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Abstract—Secure multi-party computation (SMC) is a
paradigm used to accomplish a common computation among
multiple users while keeping the data of each party secret
from others. Cloud computing is a next generation computing
solution which allows its users to use high speed infrastructure
and services provided by cloud service providers (CSP) in a
cost effective manner. Therefore, deployment of cloud based
architecture for SMCs would aid in improving its performance
and efficiency. However, cloud based solutions raises concerns
over security of users’ private data, since data is under the
control of an external entity when outsourced to cloud platforms.
In this paper we have proposed a Secure Multi-party based
Cloud Computing Framework which can ensure security,
privacy and anonymity of users’ private data. This framework
is modeled by considering a scenario which requires outsourcing
statistical parameter computation of private sales data of an
organization’s sales personnel. The results that we have obtained,
provides significant evidence of feasibility of multi-party based
cloud computing solutions.

Keywords: secure multi-party computation, cloud computing, data
security, privacy, anonymity

I. INTRODUCTION

In general terms, a SMC can be defined as a scenario where
n parties who are having private inputs x1, x2 ..., xn interested
in computing the value of the public function f(x1, x2..., xn)
in such a way that at the end of the computation no party
is learned any of the private inputs of other parties [1]. The
concept of SMC was first introduced by Yao in 1982 through
the “millionaire problem” [2] and since then SMCs have
being deployed in a variety of applications such as voting
systems, auctions, business related private computations and
privacy-preserving data mining, etc. Theoretically, a SMC is
represented with the existence of a trusted third party (TTP)
which does the required user intended multi-party computa-
tion. However, this is practically infeasible due to the fact that
an external entity cannot be trusted to hand over the private
data of users. Therefore, SMC is all about finding appropriate
cryptographic protocols that can replace the use of a TTP, to
carry out a certain user intended function while ensuring data
privacy of users [3].

The term cloud can be seen as an enhancement done to

the Internet in terms of hardware virtualization and resource
sharing. Cloud computing can be visualized as computing over
Internet. More precisely, it is a set of resources and facilities
offered to its users economically via the Internet [4]. A cloud
makes it possible for its users to access their information
in the cloud from anywhere, anytime through the Internet.
On the other hand users do not need to worry about the
maintenance and availability of resources, due to the fact that
it is the responsibility of the CSP. More importantly cloud
computing is an on demand service, where users are charged
only based on their resource consumption. Because of such
benefits, cloud computing has become more and more popular
among business entities.

The main issue with most of the traditional SMC protocols
is that they incur a significant amount of communication
overhead affecting the efficiency of the protocol [5]. As a
solution, it is possible to outsource the computations to a
CSP which would help to reduce the expenditure as well
as the operational overhead. However, the difficulty that we
face is how we can enforce the security requirements of a
multi-party computation such as data security, privacy and
anonymity; when we are dealing with an un-trusted external
entity. This issue can be addressed through secure multi-party
cloud computing solutions.

The rest of this paper is organized as follows. Related
work is explained in Sec. II and then the case that we have
formulated is introduced in Sec. III whereas Sec. IV describes
the proposed solution. The performance evaluation of the
proposed solution is given in Sec. V before the paper is
concluded in Sec. VI.

II. RELATED WORK

The requirement for the distributed computing systems
emphasized with the advancement of Information and Commu-
nication Technology (ICT) has led to the introduction of cloud
computing concept which provides a high speed infrastructure
for the users with low maintenance and high availability.
However, users are concerned about the confidentiality and
integrity of data in the cloud servers [6]. Therefore, the
adoption of cloud computing techniques has been greatly
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inhibited due to the issues of data security, privacy and
anonymity associated with them [7]. The researchers have
proposed different approaches to overcome the drawbacks in
cloud computing. A security protocol has been proposed in [5],
to assure data protection while ensuring better performance
under normal circumstances. Reducing the usage of sensitive
information is another scenario which has been considered
to avoid misusing and stealing of user data [8][9]. It is also
important to keep the identity of the user anonymous [10].

Issues with data confidentiality of cloud users have tempted
the requirement for encrypting the user data before sending it
to cloud. Solutions based on homomorphic encryption schemes
have been introduced [11]. Homomorphic encryption schemes
such as Paillier and RSA systems support operations like ad-
dition and multiplication on encrypted data [11]. Furthermore,
two additive symmetric key homomorphic schemes called as
iterated hill cipher (IHC) and modified Rivest scheme (MRS)
has been suggested in [12]. Wireless sensor network (WSN)
based applications exemplifies the requirement of encrypted
data based computations due to the fact that such computations
are not feasible within the sensor [13]. Method introduced
in [13] aggregates the sensor data and forwards it to an
entity with high computational power. Similar method with
public key based scheme to ensure user privacy has been
proposed in [14]. Paper [15] has presented a method to carry
out combination of additive and multiplicative operations on
encrypted data using Paillier and RSA cryptosystems.

