

TURN Servers Impacts Over WebRTC QoE

in 4G Network

Antonin MARECHAL, Ewa JANCZUKOWICZ,

IMT/OLN

Orange Labs

Lannion, France

Email: {antonin.marechal, ewa.janczukowicz}@orange.com

Abstract— WebRTC is a new technology allowing web players

to offer communication services to their customers. It optimizes

the communications by privileging peer-to-peer connections.

However, in restrictive networks, media relays (TURN servers)

are mandatory for establishing the call. The location and

behavior of these media relays can have an undesirable influence

on the quality of real-time communication. The goal of this study

is to compare the impact on the QoE depending on the TURN

server used. The comparison is focused on audio calls over 4G

networks. The paper describes a test environment and suggests a

measurement methodology based on the Mouth to Ear delay

criteria. It gives the assessment of the first results focusing on

TURN server location.

• Keywords—WebRTC; 4G network; TURN servers;
QoE

I. INTRODUCTION

Communication services and web real-time technologies
have evolved. More and more real-time communication
services are offered by web-related companies, notably Apple
(FaceTime), Google (Hangouts) and Microsoft (Skype). The
emerging WebRTC (Web Real Time Communication) [1]
technology is currently under standardization and enforces the
trivialization of web communication services. Therefore these
services are challenging Telco solutions. Furthermore, network
operators and web players do not have the same constraints and
objectives. Actually, Telco and web ecosystems differ in
various aspects such as service types, service distribution
models, regulatory and contractual aspects [2]. Telco solutions
are more reliable but are usually limited to a given territory and
paying customers whereas web solutions are global, users do
not pay for them directly. However, web applications are
vulnerable to poor Internet quality [3].

The recent evolutions in real-time communication domain
lead to the delamination of application and network layers [2].
Web actors have to adapt to existing best-effort network quality
even if it is not sufficient, but network providers cannot
improve the quality for these services since they are usually
lacking visibility over this delaminated traffic.

Only few options allow network providers to participate in

the quality improvements of WebRTC calls. Providing media

relays to web actors is thus a relevant solution, since it allows

flow identification that can be afterwards used to provide

different services, including those related to QoS and QoE.

This paper gives the first results of a comparison of the

achieved quality using third-party and network operator

provided media relays. The comparison is focused on the

quality of WebRTC audio calls over 4G networks. The paper

is structured as follows. Section 2 gives an overview of

WebRTC technology along with current effort in improving

communication quality. Section 3 introduces the approach

taken during the study and the test environment. Section 4

focuses on results assessment. In Section 5 conclusion and

future research works are discussed.

II. MOTIVATIONS

A. WebRTC technology overview

WebRTC makes developing real-time applications easier
by allowing browser to browser real-time communication
(audio, video and data transfer) without the need of any plugins
and by using web technologies [4]. It reduces implementation
costs and allows avoiding interoperability issues.

In WebRTC the media plane is under standardization in
IETF and W3C, but the signaling can be chosen freely by a
communication service provider. There are different
connection modes possible. ICE (Interactive Connectivity
Establishment) is used to establish the connection by
discovering different possible IP paths [5]. Ideally the media
should be sent directly between devices. If any of the devices is
behind a NAT (Network Address Translator), a STUN server is
used to learn its public address [6]. However it is not always
possible to avoid the intermediaries, like in case of certain
implementations that block peer to peer traffic [4]. In this case
a TURN server needs to be used [7]. TURN server is a media
relay meaning that it forwards the traffic from one endpoint to
another. Usually TURN server is placed in the media path
throughout the communication, but it can be also used for a fast
call set up, before switching to a standard peer to peer
connection [8].

B. WebRTC technology limits

Since there is a separation of application and network
layers, WebRTC uses application built-in adaptive mechanisms
to improve the users’ experience. As a result the adaptation to
best-effort network quality maybe insufficient for instance in

19th International ICIN Conference - Innovations in Clouds, Internet and Networks - March 1-3, 2016, Paris.

53

case of bottleneck congestion. Receive-Side Real-Time
Congestion Control for WebRTC is an example of browser
mechanisms that generally adapts well to losses and delays but
still faces some problems in the presence of high latencies or
certain concurrent traffic [9].

There are also ongoing works to improve the ICE protocol
in order to offer dynamic selection of the network
interface/path to use based on the RTT (Round Trip Time) and
packet-loss measured during the communication [10]. However
the collected information may be incomplete since it lacks
network operator assistance. Continuous measurements on
otherwise inactive interfaces can also negatively influence the
battery usage.

