
An Algorithm to Mine General Association Rules from

Tabular Data

Siyamand Ayubi1, Maybin Muyeba2, John Keane3
1 Faculty of engineering, University of Isfahan, Iran

2 Liverpool Hope University, School of Computing, Liverpool, UK
3 University of Manchester, School of Informatics, Manchester, UK

{s.ayubi@gmail.com, muyebam@hope.ac.uk, john.keane@manchester.ac.uk }

Abstract. Mining association rules is a major technique within data mining and

has many applications. Most methods for mining association rules from tabular

data mine simple rules which only represent equality in their items. Limiting

the operator only to “=” results in many interesting frequent patterns that may

exist not being identified. It is obvious that where there is an order between

objects, greater than or less than a value is as important as equality. This

motivates extension, from simple equality, to a more general set of operators.

We address the problem of mining general association rules in tabular data

where rules can have all operators },,,{ =≠>≤ in their antecedent part. The

proposed algorithm, Mining General Rules (MGR), is applicable to datasets

with discrete-ordered attributes and on quantitative discretized attributes. The

proposed algorithm stores candidate general itemsets in a tree structure in such

a way that supports of complex itemsets can be recursively computed from

supports of simpler itemsets. The algorithm is shown to have benefits in terms

of time complexity, memory management and has great potential for

parallelization.

Keywords: data mining, general association rules, tabular data, equality

operators.

1 Introduction

Association rule (AR) mining [1] has been traditionally applied to datasets of sales

transactions (referred to as market basket data). A transaction ‘T’ is a set of items and

contains an itemset ‘I’ if I ⊆ T. If ‘I’ has k members, then ‘I’ is called a k_itemset. An

AR is an implication YX → where X and Y are itemsets with no items in common

i.e. ∅=∩ YX . The intuitive meaning of such a rule is that the transactions (or

tuples) that contain X also contain Y. The rule YX → holds with confidence c if

c% of transactions that contain X also contain Y. The rule YX → has a support s if

s% of the transactions in the database contain X ∪ Y. Given a database, the problem

of mining ARs is to generate all rules that have support and confidence greater than

the user-specified minimum thresholds, min-Support and min-Confidence. There are

many algorithms to mine association rules from transactional data [6, 7]. The AR

technique has also been applied to tabular datasets [2, 3, 5, 11]. The notation for an

item is redefined in tabular datasets. Henceforth an item is a triple (a, Θ, v) where “a”

is an attribute, “v” is the value of “a” and Θ is the operator between “a” and “v”. An

example of an AR in tabular data is as follows:

(A1 = 2) and (A2 = 3) and (A4 =5) => A6 =1 support = 10%, Confidence = 60%

where A1,..,A6 are attributes with equality operator “=” and referred to as simple rules

[2, 9]. In some cases, simple rules are unable to show all hidden patterns of data. In

situations where there are orders between values of attributes, greater than or less than

a value is as important as equality. Simple rules have difficulties in extracting such

patterns, their drawback being in dealing with quantitative attributes. Popularly,

quantitative attributes can be discretized by partitioning domain values to base

intervals, where the difficulty is selecting the number of base intervals. Too many

intervals for a quantitative attribute means low support for single intervals. Hence

some rules involving these attributes may not be found, on the other hand, partitioning

values into too few intervals causes information to be lost. Some rules have maximum

confidence only when some of the items in their antecedent part have small intervals.

These problems can be solved to some extent by using },,,{ =≠>≤ operators in the

items. The MinSup problem does not matter for these operators as the number of

intervals has no effect on operators },,{ ≠>≤ . If the operators of items in a rule

belong to },,,{ =≠>≤ , then the rule is called a general rule [2, 9]. An example of

such a rule is as follows:

() () () ()1532 6421 =→=≠> AAandAandA Support = 10%, Confidence = 60%

In this paper, we propose an algorithm, MGR (Mining General Rules), to mine

general rules. The number of general itemsets is exponentially higher than the number

of simple itemsets and it makes mining them too difficult. Thus, MGR mines general

itemsets from simple itemsets by a recursive computation of simpler itemsets, all

stored in a tree data structure. This feature systematically enables benefits in terms of

time complexity, memory management and great potential for parallelization.

