
A Method for Virtual Extension of LZW
Compression Dictionary

István Finta∗, Lóránt Farkas∗, Sándor Szénási† and Szabolcs Sergyán†
∗Technology and Innovation, Nokia Networks, Köztelek utca 6, Budapest, Hungary

Email: istvan.finta@nokia.com
†John von Neumann Faculty of Informatics, Óbuda University, Budapest, Hungary

Email: szenasi.sandor@nik.uni-obuda.hu

Abstract—Lossless data compression is an important topic
from both data transmission and storage point of view. A
well chosen data compression technique can largely reduce
the required throughput or storage need. As a tradeoff, data
compression always requires some computing resources which
are in a correlation with the achieved compression rate. For a
particular use case the best suitable compression method depends
on the statistical characteristics of the data, the applied computing
paradigm and the data access pattern. In this contribution we
will introduce an extension of LZW based compression technique
which overall performs well in case when a relatively long
substring occurs quite frequently in the file to be encoded.

Keywords—Data Compression, Lossless Data Compression, En-
coding, Decoding, Lempel-Ziv, LZW, LZ Family, LZAP, LZMW,
Dictionary-based Compression

I. INTRODUCTION

In telecommunication networks value added applications
like OSS or CEM frequently require data transmission from
network elements towards the (usually centralized) Operat-
ing Support System(OSS) or Customer Experience Manage-
ment(CEM) application. Typically, such data takes the form
of CSV messages where values are a-priori mapped to keys
via configuration files. In other typical cases such data takes
the form of html files, where the context of data is described
in the data model synchronized ’out of band’, before the actual
data comes in. For instance the ID of a performance counter
is specified so that the OSS or CEM application can find
its meaning after an appropriate mapping of the ID to the
definition of the counter.
Passing clean text CSV or html is inefficient. Considering the
case of performance counters there may be thousands of them
defined per network element type, therefore their transmission
especially in the redundant html format with all the tags
included in the content takes away considerable bandwidth
from the usually expensive backhaul links. This is especially
true in the next generation mobile networks where the number
of base stations might be in the order of tens or hundreds of
thousands.
In many cases mobile operators mandate network equipment
vendors to store OSS or CEM data for several years in
a queryable form. While aggregations make it possible to
decrease the granularity of the data over time, in certain cases
a drill down in historical data is required to reveal certain
anomalies. The granularity of aggregated data is usually not
sufficient for drill down operations. Therefore it is worth
to consider the usage of lossless compression technique to

increase the storage capacity for raw data.
Data compression is a widely used method to reduce the
original size of the data to be stored or transmitted. There
are two main types of compressions: lossy and lossless com-
pression. In this paper an extension of a lossless compression
algorithm will be introduced. From now on when we speak
about compression we always mean lossless compression type,
except when marked differently.
Compression method basics are covered by the discipline of
information theory. Lossless compression methods can effec-
tively compress low entropy files, where the entropy of the file
is defined generally in the information theoretical sense as a
measure of the amount of information that is missing before
reception of the file.
According to [1] from algorithmic point of view there are three
main compression approaches:

– Sliding Window Algorithms,

– Dictionary Algorithms and

– Non-dictionary Algorithms.

During our investigations we have examined the application of
compression methods in big data environment for telco data
and as a side effect we have discovered the there may be
room for further development in case of LZAP and LZMW
algorithms. However LZAP and LZMW are based on LZW.
There are several LZW derivatives, where the principle is
the same, but due to some modification in special cases the
derivatives can achieve better performance. Lempel and Ziv
invented the LZ77 and LZ78 dictionary type compression
algorithms in 1977 and 1978. In 1984 Terry Welch modified
the LZ78 algorithm and invented the LZW algorithm [2].
Therefore in the Background section LZW and related methods
will be described in more detailed, where we will identify the
development possibilities of the algorithm.

