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Abstract. Support Vector Regression (SVR) is usually pursued using
the ε–insensitive loss function while, alternatively, the initial regression
problem can be reduced to a properly defined classification one. In ei-
ther case, slack variables have to be introduced in practical interesting
problems, the usual choice being the consideration of linear penalties
for them. In this work we shall discuss the solution of an SVR prob-
lem recasting it first as a classification problem and working with square
penalties. Besides a general theoretical discussion, we shall also derive
some consequences for regression problems of the coefficient structure of
the resulting SVMs and illustrate the procedure on some standard prob-
lems widely used as benchmarks and also over a wind energy forecasting
problem.

1 Introduction

Standard ε–insensitive SVR [9, 12] seeks to minimize ‖W‖2 subject to the re-
strictions W · Xi + b − (yi − ε) ≥ 0, W · Xi + b − (yi + ε) ≤ 0. If it exists,
the solution of this problem, that we shall refer to as ε–SVR, defines what is
usually called a hard ε tube. However, in practical problems, hard tubes have to
be replaced by soft ones, where besides ε insensitivity, extra slack terms have to
be introduced. More precisely, the previous restrictions become now

W ·Xi + b− (yi − ε) + ξi ≥ 0, W ·Xi + b− (yi + ε)− µj ≤ 0, (1)

and the function to be minimized is now Jp(W, b, ξ, µ) = ‖W‖2 + C
∑

(ξp
i + µp

j )
for some p ≥ 1 and where C is a properly chosen penalty factor. Obviously,
minimizing Jp(W, b, ξ, µ) is equivalent to minimizing

∑

i

[
yi − f(Xi, W, b)

]p

ε
+ λ‖W‖2,

for λ = 1/C and where f(X, W, b) = W ·X+b and [z]ε = max(0, |z|−ε). Thus, the
problem that soft ε–insensitive SVR solves can be seen as a modelling problem
where errors are measured in terms of the [·]pε function and a regularization term
λ‖W‖2 is added. As it is the case in standard soft margin SVMs, the usual choice
in SVR is to take p = 1; however, in this work we shall take p = 2, which is
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also a frequent election in SVM training. For either choice, rather than minimize
the criterion Jp(W, b, ξ, µ) one defines a certain dual problem with a quadratic
programming structure and that can be solved by standard packages or simply
by gradient ascent on the dual function (see [13] for the linear penalty case).
Here, however, we will take a different point of view. We note first that SVR
can be transformed in a classification problem [2]. More precisely, if an ε hard
tube exists, shifting the yi values by ±ε we obtain subsets D+ = {(Xi, yi + ε)}
and D− = {(Xi, yi − ε)} that are linearly separable, and the ε–insensitive SVR
problem can then be recast as that of minimizing the quantity ‖W‖2+δ2 subject
to the conditions

W ·Xi + b− δ(yi − ε̃) ≥ 1, W ·Xi + b− δ(yi + ε̃) ≤ −1, (2)

where ε = ε̃− 1/δ; we shall call this problem ε̃–SVC. Its dual function is then

Θ(α, β) = −1
2
‖Xα −Xβ‖2 −

1
2

(
ε̃
∑

(αi + βi)−
∑

(αi − βi)yi
)2

+
∑

(αi + βi) (3)

subject to the restrictions αi, βj ≥ 0 and
∑

αi =
∑

βj , and where Xα =∑
αiX

i, Xβ =
∑

βjX
j . We can get a more compact formulation of ε̃–SVC

writing points in D± as Xi
+ = (Xi, yi + ε̃), Xj

− = (Xj , yj − ε̃) and the weight
vector as W̃ = (W,−δ). Then ε̃–SVC can be stated as minimizing ‖W̃‖2 subject
to W̃ ·Xi

− + b ≥ 1, W̃ ·Xj
+ + b ≤ −1. A possible way to solve it is to find [1] the

closest points X∗
+ and X∗

− in the convex hulls C(D+), C(D−) of D+ and D−.
We shall call this third convex hull formulation CH–SVM.

Our approach to solve square penalty ε–SVR will be based on the solution
of CH–SVM. More precisely, we will show in section 2 the equivalence for the
hard margin setting of ε̃–SVC and CH–SVM, and how to reduce ε–SVR to ε̃–
SVC; in particular, we will see how their solutions are related. An advantage
of using square penalties is that hard and soft SVMs can be treated formally
in the same way. In section 3 we will recall how this is done and, turning our
attention to ε–SVR, our main contribution will be Proposition 3, where we show
that the coefficient structure of the optimal solution of soft CH–SVM can be
seen as defining a certain regression tube, slightly larger than the original ε one.
Patterns correctly classified by the CH–SVM solution will fall inside it, while not
correctly classified patterns will fall outside. In section 4 we will illustrate the
application of square penalty SVR to some publicly available regression datasets
as well as in a wind energy prediction problem. The paper will end with a short
discussion and some conclusions.

