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Abstract—The pervasive spread of smart objects is encouraging
the development of smart environments, such as Smart Cities
and Smart Homes. In the Internet of Things (IoT) vision, even
the most common and simple object is expected to acquire
information from the surrounding ambient and to cooperate with
other objects to achieve a common goal, fulfilling the expected
quality requirements. In such a heterogeneous and complex
scenario, optimal allocation of resources (e.g. available energy,
computing speed, storage capacity) is paramount in order not to
overload some objects.

In this paper, a framework that makes use of Virtual Objects
(VOs) to manage the objects of an IoT system is proposed. Using
VOs, the resources, functionalities and capabilities available on
the objects are virtualised and exposed to the other objects to
cooperate for executing the deployed applications. A distributed
algorithm for resources allocation based on consensus has been
developed to: distribute the workload among the objects that can
cooperate to the same task; ensure Quality of Information (Qol)
requirements. Simulation results show that, compared to a static
frequency allocation, the algorithm enhances the performance
of the system with an average improvement of 62% in network
lifetime, and confirm the compliance to Qol requirements.

Index Terms—Resource allocation; Internet of Things; Virtual
Objects

I. INTRODUCTION

The Internet of Things (IoT) [1] is a new technological
paradigm that refers to an evolution of the Internet network,
characterized by huge amounts of objects that dynamically
cooperate and make their resources available, with the aim
of achieving a common objective. The IoT is defined as
a revolution for communications and people’s lifestyle [2].
Although the IoT has not yet spread much despite its po-
tentiality, several studies prove how the objects will assume
a predominant role in the future Internet network. The IoT
will offer amazing improvements in the collection, processing
and distribution of knowledge and information, thanks to
the pervasive spread of smart objects. The exploitation of
information and data collected by the objects is going to
improve users’ knowledge, their relationship with nature and
their lifestyle. Technological and social progresses have led
to a transition from Web 2.0 [3] to the semantic, ubiquitous
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and pervasive Web 3.0 [4]. Now this transition is involving
the IoT and it is going to encourage its evolution. Not only
will the IoT technology enable users to communicate with
objects: the objects themselves, including the most common
and simple, will have the ability to communicate with each
other and gain the intelligence to provide information on their
status or acquire data from other objects.

The first step of this work has been studying the state of
the art and the architectural features of the IoT. In particular,
we focused on the concept of Virtual Object (VO) [5], the
virtual counterpart of one or more Real World Objects (RWO),
which virtualises their resources, capabilities, functionalities
and data collected. Starting from the iCore architecture [6], we
have focused on the mechanisms for identifying and selecting
objects, capable of performing a specific task, leveraging the
capabilities of VOs. The logic for the creation of VOs and
the parameters of interest required for the identification and
selection of candidates capable of performing the required
tasks have been analysed.

Taking advantage of the features offered by the VOs,
we propose an optimisation process that allows to distribute
adequately the workload generated by the execution of IoT
application tasks, among the objects that can carry them out.
The objective of the consensus-based task allocation algorithm
presented in this paper is twofold: considering Quality of
Information (Qol) constraints in the process of allocating
tasks to the IoT objects, so that the fulfillment of application
requirements is ensured; optimising the use of resources of the
underlying IoT system.

In Section II some previous studies on the concept of
virtualisation in IoT are presented. Section III provides a
functional analysis of the reference architecture and the prob-
lems related to the allocation of services focused on Qol
achievement. Section I'V tackles the description of the resource
allocation model developed. The implemented solutions have
been tested through simulations on two application scenarios
specifically modeled. Simulations and experimental results
will be presented in Section V. Finally, conclusions and future
works are presented in Section VI.
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II. PRELIMIARIES

The IoT consists of intelligent objects connected to the
Internet, which cooperate to support the execution of complex
applications and services [1]. These objects are equipped with
sensors and actuators, which provide context-awareness and
enable them to gather, process and exchange data, in order to
react to external stimuli. The need to represent, store, discover,
search, exchange and manage the huge amount of information
generated by the objects, motivated the development of se-
mantic technologies [7].

Although the IoT lays its basis on the use of simple tech-
nologies such as RFID tags [8], the use of Cloud Computing
has greatly enhanced its capabilities. With Cloud Comput-
ing [9], even devices characterised by limited computational
capacities are able to execute intricate computations required
for effective performance of assigned applications.