II. BACKGROUND

A. LZW encoding

During encoding LZW maintains a dictionary in which the
entries are divided into two parts. The size and content of
the first part, which is mostly called initial part, is immutable
and contains all the individual symbols from a pre-defined
alphabet with a sequence number associated with the position.
The second part is a dynamic one and contains at least two
symbols long words over the alphabet. The numbering of the
dynamic part begins from the end of the initial part without

19th International ICIN Conference - Innovations in Clouds, Internet and Networks - March 1-3, 2016, Paris.

184



Fig. 1. LZW Encoding Example

overlapping.
Supposing that our alphabet is the set of ASCII characters and
we have an input text to be compressed, the dynamic part of
the dictionary is built up according to the following rule:

• The encoder builds words (-Wb) from the input text
character by character and looks up Wb in the dictio-
nary.

• The encoder builds Wb until it is not available in the
dictionary, or when the encoder reaches the end of the
input text. When the Wb is not in the dictionary this
means that Wb is one symbol longer than the previous
longest character sequence with the same prefix Wcm.
Wcm is also called current match.

• Wb will be written into the first empty position of the
dynamic part of the dictionary. Alongside the encoder
issues the sequence number of Wcm.

• Then the encoder forms a new Wnb from the last
character of Wb.

• Then swaps Wb with Wnb, drops Wnb and starts a
new cycle.

When a dictionary gets full the dynamic part will be flushed
out and rebuilt periodically to stay adaptive.
In Fig. 1 encoding of ”AUTO...” input is visible.

B. LZW decoding

In case of decoding the decoder has to have the same initial
dictionary. The decoder reads the issued sequence numbers.
Based on the numbers and the static part of the dictionary the
decoder is able to rebuild the dynamic entries. This information
is enough to reconstruct the input text.

C. LZW Problem Scenarios

As it is visible from section II-A the dictionary is built quite
slowly. This means that the encoder can increase the stored
entries by one character compared to the previously longest

prefixes. In case when a relatively long substring occurs quite
frequently, due to the dictionary construction strategy, the full
coverage of that particular substring may require at least as
many entries as long the substring itself is(Problem 1/P1).
The situation is even worse if two frequently occurring
substrings(W1,W2) differ from each other only in the first
character. In this case, due to the dictionary construction, full
coverage of W1 and W2 may require twice as much entries in
the dictionary as if W1 and W2 were identical (Problem 2/P2).
Besides the above two scenarios supposing that the encoder is
in the middle of the encoding of an input text and there is a
recurring substring W1, the encoder will find that particular
substring in its dictionary (and therefore compress the input
text efficiently) only if it can start the word parsing from
exactly the same character as did it in previous case. It means
that an offset between the previous and actual substring parsing
may significantly decrease the quality of the compression
(Problem 3/P3).

D. LZMW and LZAP encoding and problems

Let us define previous match as the preceeding entry in the
dictionary relative to current match.
LZMW(MW:Miller, Wegman) [3] tries to increase the hit
ratio by inserting into the dictionary the concatenation of the
previous match and current match. The main problem with
this method is that it consumes the entries faster than LZW.
Other problem is that encoding side time complexity is high
compared to LZW.
LZAP(AP:All Prefixes) [4] is a derivative of LZMW and tries
to resolve P1, P2 and P3 according to the following: during
dictionary building besides the full concatenation of previous
match and current match the extended previous matches are
also stored. Extensions here mean all prefixes of the current
match. That is why one match will occupy as many entries in
the dictionary as many symbols reside in the current match.
This approach can significantly increase the hit ratio, however
it is too greedy from memory consumption point of view.

III. METHODOLOGY

The goal is to eliminate somehow the memory consumption
problem of LZMW or LZAP. To solve this problem a new
approach will be introduced which we will call Virtual
Dictionary Extension(-VDE). VDE from processing point
of view resides between LZMW and LZAP. With Virtual
Dictionary Extension we will be able to increase the hit ratio
compared to LZW, but this method will require only as many
entries as LZW.

