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Abstract. Previous clustering ensemble algorithms usually use a consensus 
function to obtain a final partition from the outputs of the initial clustering. In 
this paper, we propose a new clustering ensemble method, which generates a 
new feature space from initial clustering outputs. Multiple runs of an initial 
clustering algorithm like k-means generate a new feature space, which is 
significantly better than pure or normalized feature space. Therefore, running a 
simple clustering algorithm on generated feature space can obtain the final 
partition significantly better than pure data. In this method, we use a 
modification of k-means for initial clustering runs named as “Intelligent k-
means”, which is especially defined for clustering ensembles. The results of the 
proposed method are presented using both simple k-means and intelligent k-
means. Fast convergence and appropriate behavior are the most interesting 
points of the proposed method. Experimental results on real data sets show 
effectiveness of the proposed method.  
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1   Introduction 

There is no clustering algorithm performing best for all data sets. Choosing a single 
clustering algorithm for each data set requires both expertise and insight. Therefore, 
instead of clustering algorithm, a cluster ensemble can be used [1, 2]. In order to 
integrate clustering ensembles in a robust and stable manner, one needs a diversity of 
component partitions for combination that usually obtained from several sources: 

1) Using different clustering algorithms to produce partitions for combination [4]. 
2) Changing initialization or other parameters of a clustering algorithm [3, 5]. 
3) Using different features via feature extraction for subsequent clustering [1, 6, 7].  
4) Partitioning different subsets of the original data [8, 9, 10, 11, 12, 13]. 
All above introduced mechanisms try to produce more diversity by considering 

data from different aspects. The major hardship in clustering ensembles is consensus 
function and partitions combination algorithm to produce final partition, or in the 
other words finding a consensus partition from the output partitions of various 
clustering algorithms. The combination of multiple clustering can also be viewed as 
finding a median partition with respect to the given partitions, which is proven to be 
NP-complete [14].  



There are many type of consensus function such as Hypergraph partitioning [1, 6], 
Voting approach [5, 8, 15], Quadratic Mutual Information Algorithm [16] and Co-
association based functions [2, 17, 18]. In this paper, we propose a new consensus 
function in clustering ensembles, which is named Labeling Algorithm. Instead of 
using previous consensus functions to maintain the results of each k-means and then 
obtain the final partition using the consensus function, we generate a feature as a 
result of each k-means run and then run a simple k-means on generated features.  In 
fact, the proposed method can be also classified as a feature extraction method with 
high precision. Since all of the generated features are the outputs of initial clusterings, 
each generated feature can classify the samples as accurate as a k-mean algorithm by 
itself. Therefore, running a clustering algorithm over the generated features can 
improve the result significantly. Although previous feature extraction methods 
generate the good features from pure data, each generated feature cannot classify the 
samples as accurate as simple k-means by itself. Most of the previous studies in 
clustering ensembles use k-means for initial clustering. It has been reported that the 
solutions obtained from the k-means are strongly dependent on the initialization of 
cluster centers [19, 20]. 

There are many methods which select the initial samples wisely [19, 21, 22] which 
usually studies the whole feature space to select the initial samples. Since they should 
study the feature space and select the initial samples using probabilistic method, 
increasing the time complexity in previous studies is one of the unavoidable 
problems.  In this study, we introduce an intelligent k-means, especially defined for 
clustering ensembles, which selects the initial samples wisely without any increasing 
in time complexity. In this paper, the experimental results of the proposed method are 
presented by both simple k-means and intelligent k-means as initial clustering. The 
proposed algorithm guarantees that increasing the number of partitions does not 
decrease the accuracy of clustering ensembles. Sometimes, increasing the number of 
partitions increases the error rate of the results. Using intelligent k-means instead of 
simple k-means, increasing the number of partitions usually causes an improvement 
in results.  

The rest of the paper is organized as follows. Section 2 describes the clustering 
ensembles. The proposed consensus function, named Labeling Algorithm, is presented 
in Section 3. In Section 4, experimental results are presented. We study the 
complexity of the proposed method beside other methods in Section 5. The paper is 
concluded in Section 6. 

