounting models by performing consumer

side accounting experiments to reveal any shortcommings. In particular, we rec-
ommend that for services that go through several state transitions (like EC2),
providers should explicitly give FSM based descriptions, and ensure, as much as
possible, that their models do not rely on unobservable (to consumer) events for
billing charge calculations. On the whole, for IaaS services, consumer side ac-
counting appears quite feasible. Whether this applies to PaaS and SaaS remains
to be seen. Any discrepancies that get introduced unintentionally (e.g., due to
non identical checkpoint times) can be resolved by consumers by careful exami-
nation of corresponding resource usage data from providers. Those that cannot
be resolved would indicate errors on the side of consumers and/or providers
leading to disputes.

References

1. Amazon: Amazon simple storage service. developer guide, API version 2006–03–01
(2006), wwww.amazon.com

2. Amazon: Amazon ec2 faqs (2011), aws.amazon.com/ec2/faqs
3. Amazon: Amazon ec2 pricing (2011), aws.amazon.com/ec2/pricing
4. Amazon: Amazon elastic compute cloud (amazon ec2) (2011),

aws.amazon.com/EC2/
5. Amazon: Amazon elastic compute cloud user guide (api version 2011–02–28)

(2011), docs.amazonwebservices.com/AWSEC2/latest/UserGuide/
6. Bhushan, B., Tschichholz, M., Leray, E., Donnelly, W.: Federated accounting: Ser-

vice charging and billing in a business-to-business environment. In: Proc. 2001
IEEE/IFIP Int’l Symposium on Integrated Network Management VII. pp. 107–
121 (2001)

7. den Bossche, R.V., Vanmechelen, K., Broeckhove, J.: Cost-optimal scheduling in
hybrid IaaS clouds for deadline constrained workloads. In: Proc. IEEE 3rd Int’l
Conf. on Cloud Computing(Cloud’10). pp. 228–235 (2010)

8. Deelman, E., Singh, G., Livny, M., Berriman, B., Good, J.: The cost of doing science
on the cloud: The montage example. In: Proc. Int’l Conf. on High Performance
Computing, Networking, Storage and Analysis (SC’08) (2008)

9. Elmroth, E., Marquez, F.G., Henriksson, D., Ferrera, D.P.: Accounting and billing
for federated cloud infrastructures. In: Proc. 8th Int’l Conf. on Grid and Cooper-
ative Computing. pp. 268–275. Aug. 27–28, Lanzhou, Gansu, China (2009)

10. de Leastar, E., McGibney, J.: Flexible multi-service telecommunications accounting
system. In: Proc. Int’l Network Conf. (INC’00) (2000)

11. Mihoob, A., Molina-Jimenez, C., Shrivastava, S.: A case for consumer–centric
resource accounting models. In: Proc. IEEE 3rd Int’l Conf. on Cloud Comput-
ing(Cloud’10). pp. 506–512 (2010)

12. Molina-Jimenez, C., Cook, N., Shrivastava, S.: On the feasibility of bilaterally
agreed accounting of resource consumption. In: 1st Int’l Workshop on Enabling
Service Business Ecosystems (ESBE08). pp. 170–283. Sydney, Australia (2008)

13. Murty, J.: Programming Amazon Web Services. O’Reilly (2008)
14. Wang, H., Jing, Q., Chen, R., He, B., Qian, Z., Zhou, L.: Distributed systems meet

economics: Pricing in the cloud. In: Proc. 2nd USENIX Workshop on Hot Topics
in Cloud Computing (HotCloud’10) (2010)

