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Abstract. Currently, peer-to-peer (P2P) networks suffer from users that do not 
contribute any kind of resources to the P2P community. Those users, which are 
called freeriders, benefit largely from contributions of other users but reduce the 
system performance for contributing users. This paper proposes an incentive 
scheme for P2P networks that motivates users to collaborate within the system. 
The solution that we propose has an impact on the topology formation of a P2P 
network. Using our market-managed topology formation algorithm 
(IUTopForm) for P2P networks, contributing users will be clustered within 
clubs that are different to clubs of freeriders. The differentiation is possible 
because of a reputation system, which considers users’ past contributions. The 
effect of this approach is that service requests of freeriders will take longer to be 
answered (if at all) than service requests of resource-contributing users. We 
illustrate this effect through measurements with our P2P network simulator. We 
also show that clubs are only interconnected if the difference in their reputation 
values is not large. The comparison with Bagla and Kapalia’s approach, which 
inspired our work, shows that the IUTopForm approach improves the overall 
utility of the system. The utility function and the topology formation algorithm 
are described in detail within this paper.  

Keywords: Incentive Scheme, Pricing, Peer-to-Peer Networks, Simulation, 
Market-Management, Trust, Reputation, Economics, Utility Function. 

1 Introduction 

Although there have always been applications that used the peer-to-peer (P2P) paradigm (e.g. 
USENET [22] and FidoNet [12]) from the beginning of the network era, this technology has 
received much more attention during the last 5 years. On the one hand, this was caused by 
widespread availability of network computers and decreasing bandwidth costs. On the other 
hand, “killer applications” like Napster, Kazaa, and Gnutella were developed, which allow file 
sharing in a very simple way. However, P2P networks suffer from two issues. First, in order to 
stop illegal file sharing, the music industry injects faked files into the network. Second, and even 
more severe, many P2P network users do not provide any resources to the P2P network. These 
so-called freerides benefit highly from contributions of other users. Consequently, resource-
contributing/cooperating users suffer in such a network from reduced performance. 



In order to solve this problem, an incentive scheme has to be integrated into P2P networks. 
An incentive scheme provides benefits to those users who contribute resources (may it be content 
or hardware) to the network and reduces the performance of users who do not contribute. A few 
existing approaches on incentive schemes have been proposed during the last years. The one that 
we consider in this paper are from Asvanund, Bagla, Kapadia, Krishnan, Smith, &Telang [5], 
Walsh & Sirer [23], Yang, Chen, Zhao, Dai, & Zhang [26], Cohen [8], and Feldman, 
Papadimitriou, Chuang, & Stoica [10]. While the first four describe implementations of incentive 
schemes, the last analyzes the importance of incentive schemes for the success of P2P networks. 
Our approach, the market-managed topology formation algorithm (IUTopForm) is based on a 
new utility function, which considers the amount of shared content of a user, the distance to 
another user, the similarity in taste with another user, and the other user’s reputation. Since we 
especially focus on P2P file sharing networks, the content that the utility function considers are 
files. Note, any future reference to a P2P network will be in the context of a file sharing 
application. The topology formation algorithm, which we present in this paper, achieves 
significant performance improvements for P2P networks through a combination of different 
approaches. These approaches are: 
• The definition of datasets to find similar interests 
• A use of a reputation system 
• The definition of a utility function for users 
• The definition of a utility function for clusters (clubs) 

The remainder of the paper is organized as follows. Section 2 gives an overview about the 
problems that P2P file sharing networks faced in the past. The architecture of version 0.6 of the 
Gnutella network, the version that our simulation is based on, is described in Section 3. An 
overview about previous research on incentive systems for P2P systems is given in Section 4. 
Our topology formation algorithm is described in Section 5 and Section 6. Finally, we conclude 
by presenting our measurement results in Section 7. 

2 File Sharing of Music Files and Countermeasures 

Napster was first released in the fall of 1999 and became increasingly popular during 2000, 
introducing millions of users to P2P file sharing, more specifically, to sharing of digital music 
files in MP3 format. Napster’s architecture was not purely distributed, since the search for files 
was performed on a central server. Therefore, in July 2001, the service could easily be shut down 
by a judge's order after the music industry successfully sued Napster for copyright infringement 
[16]. 