2 Hard Margin SV Regression and Classification

It is well known [9] that the optimal ε–SVR solution weight Ŵ can be written
as Ŵ = Xα̂ −Xβ̂ , with α̂, β̂ the optimal dual solutions. Moreover, the Karush–



Kuhn–Tucker (KKT) conditions verified by the optimal Ŵ , b̂, α̂, β̂ imply that if
at some i we have, say, α̂i > 0, then Ŵ · Xi + b̂ − (yi − ε) = 0 and, therefore,
b̂ = (yi− ε)− Ŵ ·Xi = 0. Similarly, the optimal ε̃–SVC solution weight W o can
be written as W o = Xαo − Xβo [2], with αo, βo now the optimum solutions of
the corresponding dual problem; moreover, the optimal δo value is given by

δo =
∑ {

βo
i

(
yi + ε̃

)− αo
i

(
yi − ε̃

)}

= ε̃
∑

(αo
i + βo

i )−
∑

(αo
i − βo

i ) yi. (4)

Finally, the KKT conditions are in this case

αo
i > 0 ⇒ W o ·Xi − δo(yi − ε̃) + bo = 1,

βo
j > 0 ⇒ W o ·Xj − δo(yi + ε̃) + bo = −1,

and just as before, the optimal bo can be obtained as, say, bo = 1 + δo(yi − ε̃)−
W o · Xi if αo

i > 0. The following proposition relates the optimal solutions of
ε–SVR and ε̃–SVC. Although essentially known in the literature, we shall give
here its proof for a lack of a proper reference.

Proposition 1. Assume ε̃ to be such that the shifted classes D+, D− are linearly
separable and let W o, δo, bo and Ŵ , b̂ be the optimal solution of ε̃–SVC and ε–
SVR respectively. We then have W o = δoŴ , bo = δob̂ and ε = ε̃− 1/δo.

Proof. If W o, δo, bo is the optimal solution of ε̃–SVC, it easily follows from (2)
that ε̃ ≥ 1/δo. If ε̃δo = 1, the restrictions in (2) would become W o·Xi−δoyi+bo ≥
0, W o · Xi − δoyi + bo ≤ 0 for all i. This would imply W o

δo · Xi + bo

δo = yi for
all i, i.e., we would have a perfect fit at all points, an unusual circumstance
not likely to happen; hence, we will assume ε̃ > 1/δo. Then W̃ = W o/δo and
b̃ = bo/δo is a feasible solution of ε–SVR with ε = ε̃ − 1/δo. As a consequence,
‖Ŵ‖ ≤ ‖W̃‖ = ‖W o‖/δo.

On the other hand and as we have just mentioned (see also [9]), the optimal
solution Ŵ of ε–SVR can be written as Ŵ =

∑
i α̂iX

i −∑
β̂jX

j , with
∑

i α̂i =∑
β̂j . The KKT conditions imply that at an α̂i > 0 SV Xi we have Ŵ ·Xi +

b̂ − (yi − ε) = 0, while at a β̂j > 0 SV Xj we have Ŵ ·Xj + b̂ − (yj + ε) = 0.
Writing now ε = ε̃− 1/δo, it follows that

Ŵ ·Xj + b̂− (yj − ε̃) =
1
δo

; Ŵ ·Xj + b̂− (yj + ε̃) =
−1
δo

,

and, therefore,

δoŴ · xj + δob̂− δo(yj − ε̃) = 1; δoŴ · xj + δob̂− δo(yj + ε̃) = −1.

Thus, (W ′ = δoŴ , δo, b′ = δob̂) is a feasible solution of ε̃–SVC and, hence,
δo‖Ŵ‖ = ‖W ′‖ ≥ ‖W o‖. By the uniqueness [3] of the SVM solutions, it follows
that Ŵ = W o/δo and the other equalities are then immediate. ut



Turning our attention to the relationship between ε̃–SVC and CH–SVM,
recall that writing X+ = (X, y + ε̃), X− = (X, y − ε̃) and W̃ = (W,−δ), ε̃–SVC
minimizes ‖W̃‖2 subject to W̃ · Xi

− + b ≥ 1, W̃ · Xj
+ + b ≤ −1. As mentioned

before, the optimal solution of CH–SVM is given by the closest points X∗
+ and

X∗
− in the convex hulls C(D±) of D± (see [1] for more details). They verify

therefore that X∗
− =

∑
α∗i X

i
− and X∗

+ =
∑

β∗j Xj
+, with

∑
α∗i =

∑
β∗j = 1 and

define an optimal vector W̃ ∗ and bias b∗ as

W̃ ∗ = X∗
− −X∗

+, b∗ =
1
2

(‖X∗
−‖2 − ‖X∗

+‖2
)
.