The paper is organized as follows: background and related work is given in section

2; section 3 presents needed terminology and notation; section 4 shows calculation of

supports of general itemsets from simple ones; section 5 presents the MGR algorithm;

experimental results are given in Section 6; and Section 7 considers further work and

presents conclusions.

2 Background and Related Work

In this paper we are interested in a type of generalization introduced in [2]. This

type of generalization extends the traditional equality operator used in normal

association rules to an operator set },,,{ =≠>≤ . Its main characteristic is the high

number of itemsets generated in regard to normal association rules. Hsu et al. [9]

proposed an algorithm for mining such general rules from transactional data by

extending algorithms for mining simple itemsets. This approach has poor performance

on tabular data because of the high number of general itemsets.

The main problem of mining association rules when applied to tabular datasets is

dealing with quantitative attributes, which are usually partitioned into intervals and

treated as discrete values. However, specifying the number of intervals is difficult in

this approach. In [11], consideration of the combination of base intervals as new

intervals and extracting the itemsets for all the intervals was proposed. The approach

has an acceptable result but in most cases, its time complexity is high.

There are approaches that do not require discretization of quantitative attributes.

Some extract types of rules that are different to formal association rules [10, 13]. The

others do not try to mine all general itemsets but rather focus on finding the best

intervals for a given rule [4]. The input to these algorithms is a rule that does not have

any interval for its quantitative items. The outputs are the best intervals for

quantitative attributes of the given rule. In situations where we are interested in

optimizing one rule, these approaches are very useful. However, they cannot be

applied to mine all general rules as they have to scan data for each rule.

There are some methods that define some criteria for interestingness of the general

rules and mine just a subset of the rules that satisfy those criteria. The method in [14]

defines the pc_optimal set as the set of the most interesting general association rules

and tries to find an approximation of it. Despite the good results of the approach on

some datasets, it is not guaranteed to find good approximations of the pc_optimal set.

Further, it is not proved that the pc_optimal set contains the whole set of interesting

rules.

3 Terminology and Notation

The following formal definitions are used to describe our approach and to prove

related Lemmas.

Definition 1(I): The set of all attributes of a table.

We assume that attribute values are finite and discrete and there is an order between

them. The finiteness assumption of attribute values is not restrictive because by

partitioning infinite sets into subsets, we can easily convert infinite domains to finite

domains. We use ai for the ith attribute in I and Vi,j, for jth value of ith attribute. As

there is an order between the values of each attribute, Vi,1 < Vi,2,…, < Vi,n.

Definition 2 (Item): An item is a triple (a, Θ, v) where “a” is an attribute, “v” is a

value of “a” and Θ is an operator between “a” and “v”. An item is a simple item if

its operator is “=”. An item is a half general item, if the operator Θ is one of },{ =≤ .

An item is a general item if the operator Θ is one of },,,{ =≠>≤ .

Note that the Θ cannot be { }<≥, operators. As items have discrete values, we need

not contain such operators e.g. (1−>⇔≥ jiji) and (1−≤⇔< jiji).

Definition 3 (Itemset): An itemset is the set of items (from definition 2). If every item

in the itemset is a simple item, the itemset is a simple itemset. If every item in the

itemset is a half general item, the itemset is a half general itemset. If every item in an

itemset is a general item, the itemset is a general itemset.

Definition 4 (t(X)): t(X) is the set of IDs of records in a dataset which match the

itemset X.

4 Finding Supports of General Itemsets

Before we describe the MGR algorithm for mining general rules and itemsets, we

first prove that we can obtain the supports of half general and general itemsets from

simple and half general ones respectively. Lemma 2 explains the fact that the support

of each half general itemset can be calculated from supports of simpler itemsets.

Lemmas 3 and 4 explain the calculation of supports of general itemsets from half

general ones.

Lemma 1: Let X be a half general itemset where its ith item has “ ≤ ” as an

operator and Vi,1 as a value. The support of X does not change if we convert the

operator of the ith item to “=” and vice versa.