Given the success of Napster, it came as no surprise that many purely decentralized file 
sharing applications were created to provide a similar service to about 13 million users that 
Napster had during its peak. One of the earliest attempts was Gnutella, in March 2000. The first 
client was developed by Nullsoft, a small developer studio owned by AOL. Its development 
continued in several distinct projects. Nowadays, there are numerous different clients 
interoperating by the standards defined by the Gnutella Developer Forum (GDF) [23]. The 
original Gnutella protocol is nowadays referred to as Gnutella version 0.4 and is rather outdated, 
although it was a technical revolution at its time. Changes and extensions, which are 
incorporated in all major clients, will soon be standardized as Gnutella version 0.6 by the GDF 
[13]. However, scalability issues with the 0.4 protocol hindered a success similar to Napster’s. 

The FastTrack network and its most popular client Kazaa did not have these technical 
problems. The FastTrack protocol is fully decentralized and allows for swarming, i.e. 
downloading different parts of the same file from several hosts to increase throughput through 
parallelization.  

Recently there has been a significant decline in users on the FastTrack network [17]. This is 
attributed to several factors. Firstly, the lack of innovations in the P2P clients, the protocol, and 



the bundled adware and spyware that has plagued users of the official clients, has driven the 
more tech-savvy users to alternative networks like Gnutella and eDonkey. Secondly, the lawsuits 
by the music industry have specifically targeted Kazaa hosts sharing over 1000 files, causing 
users to reduce the amount of shared content or to completely desert the network. Last, but not 
least, the music industry's tactic to introduce bogus files into the network, sometimes described 
as “polluting the pool”, has had success in spoiling the file sharing experience. These files are 
offered by hosts under the control of firms like Overpeer, which specialize in anti-piracy 
solutions. The files contain either looped parts of the advertised song/movie or plain noise. 
Because of a design flaw in the FastTrack protocol, only parts of a file are hashed, allowing 
malicious nodes to advertise bogus files with the same hash as the respective original file. 
Because the clients download segments of a file from multiple sources, only one source has to be 
malicious to corrupt the downloaded file. Another problem is the increased efficiency of these 
firms in mimicking the appearance and behavior of “normal” file sharers 1.  

It can be expected that the arms race between the P2P developers and the content distributors 
will continue in the near future. The latest releases of Gnutella and eDonkey clients block certain 
IP-ranges containing malicious nodes. As a next step, copyright holders might release modified 
versions of open-source clients that interfere with normal network operation. A possible answer 
for the Gnutella vendors would be to only accept connections to trusted clients, i.e. clients with a 
high reputation value. 

3 The Gnutella Protocol 

For this work, the Gnutella protocol has been chosen, since it is widely used and researched. It 
has been developed in an open-source process, making information about it easily available. 
Nevertheless, the algorithm that has been developed within this work could be applied to any 
other P2P network using the Ultrapeer paradigm and relying on flooding for resource discovery 
(e.g. the FastTrack protocol). 

The stable version of the Gnutella protocol is version 0.4, but this version is no longer in use 
in its pure, original form, since it has been shown that it does not scale up to bigger network sizes 
[19]. Due to the open nature of the protocol, with several independent clients using it, there is no 
strict standard adhered to by everybody. However, the basic features defined in the specifications 
for version 0.6 are widely adopted and will be followed in this work. 

3.1 Basic Architecture of the Gnutella Network 

The Gnutella network, often referred to as the GNet, is fully decentralized, i.e. there are no 
central servers. There are two types of nodes in the GNet, Ultrapeers and Leafs (see section 2.3 
of the protocol definition in [18]). A Leaf is connected to several Ultrapeers (usually three) and 
does not have connections to other Leafs (Fig. 1). An Ultrapeer is a reliable, powerful node that 
handles most of the routing, so that the majority of nodes (Leafs) is not overwhelmed by the 
overhead of network organization. The number of Leafs that an Ultrapeer is connected to 
depends on the user’s choice and the specific client used, and usually lies between 30 and 300 
Leafs. Ultrapeers also maintain connections to several (usually five) other Ultrapeers (Fig. 1). 

Ultrapeers use the Query Routing Protocol (QRP) to route requests for files. A file request is 
only forwarded to a Leaf that has been determined to be able to answer the file request. The QRP 
is based on hashing filenames of shared files, accumulating the hashes in a table (QRP table) and 

                                                           
1 In the beginning, it was rather simple to identify malicious users and bogus files. User names were 
generated by a simple scheme (commonly used words concatenated by a two digit number) and the file 
names contained phrases like “no loops” or “real version”. The host that offered the bogus file always had 
broadband connections. Now, all these give-away-clues have been eliminated. 



storing the tables at the Ultrapeer [20]. Therefore, an Ultrapeer can be seen as an indexing server 
for the connected leafs. 