With a thorough comparative analysis between Cyber Phys-
ical Cloud (CPC), Cloud of Sensors (CoS) and 10T, the authors
in [10] show how these three technologies exploit Cloud
Computing potentialities, and how much they are related in
the objective of linking digital and real worlds. They base
on the concept of object virtualisation, according to which
the physical components of an object can be abstracted and
made available as virtual resources. Virtualisation allows the
higher layers of the IoT architecture to: i) interface with
devices; ii) provide device with the required commands,
adapted to their native communication protocol; iii) monitor
their activities and connection capabilities. A VO is the virtual
counterpart of one or more real objects, and as such it
inherits all their functionalities, characteristics and acquired
information [11]. Since virtualisation is such a fundamental
component of the IoT, many well-known middlewares, such
as SENSEI [12], IoT-A [13] and iCore [5], are based on it.

Combining virtualisation with context-awareness, the IoT
system is able to achieve a clear knowledge of the resources
and functionalities made available by its objects. Since the IoT
is characterised by scarse resources, they need to be managed
and orchestrated in an efficient way. The process of detecting
the most appropriate IoT objects’ resources that are able to
fulfill the applications’ requirements, needs to be accomplished
in a distributed and automatic way, in order to cope with the
dynamic nature of the IoT.

Resource allocation has been extensively studied in Wire-
less Sensor Networks (WSNs), particularly with reference to
network lifetime. In [14] a distributed task allocation that
focuses on the reduction of the overall energy consumption and
task execution time into a heterogeneous WSN is proposed,
with attention to nodes’ residual energy. A similar approach
is studied in [15], where a distributed algorithm based on
particle swarm optimization is proposed. In [16], the issue of
energy saving in Wireless Cooperative Networks is addressed.
The algorithm proposed in this paper aims to find a trade-
off between efficiency and fairness, by using a game-theoretic
approach. Since the main criticality of wireless networks is
their lifetime, all these algorithms mainly focus on maximizing
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this resource. Nevertheless, IoT nodes have more heteroge-
neous characteristics and capabilities, and therefore even other
resources, such as residual memory and processing capacity,
are considered scarce.

As far as IoT networks are concerned, resource allocation
is an open issue. Most of the existing studies on resource
allocation for IoT are focused on IoT service provisioning,
such as in [17] and [18]. In these studies, the aim is to allocate
the resources that enable service execution. However, they do
not focus on finding the best configuration that corresponds
to an optimal resource allocation. None of the works found
in the literature tries to find the optimal resource allocation
associated to the lowest impact of the application assigned to
the network. A first attempt in resource optimisation was made
in [19], where Qol was not taken into account.

III. REFERENCE ARCHITECTURE

The reference architecture proposed in this paper is based on
the iCore framework [6]. As shown in Figure 1, it is subdivided
into three functional levels: i) VO Level where VOs perform
object virtualisation; ii) CVO Level that has the aim of
fulfilling the application requirements by VO composition and
functional enrichment; iii) Service Level that processes user
requests to decompose services into applications.

The entire architecture is based on the concept of VO, which
is a semantically and functionally enriched representation of
one or more RWO [20]. Thanks to its self-management and
self-awareness capabilities, it offers cognitive and intelligent
services and enables objects’ (services) composition.

The result of objects’ composition is a Composite Virtual
Object (CVO), which is a mash-up of VOs and other CVOs.
CVOs are autonomic entities able to render services according
to user perspectives and application requirements.

The highest layer of the architecture is the Service layer,
which receives the user requests and dynamically maps them
to the CVOs and VOs required to perform them.
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Fig. 2. VO Information Model used. Solid border boxes correspond to
elements included in the iCore VO Information Model. Dashed border boxes
are new elements introduced by the proposed architecture

A. The VO Creation Process

The VO creation process is divided into: VO template
creation and VO instantiation [20]. The VO template, or VO
description, enables the virtualisation of the object resources,
characteristics and functionalities. It is created so that new VOs
can be easily described by reusing the same template used by
similar VOs. Furthermore, the VO template is envisioned to
ease the automated VO discovery, search and selection func-
tionalities. As soon as an object joins the IoT, a corresponding
VO is instantiated using an appropriate VO template, and it
is linked to it. As depicted in Figure 2, the iCore information
model, according to which templates are created, gathers the
informations related to ICT objects (e.g. sensors, smartphones,
RFID tags), non-ICT objects (e.g. tables, rooms), and VO
functional characteristics.