Proof: Because Vi,1 is the smallest value for the ith attribute, there are no records

in the dataset with a smaller value than it, therefore all records in t(X) must have the

value Vi,1 for the ith attribute. So changing operator “ ≤ ” to “=” and vice versa does

not change the support of the itemset.

Lemma 2: Let X, Y and Z be half general itemsets that differ only in their ith item.

They have the same attribute for the ith item but the operator of the ith item of X and

Y is “ ≤ ” and the operator of the ith item of Z is “=”. The value of the ith item of X

and Z is Vi,j and the value of the ith item of Y is Vi,j-1 , so the ith item in X and Z has

one higher value than the ith item in Y. Then the supports of these itemsets have the

following relationship:

Sup(X) = Sup(Y) + Sup(Z)

Proof: Let ai be the attribute of the ith item of X, Y and Z. As the ith item of X

is)(, jii Va ≤ , so for each)(Xtr ∈ , we have jii Var ,)(= or jii Var ,)(< where

r(ai) is the value of r for attribute ai. Then t(X) can be partitioned into two subsets

t(X1) and t(X2) according to the value of ai such that the itemset X1 contains ai=Vi,j,

and the itemset X2 contains ai ≤ Vi,j-1 where the Vi,j-1 is the value before Vi,j. Therefore

t(X) = t(X1) ∪ t(X2). As the operator of the ith item of Z is “=”, then the itemset Z is

equal to X1. We can prove the same for itemsets Y and X2. Therefore we have t(X) =

t(Y) ∪ t(Z), φ=∩)()(ZtYt and consequently we have sup(X) = sup(Y) + sup(Z).

Table 1. A simple dataset with four Attributes {A1, A2, A3, A4}

Record Id A1 A2 A3 A4

1 1 1 1 1

2 1 1 2 1

3 1 1 2 0

4 2 2 1 0

5 2 3 2 1

6 2 2 3 1

7 3 2 3 1

8 3 2 4 0

9 2 3 2 0

10 4 3 4 1

11 4 4 5 1

Example 1: Suppose we have a dataset as in Table 1, and the itemsets X, Y and Z

have the following definitions:

)2()3()2(321 ≤≤≤= AandAandAX

)2()2()2(321 ≤≤≤= AandAandAY

)2()3()2(321 ≤=≤= AandAandAZ

Lemma 2 proves that Sup(X) = Sup(Y) + Sup(Z). As can be seen, the three itemsets

differ in their second items. According to Lemma 2, we can partition X into the

following itemsets:

)2()2()2(3211 ≤≤≤= AandAandAX

)2()3()2(3212 ≤=≤= AandAandAX

Hence }4,3,2,1{)(1 =Xt , Sup(X1) =4, }9,5{)(2 =Xt ,and Sup(X2)=2.

As)()()(21 XtXtXt ∪= then t(X) = {1,2,3,4,5,9} and Sup(X)=Sup(X1) +

Sup(X2). As a result, Y=X1 and Z=X2, therefore Sup(X) =Sup(Y) + Sup(Z).

By using Lemma 1 and Lemma 2, the support of each half general itemset can be

calculated from supports of simpler itemsets. In other words, if X is a half general

itemset, then by applying Lemma 1 and Lemma 2 recursively, t(X) can be partitioned

into t(X1) ,.., t(Xn) where each Xi is a simple itemset.

Lemma 3: If X is a general itemset that does not have any item with an attribute ai,

then

Sup(X ∪ (ai > Vi,j)) = Sup(X) – Sup(X ∪ (ai ≤ Vi,j))

Proof: Records of t(X) can be partitioned into two subsets such that t(X) = t(X1) ∪

t(X2), where t(X1) is the set of all records that have a value greater than Vi,j. (t(X1) =

t(X ∪ (ai > Vi,j))) and t(X2) is the set of all records that has a value equal to or

smaller than Vi,j, (t(X2) = t(X ∪ (ai ≤ Vi,j))). Then we have

t(X) = t(X ∪ (ai ≤ Vi,j)) ∪ t(X ∪ (ai > Vi,j)) or

Sup(X) = sup(X ∪ (ai > Vi,j)) + Sup(X ∪ (ai ≤ Vi,j)) or

Sup(X ∪ (ai > Vi,j)) = Sup(X) – Sup(X ∪ (ai ≤ Vi,j))

Lemma 4: If X is a general itemset that does not have any item with the attribute ai,

then

Sup(X ∪ (ai <> Vi,j)) = Sup(X) – Sup(X ∪ (ai = Vi,j))

Proof: The proof is similar to that of Lemma 3.