2   Clustering Ensembles 

Clustering ensembles usually are two stage algorithms. At the first, they store the 
results of some independent runs of k-means or other clustering algorithms. Then, 
they use the specific consensus function to find a final partition from stored results. 
The major hardship in clustering ensembles is consensus functions and partitions 
combination algorithm to produce final partition, or in other words finding a 
consensus partition from the output partitions of various clustering algorithms. There 
are many types of consensus function such as:  



Hypergraph partitioning: The clusters could be represented as hyper edges on a 
graph whose vertices correspond to the objects to be clustered. The problem of 
consensus clustering is then reduced to finding the minimum-cut of a hypergraph. The 
minimum k-cut of this hypergraph into k components gives the required consensus 
partition [1, 6]. Three hypergraph algorithms, CSPA, HGPA, and MCLA, are 
described in [1] and their corresponding source code are available at 
http://www.strehl.com. 

Voting approach (re-labeling): In the other algorithms, there is no need to 
explicitly solve the correspondence problem between the labels of known and derived 
clusters. The voting approach attempts to solve the correspondence problem and then 
uses a majority vote to determine the final consensus partition [5, 8, 15]. 

Quadratic Mutual Information (QMI) (also feature-based approach): treats the 
output of each clustering algorithm as a categorical feature. The collection of L 
features can be regarded as an ‘‘intermediate feature space’’ and another clustering 
algorithm can be run on it. A mixture model for this case is proposed in [16]. 

Co-association based functions (also pair wise approach): The consensus function 
operates on the co-association matrix. Similarity between a pair of objects simply 
counts the number of clusters shared by these objects in the partitions. Numerous 
hierarchical agglomerative algorithms (criteria) can be applied to the co-association 
matrix to obtain the final partition, including Single Link (SL), Average Link (AL), 
Complete Link (CL) and voting k-means[2,17,18]. 

3   The Proposed Method 

In this paper, we present a new method for clustering ensemble. The proposed method 
generates a new feature space using the outputs of initial clustering algorithms. The 
stages of the proposed clustering ensemble are as follows: 

1-Using special clustering algorithms to produce initial partitions for combination. 
2- Generating new features by labeling algorithm. 
3- Running a final clustering algorithm on the new generated features. 

In the proposed method, both simple k-means and intelligent k-means, introduced in 
section 3.1, are studied to produce partitions for combination (Stage 1).  

Suppose we are given a set of N data points, },...,{ 1 NxxX = and a set of H 
partitions of X return a set of labels for each point Nixi ,...,1, = : 

)}()...,(),({ 21 iHiii xxxx πππ→  
(1) 

Where )( ij xπ denotes a label assigned to ix  by the j-th initial clustering.  )( ij xπ  
is converted into a new value by labeling algorithm described in section 3.2. 
 If ijy  denotes to a new label of ix  by j-th initial clustering, we have: 

))(( ijij xly π=  , i=1,…,N, j=1,…,H (2) 



Where l is the labeling algorithm function introduced in Section 3.2. A new feature 
space is generated by Eq. (2) for each point ix  ,i=1…,N. Each clustering algorithm 
output adds a new dimension in the new feature space.  Therefore, each point has H 
components in the new generated feature space, that H is the number of initial 
partitions (Stage 2). A final clustering algorithm is run on the new feature space. We 
use k-means for both initial and final clustering (Stage 3). 

3.1   Intelligent K-means  

It has been reported that the solutions obtaining from k-means are dependent on the 
initialization of cluster centers [19, 20]. At the first step of the k-means algorithm, we 
must select k initial samples which k is the number of clusters. If there are k real 
clusters, then the chance of selecting one sample from each cluster is small. The 
chance is relatively small when the number of clusters is large. If k clusters have 
equal samples (n), then the chance of selection of one sample from each cluster is: 
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Whereα , is the number of ways to select one samples from each cluster and β  is 
the number of ways to select k samples. 

There are many methods which select the initial samples wisely [19, 21, 22]. They 
studied the whole feature space to select the initial samples and so they increase the 
complexity. 