Though there has been a significant improvement in the
areas of cloud security and encrypted data processing, multi-
party based cloud computing solutions have not yet being
developed. Such solution is proposed in [1] where they have
introduced a secure multi-party cloud computing framework
(SMCC) which allows multiple users to perform any common
computation of their interest in the cloud. Even though the
SMCC method and security protocols introduced in [1] ensures
data security and identity anonymization of users, it has not
been validated against practical scenarios.

III. CASE DESCRIPTION

The considered case involves sales management in a par-
ticular organization called ‘ABC’. The management of the
organization is interested in analyzing mean, variance, stan-
dard deviation, skewness and kurtosis of the daily sales values
of their employees for the purpose of sales related decision
making. It is of organization’s best interest to outsource the
multi-party statistical computations to a CSP while outsourc-
ing the analytical work to an external analyzer due to the lack
of computational resources. Furthermore, security and privacy
of user inserted sales data becomes a crucial aspect due to the
engagement of external parties invoking the necessity of an
efficient security protocol. We are going to consider this case
for presenting the secure multi-party based cloud computing
solution throughout this paper.

IV. SECURE MULTI-PARTY BASED CLOUD COMPUTING
FRAMEWORK

Fig. 1 illustrates the architecture of the secure multi-party
based cloud computing framework that we propose to address
the case introduced in the previous section. Framework con-
sists of four entities: proxy server, cloud server, analyzer, and
parties who are taking part in the computations. The main
functionality of the cloud server is to perform the required
statistical computations upon the reception of user data while
the function of the proxy server is to hide the identity of each
of the users to provide identity anonymization. Furthermore,
the analyzer is the external party which receives the statistical
parameters of user sales data which is used for analytical
purposes. The functionalities of each of these entities are
illustrated in the following subsections while explaining how a
secure computation can be achieved with the proposed frame-
work. Moreover, we have used the following cryptographic
keys in the proposed framework.

• RSA public and private key pair for proxy server, cloud
server and the analyzer for authentication purposes.

• We have used extended ElGamal public key encryption
scheme (EEES) [16] to encrypt private sales data of users.
Therefore, we generate EEES keys at the analyzer end
and send the parameters required for encrypting the data
(El para) to the users via the authentication process.
El para includes integer values p, g,N, y and k. p is a
large secure prime value and N = p · q where q is also a
large secure prime value. Furthermore, g represents a root
of GF (p) and y = gx mod p where x denotes the private
key of the encryption scheme. k is a positive number
selected by users when encrypting the data [16].

• We have used two 3DES keys to encrypt messages
conveyed between the entities during computation time.

A. Authentication and Key Exchange

In the proposed framework, cloud server and analyzer
are external entities. Therefore, it is necessary to mutually

Fig. 1. Proposed Secure Multi-party based Cloud Computing Framework
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authenticate cloud server and analyzer as well as cloud server
and the proxy which is the exit point of the organization’s
network. Let us assume that RSA public keys of each entity
are known to all other entities. Fig. 2 represents the procedure
for establishing authentication between the cloud server and
the analyzer. In Fig. 2 RSA signing and encryption procedures
are denoted with usual notations [ ] and { } respectively. The
authentication process is initiated with analyzer sending an au-
thentication request. After receiving it, cloud server generates
a response including the current timestamp (TS), the secret key
phrase (KPDES CA) to generate the 3DES key to be shared
with the analyzer (KDES CA) and send it to the analyzer
after signing with RSA private key ([KPDES CA, TS]Cloud)
and then encrypting with the public key of the analyzer
({[KPDES CA, TS]Cloud}Analyzer). Then, at the analyzer
end, the received message is decrypted accordingly and check
whether the TS is within the defined clock skew to authenticate
the cloud server. If authenticated, analyzer attains KPDES CA

and generates KDES CA. In order to authenticate itself to the
cloud server, analyzer generates a message by incrementing
received TS value by one and attaching El para which is
signed and encrypted by RSA private key of analyzer and
public key of the proxy server respectively. Among the values
in El para; p, g,N and y are public values while k is a
positive number usually selected by users when encrypting
the data. Therefore, k becomes a security critical parameter
for the encryption scheme. Hence, we are sending El para in
an encrypted environment. Thereafter, the complete message
is signed and encrypted with RSA private key of the analyzer
and RSA public key of the cloud server respectively. After
receiving this message at the cloud server, it decrypts the
complete message and extracts the value of TS. Finally, it
checks whether the received value is equals to the value of the
original TS sent to the analyzer incremented by one. If it is
verified, analyzer is authenticated to the cloud server whereas
the encrypted El para are retrieved and saved to be sent to
the proxy server.