Example 2 If we extract itemsets X, Y and Z from Table 1, with the following

definitions:

)2()3()2(321 >≤≤= AandAandAX

)2()3()2(321 ≤≤≤= AandAandAY

)3()2(21 ≤≤= AandAZ

then Lemma 3 proves that Sup(X) = Sup(Z) - Sup(Y). According to Table 1, we have:

t(X)={6}, t(Y)={12,3,4,5,9}, t(Z)={1,2,3,4,5,6,9}

t(X)=t(Z)-t(Y), so)()()(YSupZSupXSup −= .

5 The MGR Algorithm

Although the number of general itemsets is exponentially higher than the number

of simple itemsets, by applying the Lemmas of the previous section on itemsets in a

systematic way, this enables the MGR algorithm to divide the problem into smaller

ones and solve them more quickly. The main steps of the algorithm are as follows:

i. Mining simple itemsets using one of the existing algorithms.

ii. Mining half general itemsets from simple itemsets.

iii. Mining general itemsets from half general itemsets.

iv. Mining general rules from general itemsets.

The first step is achieved by using one of the existing methods for mining simple

itemsets. The last step is similar to other association rule algorithms and we do not

focus on it here. The main steps of the algorithm are steps 2 and 3. The MGR

algorithm does these steps by applying Lemmas 1, 2, 3 and 4 on itemsets in a tree data

structure called an MGR tree.

The MGR tree brings two benefits in mining general itemsets. Firstly, it facilitates

finding itemsets in such a way that the Lemmas of section 4 can be applied more

easily. Secondly, it breaks the problem of mining general itemsets from simpler

problems. Before describing the MGR algorithm, we first explain the structure of the

MGR tree.

The root of the MGR tree contains no data. The nodes of the first level of the tree

are called signatures. All itemsets inside a signature have the same attributes. It is

designed so in order to facilitate applying Lemma 2, as itemsets in Lemma 2 have the

same attributes. Nodes of the second level of the tree are called Half General Itemsets

(HGI) nodes. Itemsets inside an HGI node have the same values for corresponding

items, so each HGI node has just one simple itemset. Nodes of the last level of the

tree are called GI (General Itemset) nodes. Each GI node has just one half general

itemset. Itemsets inside each GI node can be created from its half general itemset by

converting operators “=” and “≤” to operators “≠” and “>” respectively.

5.1 Mining Half General itemsets

At this step of the algorithm, the extracted simple itemsets are partitioned into

signatures. By defining a lexographical order between attributes and using the order

between values of each attribute, the simple itemsets in each signature can be sorted,

which is very important in finding itemsets. In the second level of the tree, there are

HGI nodes which contain half general itemsets. Each simple itemset corresponds to

an HGI node at this level of the tree. Half general itemsets of an HGI node have the

same values for corresponding items, the only difference being the item operators.

Mining half general itemsets in each signature begins from the first HGI node and up

to the last one. The crucial issue here is that HGI node itemsets must be created in

order according to figure 2. This enables the MGR algorithm to have random access

to itemsets of an HGI node. Figure 1 shows the process of mining half general

itemsets in each signature.

5.1.1 Illustrative Example of Mining Half General Itemsets

In this section, we illustrate the process of calculating the supports of half general

itemsets. Suppose that itemsets of figure 3 are simple itemsets that belong to the

signature {A1, A2} and we want to calculate the supports of the half general itemsets

of the signature. Figure 4 shows the HGI node of the first simple itemset. This HGI

node is the first one that must be taken into account. The first itemset of this node is a

simple itemset and its support is known. The supports of the other itemsets of the

node are calculated by applying Lemma 1. Now let’s consider the next HGI node

which is shown in figure 5. The support of the first itemset is given (simple itemset).