Fig. 1 The two types of nodes in the GNet are Ultrapeers and Leafs 

The election of Ultrapeers is self-organized (see section 3.7 of the specifications [18]). There 
are several requirements that a node has to fulfill to be considered capable of becoming an 
Ultrapeer. The requirements state that it must not be located behind a firewall, have sufficient 
resources (CPU, RAM, and bandwidth), and a high uptime. An Ultrapeer-capable node can 
become an Ultrapeer, if there is a need for more Ultrapeers, i.e. there are only a few Ultrapeers 
with open connection slots. 

3.2 Finding an Entry Point into the Network 

To connect to the GNet, a node must know the IP address of at least one other connected node. 
This is done by accessing node addresses stored during a previous successful run or by referring 
to a GWebCache. This is a script, which is located on a Web server and stores node addresses 
and URLs of other GWebCaches. If there are no node IP addresses and no working 
GWebCaches known to a node, it will not be able to make a connection to the Gnet (see sections 
2.1 (Bootstrapping) and 3.2 (The Web Caching System) [18]). 

3.3 Querying the Network 

As described in section 2.7 [18], a node sends Query packets to connected nodes to find out who 
offers files with filenames containing certain search terms in the GNet. A Query packet contains 
a 16-byte long Global Unique Identifier (GUID), a Time-To-Live (TTL), and a hops value. 
Before a node forwards a Query packet, the TTL is decremented and the hops are incremented. If 
the TTL becomes zero, the Query will be dropped. Otherwise, it will be sent to the connected 
Ultrapeers and to the connected Leafs if the QRP demands it. A Query is never forwarded to the 
node that sent it. If a Query with the same search term and the same GUID has already been 
received, the duplicate is dropped. Normal values for the TTL are three or four, because this 
seems to be a good compromise between coverage and generation of network load. 

If a Query is received by a node and the search terms match one or more files, a QueryHit is 
generated. The QueryHit contains the issuing node’s IP address, matching filenames, the same 
GUID as the Query, a TTL that is one higher than the number of hops the Query took to reach 
the answering node and a hops value of initially zero. A QueryHit is treated similar to a Query, 
with the difference that it is only forwarded along the way the associated Query came. For this 
purpose, each node keeps a routing table, containing information about received Queries. Once a 
querying node receives a valid answer, it will negotiate the file transfer directly with the 
responding node determined by the IP address in the QueryHit packet. 

 

Ultrapeer Leaf



4 Existing Incentive Schemes for P2P Networks 

The goal of incentive schemes is two-fold: Firstly, the sharing of files should be encouraged; 
secondly, traffic costs are supposed to be reduced. We describe three of these schemes in this 
section. However, only the scheme that is the basis for our scheme is explained in more detail. 

4.1 Credence P2P Network 

Walsh & Sirer developed an incentive scheme for their P2P network in order to exclude 
malicious users [23]. The incentive scheme is based on a voting system. If a node needs to make 
a decision whether it can trust another node, it requests votes about the other node from the 
network. Based on the returned votes, the weighted average of votes is calculated. The weights 
are set according to experiences from earlier requests. This algorithm is based on a reputation 
system. It does not consider any kind of topology.  

4.2 Maze P2P Network 

Yang, Chen, Zhao, Dai, & Zhang developed a P2P file sharing application (called Maze) with a 
centralized search engine [26]. One of Maze’ main characteristics is its evolving incentive 
scheme. It is based on a set of incentive policies that are driven by user feedback from forums. 
Users get points awarded for uploading files and get points subtracted for downloads. 

In detail, a new node gets 4096 points on its account P initially. Each Mbyte uploaded results 
in 1.5 points. The cost of a download is tiered, depending on the byte volume: 1 point per Mbyte 
within the first 100 Mbyte; 0.7 points per Mbyte between 100 and 400 Mbyte; 0.4 points per 
Mbyte between 400 and 800 Mbyte; 0.1 points for each Mbyte thereafter. Users with an account 
of less than 512 points get at most a bandwidth capacity of 300Kb/s. Otherwise, each request is 
ordered according to the value T = requestTime – 3 log (P). Requests with a top ranking get 
more resources. However, this has not been specified in the paper. 

Besides, it has to be noted that the success of this scheme is influenced by the fact that users 
with a high value on their account get positive recognition (i.e. prestige, respect) within the 
online forum. The shortcoming of this incentive scheme is that it does not evaluate node/user 
behavior (e.g. offering mislabeled or corrupt files), it simply measures all file transfers. 