Moreover, the maximum margin m∗ is given by m∗ = ‖W̃ ∗‖/2. The following
proposition is also known [1] and proved using the KKT conditions of each
problem.

Proposition 2. The optimal solution W̃ ∗ of CH–SVM is related to the optimal
W̃ o of ε̃–SVC as

W̃ o =
2

‖W̃ ∗‖2
W̃ ∗ =

1
m∗ W̃ ∗,

or, equivalently, W̃ ∗ = 2W̃ o/‖W̃ o‖2. Moreover, W o = 2W ∗/‖W ∗‖2, bo =
2b∗/‖W ∗‖2 and δo = 2δ∗/‖W ∗‖2.

CH–SVM is somewhat different formally from ε–SVR and ε̃–SVC and al-
though still solvable using quadratic programming tools, it lends itself to al-
gorithms quite different from those standard in SVMs. A good choice is the
Schlesinger–Kozinec (SK) algorithm [6]. The starting observation is that for any
potential weight W̃ = X− −X+, with X± ∈ C(D±), its margin m(W ) verifies
m(W ) ≤ ‖W‖/2. Moreover, if W̃ ∗ = X∗

− −X∗
+ is the optimal weight, we have

m(W̃ ) ≤ m(W̃ ∗) = ‖W̃ ∗‖/2 ≤ ‖W̃‖/2. Thus setting g(W̃ ) = ‖W̃‖/2 −m(W̃ ),
we have 0 = g(W̃ ∗) ≤ g(W̃ ). The SK algorithm iteratively constructs approxi-
mations W̃ t to W ∗ by convex updates W̃ t = (1−λt)W̃ t−1 +λtX̃t

±, where λt and
X̃t
± ∈ C(D±) are chosen to ensure that W̃ t < W̃ t−1 and that approximately (al-

though not true for all iterations) m(W̃ t) < m(W̃ t−1) (see [6] for more details).
We shall use the SK algorithm in our square penalty experiments.

3 Square Penalty SV Regression and Classification

Recall that square penalty ε–SVR seeks to minimize ‖W‖2+C
∑

(ξ2
i +µ2

j ) subject
to the restrictions W ·Xi + b− (yi − ε) + ξi ≥ 0, W ·Xi + b− (yi + ε)− µj ≤ 0.
It can be reduced to a hard ε–SVR problem by extending the W and X vectors
adding 2N extra coordinates to them, with N the sample size, and defining

W = (W,
√

Cξ1, . . . , ·
√

CξN ,
√

Cµ1, . . . ,
√

CµN ),



X
i

− = (Xi, 0, . . . , 1√
C

, . . . , 0, 0, . . . , 0), X
j

+ = (Xj , 0, . . . , 0, 0, . . . , −1√
C

, . . . , 0),

where the final non–zero coordinate of X
i

− is the extra i–th one and the final non–

zero coordinate of X
j

+ is the extra (N+j)–th one. We then have ‖W‖2+C
∑

(ξ2
i +

µ2
j ) = ‖W‖2 and the previous restrictions become W · Xi

− + b − (yi − ε) ≥ 0,

W ·Xj

+ + b− (yi + ε) ≤ 0.
We can similarly reduce square penalty ε̃–SVC to a hard ε̃–SVC problem.

Keeping the previously used X± = (X, y ± ε̃) and W̃ = (W,−δ) notation, we
consider now the extended weight and vectors

W = (W̃ ,
√

Cξ1, . . . ,
√

CξN ,
√

Cµ1, . . . ,
√

CµN ),

X
i

− = (Xi
−, 0, . . . ,

1√
C

, . . . , 0, 0, . . . , 0), X
j

+ = (Xj
+, 0, . . . , 0, 0, . . . ,

−1√
C

, . . . , 0),

for which we have again ‖W‖2 + δ2 +C
∑

(ξ2
i +µ2

j ) = ‖W‖2 and the restrictions

W ·Xi

− + b ≥ 1, W ·Xj

+ + b ≤ −1. Solving the CH–SVM version of ε̃–SVC will

give the optimal extended weight W
∗

as W
∗

= X
∗
− −X

∗
+, with X

∗
− =

∑
α∗i X

i

−
and X

∗
+ =

∑
β∗j X

j

+. In particular we will have

W
∗

= (W̃ ∗,
√

Cξ∗1 , . . . ,
√

Cξ∗N ,
√

Cµ∗1, . . . ,
√

Cµ∗N )