We have also adopted a similar approach to authenticate
proxy server to the cloud server. Hence, at the end of the
authentication of proxy server and cloud server, we are able to
share the 3DES symmetric key KDES PC between them while

Fig. 2. Mutual Authentication between Cloud server & Analyzer

El para will be saved at the proxy in order to be transferred
to the users.

It is also important for us to authenticate users with the
proxy server to make sure that only the valid users are
allowed to take part in the computing process. In order to
accomplish this, we have created a file in the proxy server
which includes secure hash algorithm (SHA-1) hashes of
username and password pairs of valid users. When a user logs
into the system, SHA1 hashes of the entered username and
password are transferred to the proxy server in order to be
validated. If the login information is validated, El para will
be forwarded to the user end in order to encrypt the values
that needed to be sent for the computations.

B. User Data Encryption

Each user can start sending private data for computations
after being successfully authenticated into the system. When
data is entered by a user party, first the data is encrypted with
EEES by using received El para. This encryption induces
the required homomorphic properties into user data allowing
required statistical computations to be carried out on the en-
crypted data at the cloud server. Furthermore, Eqn. 1 represents
the encrypted result (A,B) for a plaintext message M when
encrypted with EEES.

(A,B) = (gk mod p, (yk (M + r × p) mod N) mod p) (1)

It is important to note that (g, k, y, p,N) represents El para
and therefore common for all users whereas r is a positive
integer randomly selected by each user. Eqn. 1 also depicts that
component A of the ciphertext is independent of M , and would
be common for all the users. After encryption, the resulting
ciphertext values of user sales data are transmitted to the proxy
server.

C. Proxy Server Functionality

The main idea of having a proxy server is to eliminate the
traceability of messages sent from each user towards the cloud
server. At the beginning of a computation, proxy server waits
for encrypted data from all the users. After receiving all of
them, it creates a new message by including all the encrypted
values of users (A,B1), (A,B2), (A,B3)..., (A,Bn) and the
number of users (n). Then a hashed message authentication
code (HMAC) of the preceding message is generated with
SHA1. After that HMAC is appended to the message along
with the current TS. Finally, the whole message is encrypted
with the 3DES key, KDES PC and forwarded to the cloud
server to begin the computational process. The structure of
the message sent from proxy server is illustrated in Fig. 3.

D. Cloud Server and Analyzer Functionality

After cloud server is authenticated to both analyzer and
proxy server, it waits for encrypted user data from the proxy
server. When it receives such a data set, then cloud server
decrypts it with 3DES key, KDES PC and separates the three
components in the received message which are TS, HMAC
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Fig. 3. Structure of the Frame sent from Proxy to Cloud Server

and the original message consisting with encrypted user data
and number of users. Firstly, cloud server checks the received
TS is within the defined clock skew to make sure that it is not a
replayed frame. Then, if it is verified a HMAC is created with
the original message part and check whether the computed
and received HMACs are matching. If so, the private data of
users are accepted and otherwise a retransmission request will
be sent to the proxy server.

Let’s Consider that encrypted private data of users are
successfully acquired by the cloud server. Then it starts the
statistical computations by first computing the encrypted sum-
mation (ASum, BSum). By using the additive homomorphism
of EEES, it is possible to express (ASum, BSum) as;

ASum = A (2)

BSum = B1 +B2 +B3 + ...+Bn (3)

Then, cloud server generates a new message by including
the values ASum, BSum and the number of users n. We have
to send the encrypted summation with number of users since
EEES does not support homomorphism for division in order
to compute the encrypted mean at the cloud server. After that,
HMAC of the message is created and it is appended to the
tail of the message along with the current TS as shown in
Fig. 4. Finally, the complete frame is encrypted with 3DES
key, KDES CA and forwarded to the analyzer.