Support of itemset K2 is calculated from the supports of itemsets K1 and I2 by

applying Lemma 1. Support of itemset K3 is calculated by applying Lemma 1. The

same process can be done for other HGI nodes. In fact, we use the itemsets of the

previous HGI nodes to calculate supports of an HGI node. If one of the required

itemset does not exist, the process will be repeated to calculate its support. We

suppose that absent simple itemsets have zero supports.

MineHalfGeneralItemsets (Signature)

1)Sort Simple Itemsets of the Signature;

2) For each simple itemset

 Create corresponding HGI node;

3) For each HGI node

 Create the half general itemsets in

 order using the method of figure 2;

4) For each half general itemset

Calculate support using Lemmas 1, 2

Fig. 1. Procedure: Mining half general

itemsets inside a signature

Fig. 2. Half general itemsets inside an

HGI node

Fig. 3. Simple itemsets of the Signature

{A1, A2}

 Fig. 4. Itemsets of the first HGI node

Fig. 5. Itemsets of the second HGI node

5.2 Mining General Itemsets

The process of mining general itemsets from half general itemsets is similar to the

process of mining half general itemsets from simple ones. For each extracted half

general itemset, a GI node (General Itemset node) will be created. These GI nodes

will contain general itemsets that can be created from the half general itemsets by

converting operators (=, <=) to operators (!=, >) respectively. Similar to the process

of creating half general itemsets, we can generate general itemsets inside GI nodes in

such a way that we can have random access to them. This process is done by

considering operators (=, <=) as low rank and by assuming that items of itemsets are

sorted based on the attribute ranking. Figure 7 illustrates the process of creating

general itemsets inside a GI node. The corresponding half general itemset of the node

in the figure is ‘(A1=3) and (A2≤ 4) and (A3≤ 2)’. It is the first itemset of the GI node.

As this itemset has operators {=, ≤, ≤} (low rank operators), its address in the GI node

will be 0. The next itemset will be generated from the above itemset by converting the

operator of the last item from ≤ to >. The created itemset has operators {=, ≤, >} for

corresponding items (high rank operator for the last item), so its address in the GI

node will be 001 or 1. The next itemset will have operators {=, >, ≤}, so its address in

the GI node will be 010 or 2 (high rank operator for the middle item). The fourth

generated itemset is ‘(A1=3) and (A2>4) and (A3>2)’ which has operators {=, >, >}

and is located at address (011) (high rank operators for the last two items). The other

itemsets will be created in the same manner.

After generating itemsets inside GI nodes, the next step is to calculate the supports

of itemsets. The main difference between calculating supports of half general itemsets

and general itemsets is the fact that each GI node must have addresses of its parents.

The parents of a k-itemset are the k-1 subsets. For example, (A1=3) is a parent of the

itemset (A1=3) and (A2=2). Having addresses of the parents facilitates the application

of Lemmas 3 and 4. Figure 6 shows an algorithm to extract general itemsets.

MineGeneralItemset (Signature)

1) for each half general Itemset:

• Create Corresponding GI

node

• Find the address of its

parents

2) For each HGI node :

• For each GI node:

� Create general itemsets

according to figure 4;

� Calculate the support of

each general itemset using

Lemmas 3 and 4

�

 Fig. 6. The procedure of mining

general itemsets of a signature

Fig. 7. General itemsets inside a GI node

5.3 Time Complexity and Memory Management of the MGR Algorithm

Mining half general itemsets from simple itemsets is approximately of linear

complexity with regard to the number of simple itemsets. For each simple k_itemset,

there are
k2 half general itemsets. According to Lemma 2, in order to compute the

support of each half general itemset we need to search two half general itemsets. The

complexity of searching one of them is log(s) where s is the average number of

itemsets in signatures. The other itemset is located in the same HGI node as we have

random access to half general itemsets of an HGI node, so its time complexity is

negligible. Hence the overall time complexity of mining half general itemsets is equal

to)(log2 2 sn
k

 where n is the number of simple itemsets and k is a constant with its

maximum value equal to the number of attributes. Here n
k2 is the average number of

half general itemsets.