= (
∑

α∗i X
i
− −

∑
β∗j Xj

+,
α∗1√
C

, . . . ,
α∗N√

C
,

β∗1√
C

, . . . ,
β∗N√

C
),

and, therefore, margin slacks and SV coefficient are directly related as Cξ∗i = α∗i ,
Cµ∗j = β∗j . Moreover, as we will shall see next, the size of the optimal α∗i , β∗j
coefficients determine the tube in which patterns Xj

−, Xj
+ will fall.

Proposition 3. Set Λ∗ = C‖W ∗‖2 =
∑{

(α∗i )
2 + (β∗i )2

}
+C

(‖W ∗‖2 + (δ∗)2
)
.

Then a pattern (Xi, yi) will fall inside the ε̃ tube if and only if α∗i < Λ∗/2 and
β∗i < Λ∗/2.

Proof. We will bring the extended CH–SVM solution W
∗

back to the ε–SVR
one retracing the steps already mentioned in the penalty–free case. We go first
from W

∗
to the optimal solution W

o
of ε̃–SVC as W

o
= 2W

∗
/‖W ∗‖2. As a

consequence, the optimal ε̃–SVC slack variables verify

ξo
i =

2

‖W ∗‖2
ξ∗i =

2
Λ∗

α∗i , µo
j =

2

‖W ∗‖2
µ∗j =

2
Λ∗

β∗j . (5)

Now, since we have δo = 2δ∗/‖W ∗‖2 = 2Cδ∗/Λ∗, proposition 1 and (5) imply
that the ε–SVR slacks are

ξ̂i =
1
δo

ξo
i =

Λ∗

2Cδ∗
2
Λ∗

α∗i =
1

Cδ∗
α∗i ,

µ̂j =
1
δo

µo
j =

Λ∗

2Cδ∗
2
Λ∗

β∗j =
1

Cδ∗
β∗j .



Linear Penalty Square Penalty

Problem C σ ε C σ ε̃

flare1 160 250 0.0025 0.125 10 0.04

flare2 30 150 0.001 0.5 12 0.06

flare3 40 175 0.001 3 40 0.05

building1 0.6 125 0.01 0.3 25 0.4

building2 3.2 8 0.01 0.8 6 0.6

building3 6.3 6.5 0.01 0.8 5 0.6

wind power 0.4 32 0.08 5 40 0.2
Table 1. SVM parameters used. For the flare and building problems only the pa-
rameters for the first output are shown.

Furthermore, since ε = ε̃− 1/δo, we have

ε + ξ̂i = ε̃− Λ∗

2Cδ∗
+

α∗i
Cδ∗

= ε̃− 1
Cδ∗

(
Λ∗

2
− α∗i

)
,

ε + µ̂j = ε̃− Λ∗

2Cδ∗
+

β∗j
Cδ∗

= ε̃− 1
Cδ∗

(
Λ∗

2
− β∗j

)
.

Since αo
i = 0 if and only if ξo

i = 0, all the regression patterns (Xi, yi) for which
αo

i = βo
i = 0 will be inside an ε̂ tube with ε̂ = ε̃ − Λ∗/2Cδ∗. Next, since α∗i

and β∗i cannot be simultaneously nonzero, patterns (Xi, yi ± ε̃) for which either
coefficient is < Λ∗/2 result in regression patterns (Xi, yi) inside the ε̃–hard tube.
On the other hand if, say, α∗i > Λ∗/2, the KKT conditions now imply

Ŵ ·Xi + b− yi = ε̃ +
1

Cδ∗

(
α∗i −

Λ∗

2

)
> ε̃;

that is, (Xi, yi) will fall outside the ε̃–hard tube, and the same will happen with
those (Xj , yj) for which β∗j > Λ∗/2. ut

We will illustrate next square penalty SVR over several regression problems,
comparing its performance to that of linear penalty SVR and of multilayer per-
ceptrons.