We propose a new algorithm to refine the initial samples of k-means especially for 
clustering ensembles without any increasing in complexity. In clustering ensembles, 
the k-means is run several times. In proposed algorithm, the first execution of k-
means uses random initial seed points, but for other executions, we use the previous 
result of k-means algorithm to select the initial seed points. The initial points for 
execution i are selected from the result of execution i-1 of k-means algorithm. One 
sample from each cluster is selected at random as the initial points of next execution 
of k-means. Therefore, the complexity of the proposed method is ).1(O  

3.2   Labeling Algorithm 

We introduce a new algorithm generating a new feature space based on the k-means 
outputs with intelligent initial points. Since each generated feature is as accurate as 
intelligent k-means, the clustering algorithm, which is run over the generated features, 
is expected to be significantly more accurate than original feature space. In fact, 
instead of using previous consensus functions to maintain the results of each k-means 
and then obtain the final partition using the obtained results, we generate a feature as 
a result of each k-means run and then run a simple k-means on generated features. 

The labeling algorithm is run after each execution of k-means algorithm. Graph 
theory is used in the labeling algorithm. Assume that >=< EVG , denotes a graph 



obtained by a clustering algorithm output. G is a complete weighted graph with V 
vertices and E edges. V and E represent the cluster centers and edges between every 
two cluster centers, respectively. The weight of each edge is the Euclidean distance 
between two cluster centers.  

We consider an approach to generate a spanning tree, >′=< EVT , , for a given 
graph. One of the approaches to generate a spanning tree is to choose a sequence of n-
1 edges, in a graph with n nodes. We proposed a greedy algorithm, similar to Prim’s 
algorithm, to generate a spanning tree as follows: 

1. Set 0v  as iv . 

2- Select jv  from V which edgeij is smaller than edgeik  for each k and set 

)),(()()( jiwfvlabelvlabel ij += . 

3- Remove jv  from V. 

4- Set jv  as iv . 
5- Continue from step 2 until all vertices have been selected. 
The new generated tree has two nodes of degree one while the degree of the others 

are two. The obtained spanning tree is used for labeling the samples of each cluster. 
All samples whose cluster is jv  are labeled with )( jvlabel . 
The proposed labeling method has following characteristics: 

1- All samples of each cluster have the same label. 
2- The function f is a heuristic function of the edges weight. 
3- Different clusters have different labels. 
4- The value of α  is optional. 

For more details on this process, consider an example of a data set 
},...,{ 201 xxX = with two features assigned to four classes as shown in Fig. 1.a.  

The first step in clustering ensembles is generating ensemble members. After each 
generation the labeling algorithm is run on obtained results. 

a 

Cluster1={ x1, x2, x3, x4 } 
Cluster2={ x5,x6, x7, x8, x9, x10} 
Cluster3={ x11, x12, x13, x14, x15, x16} 
Cluster4={ x17, x18, x19, x20} 
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Fig. 1. a)The scatter plot of the samples b) Spanning and labeling of the graph 

At the first we label the samples in cluster l( 1v ) as 1( 1)( 1 =vl ). Then the nearest 

cluster to 1v  is 2v . The label of the samples of cluster 2v  is set by using by 

( ))2,1(()( 1 wfvl + ) that ),(1)),(( jiwjiwf =  . The nearest cluster to 2v  is 3v  which 

0. 



their samples are labeled as ( ))3,2(()( 2 wfvl + ). At last, the samples of cluster 4 

( 4v ) are labeled as ( ))4,3(()( 3 wfvl + ) as you can see in Fig.1.b. 
The cluster centers are labeled as follows:       

27.938.289.6))4,3(()()(      ,89.612.377.3))3,2(()()(
77.377.21))2,1(()()(                                                                 ,1)(
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The new feature space is generated according to )(1 ixπ . The output class and the 
assigned label of each sample are shown in Table 1. 