As it was mentioned in section II.A, there are cases where a
TURN server needs to be used. But this type of server may
impact the communication, mostly because of two reasons.
Firstly, the TURN server could be overloaded. For instance, its
configuration could not handle WebRTC communications due
to the usage of its CPU, its memory, the network interface, etc.
Secondly, its location could also impact WebRTC calls. TURN
servers are often provided by web companies, so they are
situated in datacenters outside internet access provider
networks. Thus, two communicating users situated in France,
may end up using a TURN server placed in the USA. If we
consider that the approximate delay is 5µs per kilometer, the
flow between two users in France using a TURN server in
Texas, USA (about 8000km one-way) takes much longer to be
sent, i.e. about 80ms. That may have an undesirable influence
on the real-time communication quality.

As the number of applications and smartphone users relying
on web communications grow, the challenge of overcoming the
limits of best-effort networks with the assistance of network
providers becomes more important [2].

C. Network QoS for WebRTC

There are some ongoing works on providing QoS (Quality
of Service) for WebRTC technology by using network
resources.

The first solution is based on managed VoIP principles and
uses TURN servers to differentiate the flows and provide
specialized network services to them [3]. The second solution
uses WebRTC session information to dynamically provide EPS
(Evolved Packet System) QoS mechanisms [11]. Offering
specialized network services is also in the scope of reThink
European project [12].

III. APPROACH

WebRTC aims at supporting real-time communications.
ITU recommends meeting some quality criteria concerning
communication characteristics, i.e. delay, packet loss, etc. [13].
Among these criteria, we have chosen to analyse Mouth to Ear
delay, because this value objectively describes the user’s
perception of the communication regardless of the technologies
used (2G/3G, VoLTE, etc.).

The Mouth to Ear delay takes into account the propagation
of the IP packets on the network, the sizes of the buffers and
the amount of time to render the audio to the listener. Thus, this
value describes the interactivity of a communication. If it is too

high, it will negatively influence the interactivity and as a result
the users will not make the difference between natural pauses
in a conversation and delays introduced by some equipment
[14]. ITU explains in a study [13] that users are very satisfied if
the Mouth to Ear delay is lower than 200ms. Under 300ms, the
communication is still correct. However, over 400ms, many
users are dissatisfied. For instance, a national call in 2G, or 3G
circuit switched, offers a Mouth to Ear delay around 190ms
[15]. In VoLTE, this value is between 160 and 240ms [16].

Furthermore, datacenter traffic is bursty and may cause
jitter or packet loss [2]. Routers and network equipment in the
IP path impact the delay of the packets. Each packet, before
being forwarded, has to spend a certain amount of time in their
buffers. So if a WebRTC call needs to reach a TURN server
hosted far from the users, it is likely that some buffers will
retain packets and consequently impact the jitter, thus the jitter
buffer and the Mouth to Ear delay. Moreover, network links
between autonomous systems (AS) (Transit or Peering) can be
seen as bottlenecks. Hence if a lot of WebRTC calls, typically
with data and video, need to reach a TURN server through
those links, it may also affect the cost for the network
operators. To decrease the usage of links between AS, the
WebRTC users could connect to a TURN hosted in the NSP
(Network Service Provider) network. NSPs have assets that
third-party operators do not have, i.e. the access and core
network.

This study shows the impact of a TURN server located near
the users (hosted in the core network of an ISP for instance)
and compares it to the impact of TURN servers hosted in
datacenters by third-party operators. It focuses on the audio
calls. The video calls are out of scope of this paper but a
similar study could be also interesting.

A. TURN Services providers

In this study, different actors who offer or rent TURN
services have been identified:

• Third-party operator 1 (TPO-1): Situated all around
the world, this actor provides TURN servers for any
client who connects to their WebRTC website demo.
In our case, each time a client tried to retrieve an ICE
configuration (STUN and TURN), it indicated that the
relay server was hosted in TPO-1’s closest datacenter
from the client.

• Third-party operator 2 (TPO-2): Based in the USA
only, this company offers TURN services for any
WebRTC service provider. The developer only has to
create an account in the TPO-2’s service. Then the
WebRTC application has to retrieve the configuration
of the ICE Servers, it will finally give all of those
information to the client.