To make it possible in the dictionary we have to distinguish
the positions of the entries from their indexes/sequence
numbers. In case of LZW, LZMW or LZAP the position
of an entry is identical with its index. In those cases the
distance between two adjacent entries is one. In the followings
dictionary entries will be called primary entries and will be
denoted by p. The idea is that in case of VDE the distance
between two adjacent primary entries is one in terms of
position but can be greater in terms of indexes. The position
associated indexes will be denoted by ip. The indexes which
fall between two ip will be denoted by iv(virtual index).
Virtual indexes, without position in the dictionary, refer to

19th International ICIN Conference - Innovations in Clouds, Internet and Networks - March 1-3, 2016, Paris.

185



composite or virtual entries. That is why dictionary extension
is called virtual. During encoding the indexes will be emitted
instead of positions(as happened in case of LZW, LZMW or
LZAP). The applied composition rule must consider that at
decoding side we have to be able to reproduce the original
input from the mixture of position associated and virtual
indexes. Apart from this boundary condition we can choose
any composition rule which fits to our problem domain. In the
followings we will show the Linear Growth Distance(-LGD)
composition rule.

A. Linear Growth Distance composition rule

As previously mentioned the dictionary has an initial part
and a dynamic part. Supposing that we have an alphabet which
resides in the initial part of the dictionary. The initial part is
immutable therefore in the followings we can consider it as a
constant offset from both position and index point of view. To
make the introduction of VDE-LGD encoding easier we ignore
the initial part caused offset and focus only on the usage of
dynamic part.
In case of LGD we can count the position associated indexes
according to the following formula:

ip =
p ∗ (p+ 1)

2
,

which is nothing else but the triangular number [5].
Considering the linearly growing number of iv between ip,
which is always equal with the number of preceeding primary
entries, with iv we can refer to concatenations which are
generated from words of previous primary positions. With
this technique we can increase the hit ratio with identical
number of entries.

Let’s see an example: the text to be compressed is let’s
say: ”asdfasdr”. Based on the composition rule the following
words will be available:

0 - as , a
1 - sd , s
2 - asd
3 - df , d
4 - sdf
5 - asdf
6 - fa , a
7 - dfa
8 - sdfa
9 - asdfa
10 - asdr , asd
11 - fasdr
12 - dfasdr
13 - sdfasdr
14 - asdfasdr

The primary entries are marked with bold. The emitted
symbol itself is displayed after the comma instead of the
index of the emitted symbol.

B. Linear Growth Distance Encoding

To explain encoding let us first compare the content of
LZW(left column) and VDE-LGD(right column) dictionaries

and the emitted indexes based on the previous example:

0 - as , a | 0 - as , a → ip
1 - sd , s | 1 - sd , s → ip
2 - df , d | 3 - df , d → ip
3 - fa , f | 6 - fa , f → ip
4 - asd , as | 10 - asdr , asd → iv(= 2)

To determine the indexes lets consider the bold ”asdr”
row. In the legacy case ”as” would be the current match.
We propose to start examine after the ”as”(marked by italic)
match the successive primary entry without the first character,
which is in this case ”sd” without ”s”, that is ”d”(marked by
italic). In case of matching one takes the next primary entry,
”df”, and performs the previously mentioned examination
again, ”f”(marked by underline) in this case. However the
next symbol in the input text to be encoded is ”r”, so the
extension process stops here. When the last match has been
reached it counts the Number of Hops(NoH) and maintains
the first match. The index to be sent out will be computed
according to the following rule:

– if the first match is the last match, so there is no
subsequent match, the index is an ip type and counted
based on the dictionary position,

– if the first match differs from the last match the index
to be sent is computed according to this:

iv = ip + (pl − pf ),

where

– pl is the position of last match, and

– pf is the position of first match.