4.3 The Club Approach 

As introduced by Asvanund et al. [5], the club approach uses economic measures to create a 
more efficient network overlay topology for the Gnutella network. To reach these goals, they 
introduced the economic concept of a club. Clubs consist of one Ultrapeer and its connected 
Leafs and are described as “content-based, self-organizing communities of peers”. 

A node selects a club depending on the utility that it gets when joining the club. Each node 
tries to maximize its utility by attempting to join clubs, which would provide the highest utility to 
them. To determine the net utility that a club delivers, the sum of the costs incurred by each club 
member is subtracted from the sum of all the utility added by each club member. The utility and 
the cost term are scaled by two node-dependant factors. A club only accepts a node’s connection 
request if this will lead to a higher club utility. Club utility is defined as the sum of utilities of 
each connected node in this club. 

The utility that a node y provides to a node x has been defined as the similarity sim of the 
content of y to the past queries of x, multiplied by the weighted amount of content y shares and 
multiplied by the sum of the bandwidth of y and the weighted distance between x and y. The 
similarity function (sim) is based on information retrieval methods analyzing the filenames of the 
shared content. The distance and bandwidth are also scaled by two node-dependant factors. The 



distance term is a function that assigns high values to nodes located close-by in the underlying 
physical network topology.  

The costs that a node y imposes on a node x are defined as the similarity of the past queries 
of y to the content of x, multiplied by the amount of content shared by node x, multiplied by the 
sum of bandwidth minus the distance between x and y. The similarity and distance functions are 
the same as used in the value function. This formula assigns higher cost to Leaf nodes whose 
information needs have a high probability of being satisfied, have high bandwidth, and are 
located on a different backbone.  

Although, as described in [5][6], this approach yields a better network performance for nodes 
sharing content than the standard Gnutella protocol in version 0.6 (and version 0.4), this 
algorithm does not generate an optimal P2P topology. The sub-optimality is caused by the fact 
that no specific utility function has been defined for Ultrapeers. It does not specify how inter-
club connections are evaluated nor made. The utility function itself does not differentiate 
between successful queries (i.e. queries that returned results) and unsuccessful queries (i.e. 
queries that did not return results). Since unsuccessful queries are much more likely to be 
reissued than successful queries, a club that can answer the former is more useful than one that 
can answer the latter. 

5 Topology Formation Algorithm: IUTopForm  

Our algorithm is based on the club approach described in the previous section. However, it 
differs significantly in five items, namely, the system for predicting future information demands; 
the reputation system; the utility function for Leaf nodes; the utility function for interclub 
connections; and the consideration of bandwidth. 

5.1 Prediction of Future Information Needs 

The first characteristic of our algorithm is that it uses two different ways to predict future 
information needs. First, the algorithm considers the unsuccessful queries issued by a node and 
compares them to the other node’s shared content. The underlying assumption is that a user will 
repeat queries that had no results, since a user’s past file needs that could not be fulfilled remain 
relevant in the future. Second, the algorithm predicts future informational needs by comparing a 
node’s shared content to the other node’s shared content. The underlying assumption here is that 
users have a certain “taste” in files, i.e. their future informational needs can be predicted by their 
past informational needs. For example, users that only listen to certain genres of music (e.g. 
classical music, movie soundtracks, etc) will have a certain number of identical files. Therefore, 
the users who share the same taste are more likely to answer each other’s queries. 

There is a limit to the needed similarity in content, though. If two users have the exact same 
set of files, they cannot satisfy each other’s informational needs. All files of one node are already 
in the other’s collection. Therefore, a target similarity that a node wants to achieve can be 
specified as well. The best value needs to be determined empirically in future research.  

5.2 The Reputation System 

With the recent success of P2P networks, the number of users who are selfish (e.g. freeriders, 
who adhere to the rules in a way that benefits them but hurts other users) or who are malicious 
(e.g. hackers or firms like Overpeer Inc. who intend to disrupt the network operations) has 
increased significantly. This behavior of users could be captured through a reputation system, 
like the ones described by Kung & Wu [14], Dutta, Goel, Govindan & Zhang [8], Aberer & 
Despotovic [3], Abrams, McGrew & Plotkin [4], and Lee & Hwang [10]. Our topology 



formation algorithm assumes a reputation system that assigns higher reputation values to 
cooperative (i.e. not selfish and not malicious) nodes. Those nodes earn reputation points by 
providing services to other nodes. How reputation is gained, where it is stored, and how it is 
verified is transparent to the topology formation algorithm introduced here. A node’s reputation 
is an element of the utility function and is therefore taken into account for each utility 
calculation. Trustworthy nodes will more likely encounter other trustworthy nodes in a club they 
are part of than untrustworthy nodes. This also leads to the aggregation of untrustworthy nodes in 
their own clubs, minimizing their negative impact on the network. 