Table 1. The first ensemble member result and assigned label. 

ix Obtained class
π1(xi) 

Assigned label
yi1 ix Obtained class 

π1(xi) 
Assigned label 

yi1 
x1 1  1 x11 2 3.77 
x2 4  9.27 x12 3 6.89 
x3 1  1 x13 3 6.89 
x4 2  3.77 x14 3 6.89 
x5 1  1 x15 3 6.89 
x6 2  3.77 x16 4 9.27 
x7 2  3.77 x17 3 6.89 
x8 2  3.77 x18 4 9.27 
x9 3  6.89 x19 4 9.27 
x10 3  6.89 x20 1 1 

The proposed mechanism is done after each initial clustering algorithm. Finally, 
the k-means algorithm is run on the new generated feature space to obtain the final 
partition. 

4   Experiments 

The experiments were performed on several data sets, including, four data sets from 
the UCI repository, “Iris”, “Wine”, “Soybean” and “Thyroid” data sets. A summary 
of data sets characteristics is shown in Table 2. 

Table 2.  A summary of data sets characteristics 

Name #of samples #of features #of classes Samples per class 
Thyroid 215 5 3 150-35-30 

Iris 150 4 3 50-50-50 
Wine 178 13 3 59-71-48 

Soybean 47 35 4 10-10-10-17 

4.1 Heuristic functions in Labeling 

After finding the spanning tree, a heuristic function is used to label the clusters. In 
experience, we study three different functions for labeling as follows: 
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Tables 4-7 report the mean error rate (%) of clustering combination from 50 
independent runs. In tables 4-7, the mean error rate of four different available 
consensus functions are reported: Co-association function and Average Link (CAL), 
CSPA and HPGA (which are described in section 2) and the proposed method which 
is described in this paper with )),((3 jiwf  as a heuristic functions. Parameter H 
represents the number of partitions and α =1. 

In tables 3-6 we can see when the number of partitions is between 10 and 20, we 
can usually obtain the best results. The error variance value of the proposed method is 
usually less than the other methods; it means that the proposed method is fast 
convergence and H-independent compared with the others methods. Another fact is 
that the proposed method has usually an appropriate accuracy in common data sets. 

Irisfor (%) Mean error rate . 3Table  
 

Soybeanfor (%)  Mean error rate .4Table  

H CAL CSPA HGPA 
Proposed Method 

)),((3 jiwff =  
 

H CAL CSPA HGPA 
Proposed method 

)),((3 jiwff =  

5 12.7 6.38 19.81 8.36  5 7.02 15.74 18.51 14.04 
10 9.97 5.23 7.97 4  10 7.01 13.4 15.96 6.38 
15 7.73 4.32 5.05 4  15 7.52 12.55 14.57 8.09 
20 6.17 4.23 4 4.89  20 6.55 13.09 14.57 9.08 
25 5.03 4.3 4 4  25 6.88 13.19 15.21 7.94 
30 5.57 4.3 4 4  30 6.21 14.26 15 9.86 
35 5.07 4.33 4 4  35 4.55 14.15 14.47 5.11 
40 5.53 4.27 4 4  40 5.21 13.94 15.11 7.8 
45 5.6 4.4 4 4.87  45 4.22 13.94 15.85 5.04 
50 5.5 4.5 4 4  50 4.51 13.51 15.85 3.48 

Thyroidfor (%) Mean error rate . 5Table  
 

ineW for(%) Mean error rate . 6Table  

H CAL CSPA HGPA 
Proposed Method 

)),((3 jiwff =   H CAL CSPA HGPA 
Proposed Method 

)),((3 jiwff =  

5 24.3 49.35 43.77 12.25  5 11.7 10.65 15.98 11.87 
10 20.9 49.26 39.72 12.51  10 13.3 9.97 10.06 9.91 
15 9.86 48.6 40.47 13.32  15 9.19 10.03 8.57 9.49 
20 7.19 48.47 38.26 13.04  20 11.3 10.39 7.42 8.11 
25 16.7 48.88 37.47 12.85  25 10.6 10.37 9.04 9.97 
30 15.9 48.6 38.12 13.58  30 10.5 10.25 8.15 9.82 
35 16.0 48.84 38.4 13.22  35 9.97 10.53 7.39 8.69 
40 16.5 49.09 37.56 13.18  40 10.1 10.67 8.09 9.18 
45 16.6 49.14 39.87 13.04  45 9.65 10.51 7.84 9.4 
50 15.9 48.65 36.65 13.13  50 9.88 10.11 7.53 9.59 