The average number of half general itemsets in signatures can be calculated from

the following relation:

s= (total number of half general itemsets)/ (number of signatures)

where (number of signatures) = 12 −
I

,(number of half general itemsets) ≤
I

n 2.

To generate general itemsets, we should first sort the signatures

()12log()12(−−
II). Then according to the section 5.2, we should find all the k-

1_itemsets for each half general k_itemset (skn
k

2log..2), finally the algorithm

must calculate the supports of all half general itemsets ()1(24 1
kn

kk +−
).

So, the overall time complexity of the MGR algorithm is equal to

)()log()log(22 nnnsn Θ+Θ+Θ or by substituting s,

)()log()log(22 nnnnn Θ+Θ+Θ or in fact)log.(nnΘ .

The other advantage of using an MGR tree is partitioning the problem into smaller

ones. As seen in previous sections, mining itemsets in each signature can be done

independently to the other signatures. It means that in each phase of mining itemsets,

only holding one signature and its ancestors in main memory is sufficient. From the

memory management point of view, it means that the MGR algorithm can be applied

to large datasets without the need to hold all itemsets in main memory. From a

parallel processing point of view, it means that mining itemsets in signatures can be

done by different processors without any deadlock.

6 Experimental Results

6.1 Requirements of the Algorithm

The first step of the MGR algorithm, which is about mining simple itemsets, has

great effect on the output of the algorithm. If there is no restriction on the supports of

simple itemsets, the MGR algorithm can extract all general itemsets. If we set a non-

zero value for support-threshold of simple itemsets, some infrequent itemsets will not

be presented to the MGR algorithm. Absence of these itemsets has two effects on the

output of the algorithm. Firstly, the algorithm ignores constructing HGI nodes

corresponding to those simple itemsets which leads to the loss of all general itemsets

belonging to those HGI nodes. Secondly, it causes errors in calculating the supports of

general itemsets because the absent itemsets have an effect on supports of general

itemsets. In order to achieve high quality rules, the support-threshold of simple

itemsets must be low. In the experimental results of the following sections, the

support threshold of simple itemsets is set to zero.

6.2 Experimental Results

In order to present the efficiency of the MGR algorithm, we compare it with an

extension of the Apriori algorithm which mines general itemsets over combinations of

base intervals similar to [11]. The Apriori algorithm is implemented using the Trie

data structure and has better performance than many known algorithms [4]. It is

designed so that its output is similar to the output of the MGR algorithm. This helps

effective comparison of the algorithms. Extending the FP-growth algorithm [7] to

mine general itemsets has difficulties because each branch of the FP-tree will contain

items with similar attributes. For example, a record that has value 1 for attribute “A1”

can cover items {(A1=1), (A1<=1), (A1<=2), (A1<=3), (A1<=4), (A1<>2), (A1<>3),..}

etc.

Fig. 8. MGR Vs Extended Apriori on

synthetic dataset

Table 2. Properties of the synthetic dataset

Number of non class

attributes
Domain values of non-

class attributes

Number of classes
Number of records

Error ratio

Missing values ratio

4

{0,1,2,3,4}

3
100,000

0.1

0

All such items will exist in each branch of the FP-tree which causes trouble, as each

itemset must have just one item with A1 attribute. In order to avoid such difficulties,

we do not use the FP-growth algorithm. We apply the algorithms on a synthetic

dataset which is created using the DataGen tool [12]. Table 2 contains the details of

the dataset. Figure 8 represents the execution time when applying both the extended

Apriori and MGR algorithms to extract general itemsets from the synthetic dataset.

The support threshold of simple itemsets using the MGR algorithm was set to zero.