5.3 Utility Function for Leaf Nodes 

Our algorithm uses the following utility functions for making decisions about joining or leaving 
a club: 
 

LeafUx(club) = Σ y ∈ club U(x, y)     (1) 
+ a1 Σk connected to club InterclubU(club, k) 

 
U(x, y) = a2 |files(y)| (1 - |sim(files(x), files(y)) - target|)  (2) 

+ a3 sim(unsucessfulQueries(x), files(y)) 
+ a4 distance(x, y) 
+ a5 reputation(y) 
 

The formulas (1) and (2) state that the evaluating Leaf x calculates the utility it gains from all 
nodes y, which are members of the club, and the utility it gains through the interclub connections. 
The variables a1 to a5 are weights that determine the relative importance of the different elements 
of the utility function. The function files(z) represents the content of a node z. The similarity 
function sim() is an information retrieval method as described in (Asvanund et al. [5]) and results 
in a value between zero (not similar) and one (similar). It operates on two sets of files by 
comparing every element of the first set to every element of the second set and returns the 
average similarity value. The variable target is defined (as described above) as the target 
similarity between the file collections that a node wants to achieve. The function InterclubU() 
will be described in the following paragraph. 

5.4 Utility Function for Interclub Connections 

Our topology formation algorithm considers utility function (3) to determine the utility that a 
club gains by making a connection to another club. Since the establishment of a connection 
between clubs follows the Gnutella 0.6 protocol specifications, the connection can only occur 
between Ultrapeers. Therefore, the Ultrapeer’s properties are the determining factors in the 
decision to open a connection. The so-called Interclub utility is defined as:  
 

InterclubU(c, k) = (b1 numberOfLeafs(k)    (3) 
+ b2 files(k) )  
+ b3 distance(c, k) 
+ b4 reputation(k) 
 

The variables b1 to b4 of the utility function (3) are weights, similar to a1 to a5. The utility 
function has four elements. First, the number of connected Leafs, which is an estimate for the 
club k’s likelihood of fulfilling club c’s informational needs. Second, the amount of content 
files(k) offered by club k, which is also an indicator for the likelihood of fulfilling club c’s 
informational needs. Third, the distance of the two clubs’ Ultrapeers distance(). Since the 



distance function is a part of the Leaf utility function, Leafs are likely to be close to the Ultrapeer 
in the underlying physical network structure as well. Therefore, the distance between the 
Ultrapeer will give a good estimate of the average distance between the two club’s nodes. The 
last and most important element is the club’s reputation. Since, as described above, the Leaf 
utility function leads to an aggregation of trustworthy nodes in trustworthy clubs and 
untrustworthy nodes in untrustworthy clubs, this element of the interclub utility function leads 
the evaluating club to connect to a club with the same amount of trust as itself.  

Summarizing the purpose of the inter-club utility function, it can be stated that the connected 
Ultrapeers will most likely be able to answer the club's queries, be close to the club’s nodes, 
leading to fast response and download times and be trustworthy. This should lead to a very 
positive overall effect on the whole network, at least for cooperative nodes. 

5.5 Disregarding Bandwidth 

Estimating a node’s bandwidth is inherently difficult and costly. For testing the actual bandwidth 
of a node, the link needs to be filled with traffic of some form, even if it is only for a short time. 
Therefore, most P2P applications allow the user to enter his connection type and use this 
information to estimate the available bandwidth. This, however, is very inaccurate and can be 
easily misused. Selfish users given the choice of setting the connection type will enter a 
connection type that gives them the highest benefit, e.g. DSL users who pay for byte volume 
might enter modem as the connection type to limit the cost for traffic. Because of these issues, 
our topology formation algorithm disregards bandwidth as a factor. It gives selfish users fewer 
possibilities to gain unfair advantages. 