In order to account for object mobility and Qol specifica-
tion, we propose a modified version of the iCore information
model. This enhancement is meant to improve the VO search,
discovery and selection processes that enable the assignment
of tasks, in which services are divided, to the most appropriate
VOs, with a Qol-oriented perspective. Figure 2 shows the new
elements in dashed border boxes:

e Indoor Location: evaluated using local patterns, it is
used to improve the object indoor research, where geo-
localisation is not sufficient.

« Temporal Feature: it refers to the last activity of an object,
or the last collection of data. It is needed to know whether
a resource is available, or how old its updates are.

e Qol Parameter: it encompasses all the Qol parameters
related to the object, such as data accuracy and timeliness.

B. The Reference Scenario

The distributed nature of the IoT leads to the conclusion
that some functionalities can be distributed across the RWOs
controlled by the VO layer. The objective of the architecture
developed in this paper is to enable the distribution of func-
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Fig. 3. Location of the proposed algorithm into three typical IoT scenarios
with reference to objects’ resource allocation

tionalities that are required by the Service layer, to those VOs
that have the required capabilities and/or characteristics. In
particular, we focus on the allocation of application tasks to
RWOs that can cooperate to perform them, in order to ensure
an optimal exploitation of the available resources (i.e. lifetime,
storage capacity and computational speed), and the compliance
to Qol requirements.

We identified three possible scenarios, depicted in Figure 3.
In the first case, the assigned task requires resources that
are located in the same area. RWOs are intelligent objects
characterised by sufficient resources, which communicate us-
ing short-range technologies. In this case, the optimal task
allocation process itself can be implemented on the appropriate
RWOs, so that resource management is located as closest as
possible to where they are used (see Figure 3(a)).

In the second case (Figure 3(b)), RWOs are still located in
the same area, but resources provided by them are scarce. In
this case, the resource allocation process cannot be performed
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on RWOs, but it can still take place on the gateway, which
can act as a VO including all the involved RWOs.

The third case (Figure 3(c)) refers to RWOs located in
different areas far from each other, which need to connect
to the Cloud to communicate. It is obvious that a distributed
solution would not be suitable to this case, and therefore a
centralised one is preferable.

In the following Sections we focus on the first and second
scenarios.

IV. THE RESOURCE ALLOCATION MODEL

Herein, we present the proposed Qol-oriented resource
allocation algorithm, which provides mechanisms that enable
applications to exploit the best set of available objects re-
sources, which are exposed through their related VOs. The
objective of the proposed algorithm is twofold:

e Resource optimisation. It optimises the use of the avail-

able resources, assigning to the VOs the most appropriate
frequency to execute the task, so that they cooperate to
perform it according to their capabilities.
Qol accomplishment. In order for Qol constraints to be
applied, the algorithm uses Qol parameters measured on
RWOs and selects the VOs that are able to achieve at
least the minimum Qol required. Furthermore, in order
to cope with the accuracy required by the application,
the task execution frequency is assigned to VOs taking
into account the minimum execution frequency required
by the Service layer.

A. Virtual Object Selection

The optimisation mechanism proposed relies on the CVO
layer, where the requests coming from the Service layer, and
converted into specific parameters, are processed. The CVO
layer first detects which VO Templates are needed to compose
the CVO. Then, a query is sent to the VO layer, which starts
a semantic search to detect all the available VOs that comply
with functionality, location and reference time requirements.
As a result, these VOs, that are able and available to take part
in the execution of the application task, are activated by the
VO layer. The resource allocation optimisation algorithm is
then run on this group of VOs.

B. Consensus-Based Resource Allocation Optimisation

The resource optimisation strategy proposed in this paper
relies on a consensus-based algorithm where VOs decide the
amount of resources to allocate to a task, according to the con-
straints request by the higher layers. The consensus algorithm
presented in the following focuses on lifetime optimisation, but
it can be easily extended to focus on other objects’ resources
than residual energy, such as storage capacity or processing
speed.