The original LZW algorithm requires the following modi-
fications:

– First we have to introduce a new, so called, buffer area
to be able to simulate and handle the subsequent word
comparison failures. This solution makes it possible to
continue the process in the middle of the ”next entry”,
in case of comparison failure, without information
loss.

– The second difference is that we have to distinguish
from searching point of view the first match from
subsequent matching(s).

– The third difference is that it has to differentiate the
initial part of the dictionary from the dynamic part.
In case of LDG virtual extension will be applied
exclusively to the dynamic part of the dictionary.

C. Linear Growth Distance Decoding

At decoding side the reconstruction of the input works like
the following: when an index arrives - denoted by ia - the
algorithm examines if it is a primary entry or not. To perform
this the following formula is used:

pc =
−1 +

√
1 + 8ia
2

.

19th International ICIN Conference - Innovations in Clouds, Internet and Networks - March 1-3, 2016, Paris.

186



From here there are two main scenarios possible:

– In case when the pc is an integer without remaining
value this means that the dictionary entry searched for
is a primary entry. It is possible to look up the entry
from the dictionary directly.

– Otherwise take the floor function of the computed
position, signed pf . This will provide last primary
entry of match. Then compute the base index from the
position, signed with ib, with the following formula:

ib =
pf ∗ (pf + 1)

2
.

Then with a simple subtraction it is easy to define the
NoH = ia− ib . With this information step back NoH
and start to generate the derivative entry. From here,
if the word is computed, the process continues as in
case of the original LZW algorithm.

There is only a small difference compared to the original
decoder method when the referenced primary entry still not
present: it only can takes place when it depends on the previous
primary entry. To compute the missing reference entry simply
step back with NoH, which is practically 1 in this case. Then
take the first character of that primary entry as an addition
to the previously used entry, no matter if it is a derivative or
primary one. Then this combined entry will be the missing
referenced entry that have to be written into the dictionary.
From here every step takes place according to has been written
before.

IV. RESULTS

In the following we will present some experimental result
regarding LGD. Here we have to note that this is a proof
of concept implementation and lacks lots of optimization
possibilities, but can provide a good overview.

A. Test Environment and Benchmarking

In actual implementation the ASCII-8 has been selected as
initial part of the dictionary.
In practical implementations indexes are represented with
dynamic length. This means that in order to increase the
compression gain, based on the actual position within the
dictionary the number of bytes used to store the dictionary
entry index are aligned. It must be highlighted that during
our testing NO dynamic length codeword optimization was
used. Therefore the comparison of this solution to the original
method is referenced to not-optimized implementations but it
can give good impression about the compression gain. It is
important that both implementations flush out the dictionary.
However, due to LGD, we had to set the fix codeword length
as high as to cover maximum of computed index length. If
we used the same fix length for legacy encoder it would give
false result because there is no need to use as long codewords
as one required due to LGD. To resolve this contradiction the
legacy implementation will appear with two codeword length
representations:

– with an optimal one, and

– with the same one used by LDG implementation.

B. Data characteristics

Two sources/inputs have been selected to test the compres-
sion performance:

– a 310 KBytes CSV file containing customer
experience-related log data (e.g. unsuccessful call),
and

– a 333 KBytes html file representing a performance
measurement log from a network element.

C. Results of VDE-LGD

First let’s see the CSV related compressions at TABLE I.

TABLE I. RESULT OF CSV COMPRESSION

Original
Size - M
[Kbytes]

Number
of
Positions

Codeword
[bytes]

Compressed
Size - C
[Kbytes]

C/M

legacy
LZW 310 4096 3 148 0,477

legacy
LZW 310 4096 2 99 0,319

LGD 310 4096 3 79 0,254

As it is visible LGD performs better all over. Even if legacy
LZW used 2 bytes long index representation according to the
second row.