6 Simulation of a GNet 

In order to investigate the performance of our algorithm compared to the original club algorithm, 
we programmed a simulation of a Gnutella network. For this, we took the simulator used in 
(Asvanund et al. [5] and Bagla & Kapadia [6]) as a reference implementation. It was generously 
provided by Ramayya Krishnan. The new version of the simulator, enhanced to be able to run 
our algorithm, is written in Java and based on the simulation framework J-Sim (Tyan [21]). 
Additionally, the open-source packet “Java 2D Graph” has been used for some minor 
calculations [7]. For logging purposes, log4j of the Apache Software Foundation is used [15]. 
The simulator has two parts, one for the creation of a scenario, the other for running the 
simulation of the previously created scenario. The split in two applications has the advantage that 
created scenarios can be reused and exchanged between users. It also allows a manual analysis 
and manipulation of the created scenarios. The scenario application creates a set of input files. 
The simulation application reads them in and then starts a simulation run, executing the events as 
specified in the scenario files. Each simulation run is split into several rounds, as specified in the 
input files. A round consists of two phases, the evolution phase, in which Leafs and Ultrapeers 
make new connections and discard old ones, and the query phase, in which the nodes issue 
Queries for files they are interested in and return QueryHits. The simulator does not model file 
transfers, only the topology issues and querying. The reason is our assumption that good 
performance in the resource discovery indicates good performance in the file transfers as well. If 
many well-trusted locations of a file can be found and they respond with a low latency, then the 
download of that particular file should be reliable and fast. Therefore, after the query phase, it is 
assumed that all files for which locations have been found are being downloaded completely and 
added to the node’s file collection. Whether those files will be shared in the next round depends 
on the node’s settings. The simulation results in two datasets with statistics, one for each node 
per round and one for the whole simulation. 



6.1 Creation of Simulation Scenarios 

A simulation scenario description consists of text files describing nodes, files, events, and some 
global parameters. They are generated according to the values given as arguments to the scenario 
creation application.  

The nodes.txt file contains information about each node. The most important is the node 
ID, a global identifier, the files initially shared by the node, information whether the node starts 
as an Ultrapeer, can become an Ultrapeer during the simulation, and whether it is a freerider or 
shares files. As described in Bagla & Kapadia [6], a statistical analysis of Gnutella network 
traffic has shown that 42% of nodes never share files. Therefore, the 42% of all nodes are not 
assigned files and labeled freeriders in our simulation. The remaining nodes are assigned a 
certain number of files depending on a long right tail distribution with an average of 270 files. 
This is modeled by a Weibull distribution with a shape factor of 0.576. The nature of this 
function leads to the situation that a node can start with zero files without being a freerider. In 
this case, the node will share any files that it acquires after a query phase. The file nodes.txt 
also contains the TTL that the node’s Queries have and a set of coordinates. These coordinates 
determine the node’s position on the network grid, which simulates the underlying physical 
network structure. The number of club and interclub connections a node can keep open is also 
specified here. Another important factor is the initial reputation, which is a random number equal 
to or smaller than the number of files shared. In addition to this, the file nodes.txt contains a 
list of file ID numbers. In the simulator, the similarity between two files is defined in terms of the 
distance of their ID numbers. Two files with IDs 15 and 16 are very similar, 2 files with IDs 15 
and 1600 are not similar. Also, a number of file seeds is chosen, which is normally distributed 
with a mean of three. The file seeds represent the interest of users for a file type (e.g. type of 
music). Then, the file IDs are drawn according to a normal distribution around the file seed IDs, 
until the targeted number of shared files has been reached. 

The files.txt file describes the content files existing in the modeled Gnutella network. 
Each content file has a file ID and a size. The maximum number of existing files is defined by a 
constant, which is a factor that is multiplied by the number of existing nodes. The factor is set to 
80 files per node. If a higher number is chosen, the average similarity between two sets of files 
will be lower, because the IDs of files that two nodes own are randomly chosen from a greater 
range and the similarity depends on the distance of the file IDs. 

The events.txt file describes the events that will be sent to nodes in the network. There 
are two types of events, Evolutions and Queries. An Evolution event causes a node to renegotiate 
its connections. A Query event specifies the time within the simulation when it is issued and the 
file ID that the issuing node is looking for. Which file IDs are queried depends on the files a 
node has. All queried file IDs are normally distributed around IDs the node already owns. If the 
node shares no files, a random existing file ID is chosen as a file interest and the queried IDs are 
normally distributed around this file ID. The number of queried files follows a long right tail 
distribution with a mean of 13, as found in the analysis in Bagla & Kapadia. This is also modeled 
by a Weibull distribution with a shape factor of 0.576.  

The topology.txt file contains the initial topology when the simulation starts. The file is 
empty in this version of the simulator, because the simulation starts with an evolution phase. It is 
nevertheless possible to manually specify a topology, which would be honored by the simulator. 