The results of simple k-means and intelligent k-means with three different heuristic 
functions have been shown in Figs 2-5. All of the three functions have approximately 
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the same quality in labeling data. It is so clear that the intelligent k-means has a better 
behavior than simple k-means in different partition size. In addition, Figure 5.a, on 
soybean dataset, shows that the results of simple k-means has unexpected variations. 
But when we select the initial samples intelligently, the unexpected variation can not 
be seen (Fig. 5.b). An improvement in results is expected by increasing the number of 
partitions. But left side of Figs 2-5 demonstrates that increasing the number of 
partitions does not guarantee an improvement in final results. Sometimes, increasing 
the number of partitions increases the error rate of result (Simple k-means). Right side 
of Figs 2-5 shows that increasing the number of partitions usually improves results. 
Although some times increasing the number of partitions does not improve the 
accuracy of results, it does not decrease the accuracy. 
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Fig. 2. The results on Iris a)with simple k-means, b) intelligent k-means  (α =1). 
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Fig. 3. The results on Wine a)with simple k-means, b) intelligent k-means  (α =1). 

0

5

10

15

20

5 20 35 50

a 
0

5

10

15

20

5 20 35 50

 b 
Fig. 4. The results on Thyroid a)with simple k-means, b) intelligent k-means  (α =1). 
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Fig. 5. The results on Soybean a)with simple k-means, b) intelligent k-means  (α =1). 
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5   Complexities 

Time complexity is one of the most important parameters in clustering ensembles 
algorithms. In this section, we compare the time complexity of different proposed 
consensus functions. 

Hypergraph partitioning: Efficient heuristics to solve the k ways min-cut 
partitioning problem are known, some with computational complexity on the order of 
O(|ε|), where ε is the number of hyperedges.  

Voting approach: all the partitions from the ensemble must be re-labeled according 
to a fixed reference partition. The complexity of this process is k!, which can be 
reduced to O( 3k ) if the Hungarian method is employed for the minimal weight 
bipartite matching problem.  

QMI: the complexity of this consensus function is O(kNB), where B is the number 
of partitions. Though the QMI algorithm can be potentially trapped in a local 
optimum, its relatively low computational complexity allows using multiple restarts in 
order to choose a quality consensus solution with minimum intra-cluster variance. 

Co-association based functions: the computational complexity of co-association 
based consensus algorithms is very high, O ( 22dkN ). 

The proposed method uses k-means for clustering data. The complexity of k-
means is )(kNIdO where k is the number of clusters and N is the number of samples 
and I is the number of iterations of k-means to converge in each execution and d is the 
number of features (dimensions). Therefore, the complexity of the proposed method 
is )!( dkNIdkO ′+ , where, d ′ is the number of partitions, in the other words, the 
number of generated features. !k  is the complexity time to generate spanning tree. 
Since k is a small number, !k  can be neglected. Therefore, we can see that the 
complexity of the proposed method is very low. 

6   Conclusion 

In this paper, we proposed an approach in clustering ensembles. The proposed 
approach generates a new feature space from the k-means outputs. Each k-means 
execution generates a new feature. Finally, the k-means algorithm is run on the new 
generated feature spaces to obtain the final partition.  

 The complexity of the proposed method is )!( dkNIdkO ′+  where, d′ is the number 
of partitions, in the other words, the number of generated features. An intelligent k-
means, which selects the initial samples wisely, has been proposed in this paper. The 
proposed selecting initial samples algorithm guaranteed that increasing the number of 
partitions do not decrease the accuracy of clustering ensembles. The complexity of the 
proposed algorithm for selecting initial points in k-means is ).1(O Fast convergence, 
the novelty and appropriate behaviors are the most interesting points of the proposed 
method. Using the introduced method, we can make the clustering ensembles as an 
incremental method, which will be very important in further studies. 
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