TABLE II. shows the HTML file compression result:

TABLE II. RESULT OF HTML COMPRESSION

Original
Size - M
[Kbytes]

Number
of
Positions

Codeword
[bytes]

Compressed
Size - C
[Kbytes]

C/M

legacy
LZW 333 4096 3 228 0,684

legacy
LZW 333 4096 2 152 0,456

LGD 333 4096 3 117 0,351

The characteristic of the result is similar: VDE-LGD performs
better than the legacy LZW method.

Now let’s see the speed related measurements. In this
case a ten executions based average is counted and shown in
the TABLE III. and TABLE IV. with both CSV and HTML
inputs.

TABLE III. RESULT OF CSV COMPRESSION DURATION

Encoding
[ms]

Decoding
[ms] Sum [ms]

LZW
Based
Relative
Duration

legacy
LZW 1336.6 1020 2356.6 1

LGD 1318.2 1106.1 2424.3 1.028

TABLE IV. RESULT OF HTML COMPRESSION DURATION

Encoding
[ms]

Decoding
[ms] Sum [ms]

LZW
Based
Relative
Duration

legacy
LZW 2022 1368 3390 1

LGD 1484.8 1431.9 2916.7 0,860

19th International ICIN Conference - Innovations in Clouds, Internet and Networks - March 1-3, 2016, Paris.

187



V. CONCLUSION

As it is visible from the results the compression gain is
not for free. At encoding side more computation, comparison
may required than in case of traditional LZW. But the applied
internal buffer can probably balance the increased number of
comparisons, since LGD encoding always performs better than
LZW encoding. At decoding side the computation overhead,
which is caused by the calculations and the concatenations, is
constantly present and clearly visible from the result tables.
However both side requires further investigations because as
we noted before these are Proof of Concept implementations.
The applied data structure can highly influence the
performance related results. Nevertheless the tests are
proved that with LGD we can achieve better compression
ratio with relatively small performance loss on decoding
side. Besides that the overall performance of LGD can better
in case of write once read once environment, like stream
processing frameworks(Storm [6] for instance). The overall
performance can also better in write once read many times
environment(like Hadoop Distributed File System [7])
considering the achieved compression gain and if the number
of read operations are limited below a threshold.

In LZW Problem Scenarios subsection we have used
terms like ”quite frequent” and ”relatively long”. The positive
experiments inspire us further investigation regarding these
terms. We plan to examine if it possible to introduce objective
measures for this terms and investigate the relation to existing
ones like entropy or information content.

We also plan to examine other distance functions
between position associated indexes and their processing
complexity on both encoding and decoding side, especially
in write once read once and write once read many times
environments.
However, it is visible if we would use constant distance(-CD)
with value two instead of LGD, then we could give back
LZMW.
This means that construction of VDE is backward compatible
with some existing compression method since it forms an
abstraction layer.

Other to consider is the optimal dictionary or buffer
size: this may depend from both the statistical attributes of
the input and the applied data structures.

REFERENCES

[1] History of Lossless Data Compression Algorithms,
http://ethw.org/History of Lossless Data Compression Algorithms,
last visited 2015-09-08

[2] Terry Welch: A Technique for High-Performance Data Compression,
IEEE Computer Society Journal Volume 17 Issue 6, pp 8 - 19, June
1984

[3] David Salomon, Giovanni Motta: Handbook of Data Compression, 5th
edition London, England: Springer-Verlag, 2010, pp. 377-378.

[4] David Salomon, Giovanni Motta: Handbook of Data Compression, 5th
edition London, England: Springer-Verlag, 2010, pp. 378-379.

[5] Triangular Number, http://mathworld.wolfram.com/TriangularNumber.html,
last visited 2015-10-15

[6] STORM - A distributed realtime computation system,
http://storm.apache.org/documentation/Home.html, last visited 2015-10-
15

[7] HDFS Architecture, https://hadoop.apache.org/docs/current/hadoop-
project-dist/hadoop-hdfs/HdfsDesign.html, last visited 2015-10-15

19th International ICIN Conference - Innovations in Clouds, Internet and Networks - March 1-3, 2016, Paris.

188