As can be seen, the execution time of the MGR algorithm on the synthetic dataset

is more than an order of magnitude lower than for extended Apriori. The total

execution time of MGR is less than 120 seconds, while the execution time of

extended Apriori with supports higher than 5% is about 21167 seconds. It can be

inferred that the performance of the MGR algorithm is independent of the number of

records or the size of the dataset (see figures 9 and 10). Figures 9 and 10 represent the

execution time of the MGR algorithm with respect to the number of records. Figure 9

shows the total execution time of the MGR algorithm, which consists of mining

simple itemsets and mining general itemsets. Figure 10 only shows the execution time

for mining general itemsets from simple ones. As can be seen, the total execution time

of the algorithm is almost linear irrespective of the number of records. It is easily

inferred from figures 9 and 10 that mining general itemsets from simple itemsets is

approximately constant and in fact, it is mining simple itemsets that is linear with

regards to the number of records.

Fig. 9. Total MGR execution time Fig. 10. Mining general items

7 Conclusions

In this paper, we proposed a time and space-efficient new algorithm for mining

general association rules from tabular data. Decomposing the problem into several

sub problems and employing the MGR tree makes the algorithm efficient in terms of

time-complexity and memory requirements. The possibility of holding most of the

MGR tree in secondary memory (hard disk) also makes the algorithm more space-

efficient. In particular, it was shown that the algorithm stores candidate general

itemsets in a tree structure in such a way that supports of complex itemsets can be

recursively computed from supports of simpler itemsets.

As general rules can have equality and other comparison operators

like },,,,,{ =≠><≥≤ , we can discover more sophisticated patterns in data. As

general rules have higher support and confidence than simple ones, they can represent

more powerful patterns. In this paper, we have shown the power of general

association rules to describe data, however we have not yet offered an approach to

prune unnecessary general rules. More experiments will be done to compare the

general and simple rules extracted from the Balance dataset [8]. In addition, further

work will address ways for pruning insignificant rules as well as the potential for

parallelizing the algorithm.

References

1. Agrawal, R., Imielinski, T., Swami, A.: Mining Association Rules between Sets of Items in

Large Databases. In: SIGMOD Conference, pp. 207--216 (1993)

2. Richards, G., Rayward-Smith, V. J.: Discovery of Association Rules in Tabular Data. In:

IEEE International Conference on Data Mining, (2001)

3. Berzal, F., Cubero, J-C., Marin, N., Serrano, J.: TBAR: an Efficient Method for Association

Rule Mining in Relational Databases. Data and Knowledge Engineering. 37, pp. 47--64

(2001)

4. Bodon, F.: A Trie-based APRIORI Implementation for Mining Frequent Item Sequences. In:

1st International Workshop on Open Source Data Mining: Frequent Pattern Mining

Implementations, pp. 56--65 (2005)

5. Rastogi. R., Shim, K.: Mining Optimized Support Rules for Numeric Attributes. In: 15th

International Conference on Data Engineering, IEEE Computer Society Press Sydney,

Australia, pp 126--135 (1999)

 6. Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules. In: VLDB

Conference, pp. 487--499 (1994)

7. Han, J., Pei, J., Yin, Y.: Mining Frequent Patterns without Candidate Generation. In: ACM

SIGMOD Conference, pp. 1--12 (2000)

8. Merz, C. J., Murphy, P.: UCI Repository of Machine Learning Databases.

(http://www.cs.uci.edu/mlearn/MLRepository.html), (1996)

9. Hsu, P., Chen, Y., Ling, C-C.: Algorithms for Mining Association Rules in Bag Databases.

Information Sciences 166 (1-4), 31--47 (2004)

10. Aumann, Y., Lindell, Y.: A Statistical Theory for Quantitative Association Rules. Journal

of Intelligent Information Systems, 20 (3), 255--283 (2003)

11. Sirkant, R., Agrawal, R.: Mining Quantitative Association Rules in Large Relational

Tables, SIGMOD, 1--12 (1996).

12. Melli, G.: DataGen Tool, (http://www.datasetgenerator.com/), (2004)

13. Ke, J., Cheng, J., Ng, W.: Mining Quantitative Correlated Patterns using an Information

Theoretic Approach. In: 12th ACM SIGKDD KDD Conference, Philadelphia, PA, USA, pp.

227--236 (2006)

14. Richards, G., Rayward-Smith, V. J..: The Discovery of Association Rules from Tabular

Databases Comprising Nominal and Ordinal Attributes” in Intelligent Data Analysis, vol. 9,

No. 3, pp. 289--307 (2005).