• The Network Service Provider (NSP): a TURN server
has been deployed near the exit of the 4G mobile
network, that is to say after the PDN-Gateway of the
network service provider from the end-users’
perspective. The service was handled by the Coturn
server

1
 on a Linux Ubuntu 14.04. This server was

1 https://github.com/coturn/coturn

19th International ICIN Conference - Innovations in Clouds, Internet and Networks - March 1-3, 2016, Paris.

54

only dedicated to this function and was equipped with
6GB RAM, an Intel Xeon CPU (2.8 GHz, 4 cores)
and a 1 Gb/s interface connected to the LTE
experimental network.

We were not able to manage TPO-1 and TPO-2 servers.
Therefore, the performances and the load (CPU usage, RAM,
network interface, etc.) are unknown.

B. Tools and test platform

 Two clients were used for this study. The first one was a
Samsung Galaxy S4 (Android 4.4.2), and the second one was a
Samsung Galaxy S5 (Android 5). Both were using Google
Chrome (v43). A rendez-vous server used for WebRTC
connection establishment has been developed and deployed on
a classic web server on the Internet. It was used to initiate
WebRTC audio calls and also for retrieving and storing the
KPIs (Key Performance Indicators). Figure 1 shows this
architecture.

The getStats() [17] function, available in Chrome, was used for
collecting the statistics. Several KPIs were saved during the
call, by using an internal JavaScript code calling the getStats
function every second. The duration of each call was more or
less around 2 minutes. All the calls took place in Lannion
(France) over 4G LTE networks.

Two LTE networks have been used during the test:

• The first one is an experimental network which
represents the architecture of a production LTE
network. Devices were connected to the eNodeB
inside a Faraday cage.

• The second one is the LTE network in production
managed by an operator. The results obtained by this
network show performances that customers could
observe.

We assessed the retrieved data and analyzed it according to
the ITU recommendations [13].

C. Values analyzed

Once stored and then combined, the statistics highlight the

performances perceived by the user for each communication.

For example, we can approximate the minimum value of the

Mouth to Ear delay by doing the following sum

CurrentDelayMs + RTT/2 ≈ Min(Mouth to Ear Delay) (1)

The authors believe based on [18] that the

CurrentDelayMs value retrieved by our tool describes the

amount of time that a packet received by the user has to wait

before being rendered. It includes the duration that a packet

has to wait in the different buffers of the receiver.

In the case of this study, the Mouth to Ear delay is the

minimum value that could be reached. Some other values

(rendering, codec, etc.) that have not been retrieved during the

calls should be added to calculate the effective delay.

Currently the getStats function does not provide enough KPI.

For instance, the approximation of the mouth to ear delay is

not provided natively by the function. Moreover, Web

applications do not have access to any information about

source of an issue. For example, a web application cannot

determine in case of congestion if the bottleneck is in the radio

access network, in the core network or in the datacenter

hosting the service. KPI of the quality of the radio

performances could help to provide some information.

IV. MESUREMENT AND INTERPRETATION

A. Boxplots

A convenient way to display the statistics of each call is to
use a boxplot

2
. This kind of graphic shows the distribution of

all the measurements stored during each call. The black line
inside each box represents the median. Half of the points
retrieved during a communication are in the box. Relevant
values are mainly present inside the vertical lines. Finally, the
outliners are displayed as points above and under those vertical
lines.

The below boxplots show behaviors of the calls depending
on the TURN server used.

Figure 2 shows the approximation of the Mouth to Ear

delay between callee’s mouth and caller’s ear. The X-axis

indicates the ID of each call. The Y-axis shows the Mouth to

Ear delay by using boxplots. Calls from 1 to 7 have been

performed in P2P. Calls from 8 to 22 have been relayed by a

TURN server hosted at the exit of the PDN-GW. All the

measurements are collected on Samsung S4.

2 http://web.pdx.edu/~stipakb/download/PA551/boxplot.html

Figure 1: TURN server architectures (third-

party and NSP)

19th International ICIN Conference - Innovations in Clouds, Internet and Networks - March 1-3, 2016, Paris.

55

 Figure 3 shows the same measurements as the above figure
but performed on Samsung S5.

 Figure 4 also shows the approximation of the Mouth to Ear
delay between caller’s mouth and callee’s ear. As before calls
from 1 to 7 have been performed in P2P, but this time calls
from 8 to 23 have been relayed by a TURN server hosted in the
datacenter of TPO-1.

 Figure 5 shows the approximation of the Mouth to Ear
delay between caller’s mouth and callee’s ear. Here all the calls
have been relayed by a TURN server hosted in the datacenter
of TPO-2.