After receiving the data frame with encrypted summation
at the analyzer end, it segments the message accordingly
by decrypting with the 3DES key, KDES CA. Then, the
validity of the frame is verified through TS and HMAC as
explained previously. After that, the encrypted summation
(ASum, BSum) is decrypted with the analyzer’s private key

Fig. 4. Structure of the Summation Data Frame sent from Cloud to Analyzer

Fig. 5. Structure of the Message which carries Encrypted Mean Value to
Cloud

(x) of EEES as given in Eqn. 4. Finally, the decrypted result
(M1) is divided by n to obtain the mean value of users’ private
sales data.

M1 = BSum ((ASum)x)−1 mod p (4)

Mean value of user inserted sales data =
M1

n
(5)

In order to compute the rest of the statistical parameters
variance, standard deviation, skewness and kurtosis; it is neces-
sary to obtain the mean value which is encrypted using EEES.
Therefore, after recovering the mean value by the analyzer, it
re-encrypts the mean value using El para which gives us the
encrypted components AMean and BMean. Furthermore, the
analyzer generates a HMAC for the new encrypted mean and
appends it to the encrypted mean. Finally, the current TS is
also attached to the tail of the message and forwards it to
the cloud server after encrypting the complete frame with the
shared 3DES symmetric key, KDES CA as shown in Fig. 5.

At reception of the above message, cloud server will first
decrypt it with KDES CA and acquire AMean and BMean

components after validating TS and HMAC of the received
data frame. In order to compute the statistical parameters vari-
ance, standard deviation, skewness and kurtosis it is necessary
to obtain the deviations of the encrypted user sales data from
the encrypted mean. These values can be calculated through
the subtraction property which is derived from the additive
homomorphism of EEES. If the encrypted mean deviation of
ith user’s sales data is given by Vi;

Vi = (Ai, (Bi −BMean)), (6)

where (Ai, Bi) denotes the EEES encrypted sales data of ith

user. After that we need to obtain 2nd, 3rd and 4th powers of
the values Vi for all i. In order to achieve that, we use the
property of homomorphism on powers of values possess by
EEES [16]. Therefore, we can write the jth power of Vi, (V j

i )
as;

V j
i = (Aj

i , (Bi −BMean)
j) (7)

Thereafter, we can obtain
n∑

i=1

V 2
i ,

n∑
i=1

V 3
i ,

n∑
i=1

V 4
i by using Eqn.

2 and Eqn. 3. Finally, all theses values are forwarded to the
analyzer after attaching the HMAC, current TS and encrypting
the complete message with KDES CA.

When the above mentioned data frame is received at the

19th International ICIN Conference - Innovations in Clouds, Internet and Networks - March 1-3, 2016, Paris.

25



analyzer, it will first decrypt the data frame with KDES CA

and acquire the encrypted components
n∑

i=1

V 2
i ,

n∑
i=1

V 3
i ,

n∑
i=1

V 4
i

after validating the TS and HMAC which were appended to the
received message. Then, the received encrypted components
are decrypted using the relation given in Eqn. 4. Let us con-

sider that decrypted components of
n∑

i=1

V 2
i ,

n∑
i=1

V 3
i ,

n∑
i=1

V 4
i are

denoted by V1, S1 and K1 respectively. Then we can determine
the variance, standard deviation, skewness and kurtosis of user
inserted data from the equations given below.

V ariance =
V1

n
(8)

Standard deviation (S.D.) =

√
V1

n
(9)

Skewness =
S1

(S.D.)3
(10)

Kurtosis =
K1

(S.D.)4
(11)

After the completion of a computing session, analyzer sends a
message to all the users through the proxy server to initiate the
next computing session. Moreover, it is not necessary to carry
out mutual authentication between entities again at the start of
a new session. However, to ensure the freshness, we flush the
existing keys after consecutive 10 consecutive sessions. Then,
it is necessary to carry out the mutual authentication process
again before starting a computing session.

V. PERFORMANCE ANALYSIS

An experimental setup has been formulated to analyze the
performance of the proposed framework. Fig. 6 illustrates the
setup along with the system configuration information of the
PCs and the server. In order to implement this setup, we have
compiled a program in Java where each entity is executing
as a separate program. Values to be computed are inserted
through interfaces of user programs while analyzer program
will display the results at the conclusion of a computing
session.

A. Definitions of Measured Parameters

• Encryption Time (Te):Time taken to encrypt user inserted
value at a user program using EEES.

• Entity Process Time (TEP ):Time duration that encrypted
data are handled at proxy server, cloud server and ana-
lyzer until the conclusion of a computing session.