As defined in [19], the lifetime of a node is the time until
it depletes its battery. The lifetime of the node associated to
VO 1 at time ¢ is expressed as

E;* () _
R ACESAON

Ere(t)
S Eg - fan(t) + PE()

Ti(t) = (D
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where E7°(t) is its residual energy, P5.(t) and E, are the
power and energy consumed by the RWO associated to VO
i to perform task k, f;z(¢) is the frequency at which VO 4
performs task k, and P?(t) is the offset power consumed by
the other activities of the node (e.g. tasks that are assigned
directly by the user).

The network lifetime is defined as the time in which at least
one node has exhausted its energy reserve from the battery: in
fact, when this condition is reached, the network topology is
disrupted [21]. We base on the assumption that optimising the
network lifetime is equivalent to adjusting the VOs’ power
consumption so that their associated nodes reach the same
lifetime [19]. This means that, taken two VOs ¢ and j that
received an activation request for task &, at time ¢. when the
algorithm converges Ti(tc) = 7;(t.). Therefore

Z ik (te) - fin(t Za]k fin(t

where o;(t) = Ef./E7°°(t). Defining the total amount of
power consumption contributions with the exception of task

)+ P(t )+ P (te) (2)

koas 6ik(t) = >y ca(t) - fu(t) + PP (t), from Equation 2
follows that
7 62 c) — 67‘ c
Filte) = ZJ’;(( ; fin(te) + k(ta)jk(t;)k<t NG

According to accuracy constraints provided by the higher
layers, the collaborative completion of a task is required to be
performed at a reference frequency Fj“/ =", fik(te). Using
Equation 3 in this identity, after some simple computat10ns and
multiplying and dividing by the number Ny of VOs involved
in task k, it is straightforward to obtain

Pk Vi (te)
azk( ) flk)( = + = _52’]@ tc (4)
)= Br(te)  Brlte) (ke
, _ 5
with P = ]’{7716’ Bk(tc) = Nik . Z] m and
i (te) = J\}k .Zj aJJ’;((tt)) The ¢, value can be forwarded

directly by the VO layer. It is easy to notice that 3y (t.) and
7k (t.) represent mean values evaluated over all the VOs that
are able to perform task k. Therefore, their value can be
estimated in a distributed way using an average consensus
algorithm [22].

We suppose to have a system that is not subject to pertur-
bations and where nodes stay connected until the algorithm is
converged. Nevertheless, the update functions can be easily
adjusted according to [22], in order to be robust against
perturbations and topology changes. Since variations of «
and ¢ are negligible over the time needed by the algorithm
to converge, in the following we consider them constant and
omit their dependence from time. Nevertheless, if substantial
variations of them are experienced, the algorithm needs to start
again.

C. Lifetime Optimisation Algorithm

As soon as VO ¢ receives an activation request for task
k from the VO layer, it verifies if it is able to satisfy the
minimum level of Qol required by the higher levels. If it is not,
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it sets f;; to 0 and informs the VO layer about it, so that it can
update the (j value. Otherwise, it initialises its local values
Bir = 1/, and 7, = ;1 /s, and starts the consensus with
its neighbours. Whenever VO i receives an update from one
of its neighbours j, it computes the following updates:

&= Bik — M1 Z(ﬂik — Bik) (52)
J
Vi = Yik — A2 Z(%‘k — Yjk) (5b)
J
+
+ _ Bik + 1 < 1 )
L. S U S (S | sc
i 90:;@ + 7;]; ik ik Ti_A,_ k ( )

where A\; > 0 and A2 > 0 are tuning parameters that affect the
convergence time and steady-state accuracy [22]. If ;,; >0
and if its value has changed after the update, the VO sends
the updated value of i} and ~} to its neighbours. It may
happen that f; < 0. In this case, the VO cannot participate
into executing task k. Therefore, it sets f;; to 0 and informs
the VO layer, which updates its ¢y, value. The algorithm can be
considered converged when f;; does not change consistently
after the updates.