B. Interpretation

 In the first place the study highlights the lowest Mouth to
Ear delay for WebRTC calls over the LTE network. The Mouth
to Ear delays were never lower than 300ms. This value was
compared with Telco technologies (VoLTE [16], 2G/3G circuit
switched network [15]). Therefore it can be stated that
WebRTC audio calls on 4G network do not offer performances
as good as calls with VoLTE. The Mouth to Ear delay is at
least 300ms with WebRTC, but in VoLTE this value is more or
less 200ms [16]. This behavior can be caused by type of
network used since WebRTC calls have been made over Best
Effort networks without any network QoS. Additionally, we
could observe that in order to face the variation in delays, the
user equipment had to increase the jitter buffer, thus store a
certain number of packets.

 WebRTC audio calls that went through TURN servers
hosted near the exit of the PDN Gateway perform as good as
calls in P2P. As it can be seen on Figures 2 & 3, the Mouth to
Ear delays are in the same order of magnitude. The figures also
show that different measurements do not vary, thus the quality
stays stable.

 Unlike Figure 2 & 3, the measurements on Figure 4 & 5 are
more scattered. When WebRTC audio calls go through TURN
servers hosted in a datacenter on the same continent for calls 8,
9, 10, 13, 14, 17, 18 and 19 of figure 4, the performances are
surprisingly as good as P2P calls, meaning that the distance of
a TURN server does not necessarily make the quality worse.
However in certain cases the Mouth to Ear delay was less
stable and higher delays could be observed (calls 11, 12, 15,
16, 20 to 24). This can be explained by the fact that packets go
through more routers and network equipment. As a result the
risk of congestion, burst, etc. which could impact the
communication, increases.

 We can see on figure 5 that the performances are the worst
when the TURN is not on the same continent, because the

Figure 2: Mouth to Ear delay [ms] in WebRTC calls

(P2P and through NSPO) measured on Samsung S4

Figure 3: Mouth to Ear delay [ms] in WebRTC calls

(P2P and through NSPO) measured on Samsung S5

Figure 4: Mouth to Ear delay [ms] in WebRTC calls (P2P
and through TPO-1) measured on Samsung S5

Figure 5: Mouth to Ear [ms] delay in WebRTC calls
(TPO-2) measured Samsung S5

19th International ICIN Conference - Innovations in Clouds, Internet and Networks - March 1-3, 2016, Paris.

56

Mouth to Ear delay is at least 450ms with TPO-2. This is
linked to the fact that the packets had to travel the longest way.

 Moreover, TURN servers are not the only source of high
Mouth to Ear delay. The study also shows that the user
equipment could have a significant impact on this delay.
Indeed we noticed that Samsung Galaxy S4 (Android 4.4.2) is
up to 50ms slower to render the voice than the Galaxy S5
(Android 5). We cannot determine precisely where this
behavior comes from, but we have two suggestions:

• Hardware: The Galaxy S5 is equipped with a faster
CPU (Qualcomm Snapdragon 801 – 2.5GHz
Quadcore) than the S4 one (Qualcomm Snapdragon
600 – 1890MHz Quadcore)

• Software (OS): Enhancements on the audio
management have been offer with the 5.0 version of
Android

3

V. CONCLUSION AND FUTURE WORK

Firstly, this study proves that calls using a TURN server
located close to the original path of media perform as well as
communications performed in P2P. Furthermore, calls using a
TURN server hosted further in the network in certain cases
perform as well as P2P calls. This could be observed in our
study for half of the calls. However, the other half of
communications did not offer good performances. Finally,
unsurprisingly, a TURN server far from the client does not
perform well at all.

Secondly, it could be observed that current calls, even in
P2P, using Chrome implementation of WebRTC do not offer
performances as good as VoLTE or 2G/3G switched circuit
calls over 4G networks.

To generalize the outcome and to obtain more significant
results, another study should be done with more calls (taking
place all around the country, at different times throughout the
day, etc.). Different browsers could also be tested as it is
known that performances differ depending on the browser used
[19]. This new study should emphasize the fact that TURN
servers located far from the user impact WebRTC
communications due to the bigger number of routers and other
network equipment in the path.