The globals.txt file is used for global system variables, such as finish time and network 
grid size. Network grid size describes the size of the simulated physical network. Another 
variable defines how many Ultrapeers are allowed in the system. For our simulations, the value is 
set to 110%, allowing 10% more Ultrapeers than necessary. This way, all Leafs have the chance 
to use the maximum number of Ultrapeer connections. This leeway also allows for some 
competition between Ultrapeers. Ultrapeers who are attractive to nodes will be able to fill their 
open Leaf connection slots, whereas Ultrapeers who are not attractive will not find Leafs to fill 
their slots. The attractiveness of an Ultrapeer is determined by its Leaf and interclub connections.  



6.2 Running the Simulator 

The simulator allows specifying the utility model and whether or not to allow Ultrapeer Status 
Transitions. The utility model can be either CMU (Bagla & Kapadia [6], Asvanund et al.[5]) or 
IU. The switch Ultrapeer Status Transitions determines whether eligible Leafs can become 
Ultrapeers and vice versa, if the network needs more Leafs (i.e. there are Leafs who cannot find a 
club to join) or Ultrapeers (i.e. there are Ultrapeers who cannot find Leafs to join their club). 
However, a node will only change from or into an Ultrapeer if it could not establish these 
connections for two rounds. 

6.3 The Evolution Phase of the Simulation 

In the evolution phase, the nodes renegotiate the network topology. Every connection negotiation 
uses a three-way handshake as shown in Fig. 2. Each node will attempt to connect to a certain 
number of Ultrapeers per round, three if the node is a Leaf and five if it is an Ultrapeer. These 
numbers have been chosen according to the GNet specification.  

An active node picks a random Ultrapeer to start connection negotiations. There are two 
different ways how the connection negotiations are performed. It depends on the type of node. If 
the node is an Ultrapeer, it will first send a Connection Request to another Ultrapeer. If the 
contacted Ultrapeer has a free connection slot for another Ultrapeer, it will send an Invitation 
Message to the Ultrapeer in question, otherwise it will only send an Invitation Message if the 
replacement of the weakest connected Ultrapeer results in an increased sum of interclub utilities. 
The active node receiving the Invitation Message, decides in the same way to send or not to send 
a Confirmation Message. When a Confirmation Message is sent, the sending Ultrapeer will add 
the receiving Ultrapeer to its list of connected Ultrapeers and the receiving Ultrapeer will add the 
sending Ultrapeer to its list of connected Ultrapeers. If there are no free Ultrapeer slots, a 
Connection Close Message will be sent to the weakest connected Ultrapeer. In general, if the 
situation has changed, a Connection Close Message can be sent anytime during the protocol. 

Fig.

If the active node is a Leaf, it will send a Connection Request to the Ultrapeer. If the 
contacted Ultrapeer has a free connection slot for a Leaf, it will return an Invitation Message. 
Otherwise, it will only send an Invitation Message if replacing the weakest connected Leaf 
results in a higher club utility. This means that all possible club configurations including the new 
Leaf and excluding one of the connected Leafs have to be evaluated (i.e. calculating the club 
utility). The Leaf receiving the invitation will send a Confirmation Message if the utility it would 
gain from this club is higher than the lowest utility of connected clubs or if it has a free 
connection slot. Otherwise, it will send a Connection Close Message to the Ultrapeer. If it 
accepts, it adds the Ultrapeer to the list of connected Ultrapeers, possibly closing the connection 
to a weaker club. Once an Ultrapeer has been added, it sends a list of its shared files to the 

 2 The connection negotiation uses a 3-way handshake 

 



Ultrapeer, so that the information can be used in subsequent connection negotiations. This list is 
also needed to simulate the Query Routing Protocol of the Gnutella 0.6 protocol. 

6.4 The Query Phase of the Simulation 

After the topology for the round has been negotiated during the evolution phase, the nodes will 
send Querys as specified in the Simulation Scenario. The querying process is handled as defined 
by the Gnutella protocol. Additionally, a reputation system is modeled in a simplified way. 
Nodes earn one reputation point by forwarding a query hit and lose five reputation points by 
generating them. It is assumed that a mechanism exists to prevent cheating. Therefore, all 
simulated nodes act completely honest. The information about issued and forwarded queries and 
query hits is stored and used to calculate the metrics at the end of the simulation. 