V. PERFORMANCE ANALYSIS

In order to demonstrate how the presented VO management
framework improves the performance of the entire underlying
infrastructure, a healthcare application scenario was identified
and modeled. This scenario comprises three smart environ-
ments: a Smart Home, a doctor’s office and a drugstore.
In the modeled scenario several objects collaborate in the
execution of tasks for the deployed applications, e.g. vital
signs and ambient sensors, smart cameras, and smartphones.
To demonstrate the performance of the proposed algorithm,
a wide series of tests was run using the Simulink simulation
tool. Each test takes into consideration the activation of various
tasks at the same time, and different configurations of devices
that can simultaneously perform the required application. The
following parameters were set for each task: the reference
frequency for the execution, the values of the calibration con-
stants of the algorithm, and the minimum Qol parameters to
achieve. For all the modeled configurations different reference
frequencies have been used and, from time to time, VOs
corresponding to different resources are enabled to participate
in the optimisation process.

Figure 4 shows the algorithm’s behaviour in an illustrative
example. The plot refers to a test in which four devices par-
ticipated to the optimisation process. The frequency allocation
is performed by the algorithm when each task is activated.
The peaks correspond to the points where a new task is
activated. At each task’s activation the execution frequency is
equally divided among the devices that can perform the task,
initializing the algorithm that starts the process as shown by
peaks corresponding to this point. At each step the algorithm
decreases the devices’ lifetime difference to reach converge.
In this case only three devices are able to perform all the
three tasks (solid, dashed, and dash-dot lines). Therefore, their
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Fig. 4. Example plot of lifetime’s convergence: each line represents the
lifetime for a different member of a group of four objects implementing the
proposed algorithm

lifetime will converge to a value that’s lower than that of the
fourth device (dotted line), which is not able to perform the
third task. Its lifetime will be higher than that of the other
devices because they will take charge of a higher workload.

The data analysis shows that the optimisation process brings
in all cases to an improvement of the lifetime of the network.
The tasks are assigned in an optimised manner, so that the
execution is heavier on devices with higher energy resources,
preserving the energy expenditure of the others. To demon-
strate the algorithm’s validity and the proper functioning of the
optimisation process, we compared the network lifetime results
to the network lifetime calculated using the task’s reference
frequency, divided by the number of devices available to run
it. In this way, without any optimisation, the frequency is
distributed equitably among devices regardless of their energy
resources. This value of non-optimised lifetime was then
compared with that resulting from the optimisation process, in
order to evaluate the obtained average percentage of lifetime
improvement. Figure 5 shows the average values of percentage
improvement in network lifetime, depending on the number
of assigned tasks (Figure 5(a)) and the number of devices
involved in the optimisation process (Figure 5(b)). In all
the considered cases the obtained values from the tests have
led to a significant improvement of the lifetime, thanks to
the optimisation process. The graph shows how the increase
in the number of assigned tasks does not impact on the
improvement of the average lifetime. However the increase
in the number of involved devices, leads to an increase in the
average improvement of lifetime.

TABLE 1
AVERAGE STEPS OF ALGORITHM’S CONVERGENCE

1 2 3 4 5
Assigned tasks 43 92 156 159 181
Involved devices 88 112 166 171

We also analysed the time performance of the process.
Table I shows the algorithm’s convergence time in function
of the average number of assigned tasks assigned and the
number of devices involved in the optimisation process. As
it can be seen from results, the algorithm’s convergence time
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Fig. 5. Average values of the percentage improvements in network lifetime

is influenced both by the number of assigned tasks and the
number of devices that participate in the optimisation process.
From them depends the number of steps that the algorithm has
to perform to achieve the lifetime convergence. The tests have
shown that for a higher number of assigned tasks or involved
devices the convergence time of the algorithm increases.

VI. CONCLUSIONS

The analysis of the issues related to the identification and
selection of resources through the use of VOs, has allowed
to implement a process of optimisation of the allocation of
tasks, that improves the Qol offered by the object resources
in an IoT scenario. The consensus-based algorithm on which
the process is based uses the parameters measured on the
physical resources and subdivides the frequency of tasks’
execution, required by the application, among the VOs, so as
to provide the best possible Qol. The modeled scenario ensures
the validation of the proposed framework and the improvement
of its performance. In all the tests performed the simulation
results have demonstrated an average improvement of 62% in
network lifetime.

The optimisation process implemented has the goal to select
VO instances that would guarantee the minimum Qol level
and improve the lifetime of objects. Future developments
will focus primarily on the implementation of the proposed
framework on real devices, in order to assess directly its
behavior in the case of real transmissions between objects.
Another aspect upon which future development will be focused
will be the study of a multi-objective algorithm that will also
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take into account other resources, such as storage capacity and
processing speed.
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