• Total Process Time (TTP ) :Total time duration that user
data is handled at all the entities user, proxy server, cloud
server and analyzer.

• Transmission Delay (TTD): Collective time taken for
transmission of system messages between entities be-
tween initiation and conclusion of a computational ses-
sion.

• Total Time (TT ): Time duration between the initiation
and the conclusion of computing session.

Fig. 6. Experimental Setup

Therefore, we can write;

TTP = TEP + Te × n (12)

TT = TTP + TTD (13)

B. Test Results
In order to evaluate the performance of the implemented

framework, we have to understand the variation of Te, TEP ,
TTP and TT as a function of number of users and size of the
user input respectively. Tests carried out for Te suggested that,
it exhibits an exponential variation with the size of the prime
numbers associated with EEES. This fact suggests that even
though increasing the size of the prime values might strengthen
the security, efficiency of the system will be degraded. Since
we are considering sales values of users as the messages to
be encrypted, prime size of 64 bits is quite adequate for our
application. Hence, all the experiments were carried out with
64 bits as the prime size of the encryption scheme.

Fig. 7 shows the variation of Te with the size of the user
input. Even though the user input is varied from 4 bits to 64
bits, fluctuation of Te is only limited to the range of 17 ms to
21 ms. Therefore, we can conclude that input data size does
not influence Te when the prime size is fixed. Furthermore,
average Te taken for a single user is approximately 20 ms.

Fig. 7. Variation of Encryption Time as a function of User Input Size
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Fig. 8. Variation of TEP & TTP as a function of n

Fig. 8 illustrates the variation of TEP and TTP with n. We
can clearly observe that TEP is independent of n. However,
TTP exhibits a linear accumilation with n due to the fact that,
total Te is linearly increasing with n.

Fig. 9 depicts that both TEP and TTP are independent of
the size of the user input. However, TTP curve is elevated
approximately by 200 ms than TEP . This shift accounts for
the total Te of 10 users who participated in the computing
session.

According to Eqn. 13, TT is dependent upon TTD. TTD is
affected by number of factors such as bandwidth, distance or
hop count between the entities and system configuration of the
entities. Fig. 10 shows the variation of TEP and TT when the
number of users are varied from 5 to 50 at two instances where
the hop count (HC) between proxy server and cloud server is
1 and 17 respectively. As we can observe form Fig. 10, TTP

values when HC is 1 and 17 varies in the same way. TT at
HC 1 exhibits a similar behavior since the associated TTD is
approximately 4 ms and does not impose any significant effect
on TT . However, TT when HC = 17 is elevated by 900 ms
from TT at HC = 1. This elevation represents the increment in
TTD since the distance between proxy server and cloud server
is increased. This fact proves that TT is affected by TTD.

The results acquired so far suggests that, both TEP and
TTP are independent of the network parameters and only
depend on the specifications of the PCs and server used in

Fig. 9. Variation of TEP & TTP as a function of User Input Size

Fig. 10. Variation of TEP & TT as a function of n

the experimental setup. Moreover, average TEP of the system
is approximately 162.53 ms. Hence, we can derive;

Average TTP = Average TEP + (Average Te × n) (14)

Average TTP = (162.53 + 20× n) ms (15)

The maximum TT represented in Fig. 10 is slightly higher
than 2s and TTP is approximately 1.2s when HC is 17 and
n = 50.

Under practical circumstances, the encryption process of
user data is a parallel process. Hence, TTP of Eqn. 12 could
be decremented drastically. That would result the timing mea-
surements of equations 12,13,14 and 15 to be reduced than the
obtained results. Therefore, these experimental results verify
that the proposed system is capable of operating efficiently
under practical circumstances.

VI. CONCLUSIONS

In this paper we have proposed a secure multi-party based
cloud computing framework for outsourcing statistical parame-
ter computations on users’ private data. The inclusion of proxy
server in the framework ensures that cloud server will not
have any idea about the ownership of each encrypted data
component received at the cloud. Hence, user data anonymiza-
tion is achieved. Furthermore, data privacy is also guaranteed
due to the fact that user data are encrypted with EEES while
computations are also carried out on the encrypted data. We
have also used concepts of TS and HMAC to make the secu-
rity framework withstand against replay attacks and possible
integrity violations. The performance evaluation that we have
presented in Sec. IV provides evidence for the efficiency of
the proposed framework. Therefore, we can conclude that
cloud environments can be successfully deployed to improve
the efficiency of multi-party computations while enforcing the
security requirements of user parties.
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