7 Analysis of the Simulation Results 

To prove that our algorithm, IUTopForm, provides more incentives for users to cooperate than 
the original club algorithm, we compared them using the same scenario, with the same settings. 
We created a scenario with 1000 nodes, 89 of them being Ultrapeers, the others Leafs. In a 
simulated period of 100,000 time units, 5 rounds are completed, each starting with an evolution 
phase and ending with a query phase. Each node attempts to become member of three clubs, each 
club has a maximum of 31 Leafs and one Ultrapeer as members. Each club is connected to up to 
five other clubs. Query messages are sent with a TTL of four. The targeted similarity level 
between two file collections is set to 80 percent. 

In order to show the effectiveness (close proximity to the requested content in the overlay 
topology and a large distance to untrustworthy nodes) of our incentive scheme (expressed 
through the utility functions), we consider the distribution of reputation values of nodes. Since 
nodes earn reputation by providing services to other nodes (i.e. cooperating), the average 
reputation value is used to distinguish between cooperative and non-cooperative nodes. From a 
node’s average reputation value, it can be determined whether a node is cooperative or not.  

Fig. 3 Reputation distribution 

Fig. 3 shows the starting and average (final) reputation value of nodes that belong to five 
different groups. All nodes are sorted out according to their reputation value and, then, split into 
five groups. Each group represents a quintile of the entire set of nodes. Initially, all nodes have 
been given a starting reputation value, according to a long tail distribution. Consequently, the 
first three quintiles have very low reputation values. Only the last two quintiles can be seen as 
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partially and, respectively, fully cooperative. The average (final) reputation value, which 
represents the reputation value of a node within a quintile at the end of the simulation, changed 
only slightly compared to the initial value.  

 
Close Proximity of the Requested Content. To demonstrate that requested content is closer 
for cooperative nodes than for uncooperative nodes, we measure how many of the received 
query hits will be answered from nodes of the club of which the requesting node is a member. 

As Fig. 4 illustrates, our algorithm achieves that cooperating nodes get better performance 
than using the CMU algorithm. Fully cooperating nodes clearly get an improvement in response 
rates. They participate in clubs, which can satisfy their file needs. All other nodes face lower 
performance if our approach is applied. Those nodes are penalized for not cooperating 
sufficiently. Since cooperation is the only way to improve bad performance, our approach forces 
peers to increase cooperation or live with even worse response rates than in the CMU approach.   
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Fig. 5 Number of positive responses from all clubs 
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Fig. 4 Number of positive responses from directedly connected clubs 

If one considers not only the connected clubs but also all clubs that a node can
similar picture develops (Fig. 5). The weaker four quintiles receive worse service, re
fewer responses to their requests. Cooperating nodes perform better under the IUTopFo
approach, i.e. the strongest quintile of nodes benefits from our incentive scheme.  
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Large Distance to Untrustworthy Nodes. The metric that is used to describe the distance of a 
node to another node is the reputation difference. The reputation difference is calculated by 
subtracting the average reputation value of all connected nodes from the node’s own reputation 
value and, then, taking the absolute value of the result. Table 1 shows the simulation results for 
this metric for all three types of connections between nodes. 

Table 1 Our algorithm homogenizes the topology's reputation distribution 

Average Reputation Difference between … IUTopForm
Approach 

CMU 
Approach 

A Leaf and its Ultrapeers 135.685 150.671 

A Ultrapeer and its Leafs 106.735 112.430 

A Ultrapeer and its connected Ultrapeers 77.081 134.471 

 
As listed in Table 1, this metric shows a decrease in reputation difference for all possible 

connection types: A clear 11% decrease between a Leaf and its Ultrapeers, an indecisive shift of 
5% within clubs, and a major decrease of 74% between Ultrapeers.  

The situation within clubs remains the same, because the original algorithm already took the 
number of shared files into account. Since this number is roughly proportional to the reputation 
in this simulation. However, the introduction of the reputation term into the utility function did 
yield significant improvements for the other interclub connections. 

8 Conclusion 

Within this paper, we introduced a new incentive scheme that is used for a new, market-managed 
topology formation algorithm. Our algorithm, which has been inspired by the approach of 
Asvanund et al., adds the additional dimension of reputation to the incentive scheme. In addition 
to this, our topology formation algorithm incorporates a new model for predicting future 
information demands, argues not to include the consideration of bandwidth, and proposes two 
new utility functions (i.e. a utility function for Leaf nodes and a utility function for interclub 
connections).  

The simulation results show that nodes with similar reputation value are close to each other 
in the topology of the P2P network (those nodes are clustered within the same club). Our market-
managed topology formation algorithm has had the effect that nodes with a high reputation value 
receive better service than under the algorithm of Asvanund et al.. This shows that our algorithm 
forces users either to cooperate or to tolerate even reduced file-sharing performance. 
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