Thirdly, the study discusses that Mouth to Ear delay is
interesting to observe since it objectively describes the user’s
perception of the communication regardless the underneath
technology. However Chrome’s current implementation of the
getStats function, normalized by the W3C, does not provide
directly information about the Mouth to Ear delay. Thus, it
could be an interesting enhancement to allow getStats function
to retrieve this KPI. Moreover, the radio quality information
(SNR, retransmission ratio, etc.) could also be interesting for
web applications. This would allow getting the whole picture,
i.e. how different factors impact the quality. However, some
discussions have to be done before offering these
functionalities, for example user’s privacy has to be taken into
account before proposing any values to web developers.

3https://developer.android.com/about/versions/lollipop.html#Audio

Finally, the study shows that when using resources
provided by a network service provider, good performances
can be obtained. As a result, a specialized network services
could improve the quality of WebRTC communications. Hence
further studies will be done in this field.

ACKNOWLEDGEMENT

The authors would like to thank Stéphane Tuffin, Arnaud

Braud, Gaël Fromentoux and Jean-Yves Le Saout for their

help and their feedback.

REFERENCES

[1] WebRTC. [Online]. http://www.webrtc.org/

[2] S. Becot, E. Bertin, J.M. Crom, V. Frey, and S. Tuffin,

"Communication Services in the Web Era. How can Telco join

the OTT hangout?," ICIN Proceedings, pp. 208-215, February

2015.

[3] E. Janczukowicz et al., "Specialized network services for

WebRTC: TURN-based architecture proposal," AWeS, April

2015.

[4] E. Janczukowicz et al., "Approaches for Offering QoS and

Specialized Traffic Treatment for WebRTC," Advances in

Communication Networking, pp. 59-69, September 2014.

[5] J. Rosenberg. (2010, April) Interactive Connectivity

Establishment (ICE). [Online].

https://tools.ietf.org/html/rfc5245

[6] J. Rosenberg, R. Mahy, P. Matthews, and D. Wing. (2008,

October) Session Traversal Utilities for NAT (STUN).

[Online]. https://tools.ietf.org/html/rfc5389

[7] R. Mahy, P. Matthews, and J. Rosenberg. (2010, April)

Traversal Using Relays around NAT (TURN). [Online].

https://tools.ietf.org/html/rfc5766

[8] P. Hancke. (2015, April) webrtcH4cKS: ~ What’s up with

WhatsApp and WebRTC? [Online].

http://techupdates.com/go/1140476

[9] V. Singh, J. Ott, and A.A. Lozano, "Performance Analysis of

Receive-Side Real-Time Congestion Control for WebRTC,"

Packet Video Workshop (PV), 2013 20th International, pp. 1-8,

Decembre 2013.

[10] J. Uberti and J. Lennox. (2015, March) Improvements to ICE

Candidate Nomination. [Online].

https://tools.ietf.org/html/draft-uberti-mmusic-nombis-00

[11] K. Haensge and M. Maruschke, "QoS-based WebRTC Access

to an EPS Network Infrastructure," Intelligence in Next

Generation Networks (ICIN), pp. 9-15, February 2015.

[12] reThink. [Online]. https://rethink-project.eu/

[13] ITU-T, Series G: Transmission systems and media, digital

systems and networks, May 2003, One-way transmission time

G.114 E 24058.

[14] John Evans and Clarence Filsfils, Deploying IP and MPLS QoS

for multiservice networks. San Francisco, USA: Morgan

Kaufmann Publishers, 2007.

[15] 3GPP. (2014) TR 26.975 Specification detail. [Online].

http://www.etsi.org/deliver/etsi_tr/126900_126999/126975/12.

00.00_60/tr_126975v120000p.pdf

[16] Michael Anehill, Magnus Larsson, Göran Strömberg, and Eric

Parsons, "Validating voice over LTE end-to-end," Ericsson

Review, pp. 1-10, February 2012.

19th International ICIN Conference - Innovations in Clouds, Internet and Networks - March 1-3, 2016, Paris.

57

[17] W3C. (2015) Identifiers for WebRTC's Statistics API.

[Online]. http://www.w3.org/TR/webrtc-stats/

[18] Chromium Browser sources. (2015, June) appspot.com.

[Online]. https://webrtc-codereview.appspot.com/51149004

[19] Arto Heikkinen, Timo Koskela, and Mika Ylianttila,

"Performance evaluation of distributed data delivery on mobile

devices using WebRTC," Wireless Communications and

Mobile Computing Conference (IWCMC), 2015.

19th International ICIN Conference - Innovations in Clouds, Internet and Networks - March 1-3, 2016, Paris.

58