4 Numerical Experiments

We have tested the performance of both linear and square penalty SVR methods
in two Proben1 regression problems [7] and also in a wind power prediction one.
The SVMSeq [13] algorithm was applied in the linear penalty case and the SK
algorithm [6] for square penalties. In both cases a Gaussian kernel k(x, y) =
exp

(−‖x− y‖2/2σ2
)

was used. The Proben1 problems used were building,
where hourly electrical energy and hot and cold water consumption in a building
are to be predicted, and flare, where we want to do the same for the daily



Problem Proben1 best result MLP Linear penalty SVM Square penalty SVM

flare1 0.5283 0.5472 0.5444 0.5431

flare2 0.3214 0.2732 0.2680 0.2662

flare3 0.3568 0.3423 0.3457 0.3552

building1 0.6450 0.4267 0.4369 0.4556

building2 0.2509 0.2696 0.2418 0.2616

building3 0.2475 0.2704 0.2318 0.2525

Wind Power – 8.33 8.96 8.68
Table 2. Mean square test errors for building and flare problems and for wind
energy prediction obtained by an MLP and linear and square penalty SVMs. The
corresponding best result recorded in the Proben1 database is also given.

Problem Training set size Linear penalty SVM Square penalty SVM

flare1 800 792 (99%) 211 (26.37%)

flare2 800 799 (99.87%) 216 (27.00%)

flare3 800 796 (99.5%) 214 (26.75%)

building1 3156 3156 (100%) 2299 (72.84%)

building2 3156 2988 (94.67%) 1430 (45.31%)

building3 3156 3107 (98.44%) 1243 (39.38%)

Wind Power 1560 583 (37.37%) 315 (20.19%)
Table 3. Initial sample size, number of Support Vectors of linear and square penalty
SVMs and corresponding percentages with respect to sample size for the first dependent
variable in the building and flare problems and for wind energy prediction.

number of small, medium and large solar surface flares. Both datasets are given
in [7] in three variations, numbered 1 to 3, each one with a different arrangement
of the training and test sets. On the other hand, we will also work with a real wind
power prediction task, where numerical weather predictions from the European
Centre for Medium-Range Weather Forecasts (ECMWF, [5]) at time T are used
to provide energy production estimates for the Sotavento wind farm [10] located
in Galicia (Spain) on 36 hour periods going from the T + 12 to the T + 48 hour.
The test set was the farm’s hourly production in August 2006.

Model performance was measured first by mean square error and the SVM
model results were compared with the best ones in the Proben1 database and
also with those provided by a single hidden layer multilayer perceptron (MLP).
In the wind power problem errors are given as percentages of the farm’s installed
capacity. As it can be seen from the test results of table 2, all models give similar
errors but the square penalty SVM ones are usually slightly larger than those
of the linear penalty SVM but comparable to the MLP ones. Notice that, in
any case, stopping criteria for linear and square penalty SVMs are different,
as SVMSeq performs a gradient ascent over the dual problem while the SK
algorithm tries to minimize the function g defined in section 2. On the other
hand, the number of support vectors (SVs) obtained using square penalties is in
general much smaller than in the case with linear penalties. This is seen in table
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Fig. 1. Placement and density of support vectors plotted along wind speed X and Y
components. Darker areas represent a higher support vector density.

3 for the wind energy prediction problem and the first variable to be predicted
of each data split for the building and flare problems (similar results are
obtained for the other two dependent variables).

An advantage of SVMs over MLPs for the wind energy prediction problem
is the easier interpretation of the resulting model, as the SVs obtained some-
how reflect the dominant data and the model’s behaviour. For instance, figure
1 depicts the density of support vectors (computed using a Parzen window es-
timator) along the X and Y wind speed components. On the one hand, the
density plot reflects dominant southwest–northeast wind directions in the train-
ing database; on the other, it is also clear that model performance over wind
speed predictions outside the grey areas is likely to be poor. For instance, no
support vectors appear for moderate–to–large wind speeds with northwest and
southeast directions; this reflects that wind on these areas has been rare on the
training database, but the model will also ignore it in the future.

The effect of the ε̃ tube is depicted for the wind farm training data in figure
2, that shows the distribution of positively (circles) and negatively (crosses)
shifted support vectors on a plot with absolute wind speed in the x–axis and
energy production (as a percentage of installed power capacity) in the y–axis.
As it can be expected, for a given wind speed patterns with negative shifts tend
to lie below the positively shifted ones; when this is not the case, it is likely to
be due to the presence of outliers. The figure is also somewhat reminiscent of
the power curve of wind turbines, which typically have a sigmoidal–like shape
with a cut–off for wind speeds above 25 m/s.
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Fig. 2. Positively (circles) and negatively (crosses) shifted SVs over absolute wind (x
axis) and percentage of maximum energy output (y axis).

5 Conclusions and Discussion

In this work we have studied support vector regression where tube squared slacks
are added as a penalty term to the standard SVM squared weight norm. This
has two clear advantages. The first one is that, as it happens with SVM classi-
fication, hard and soft SVR can be formally treated in the same way once soft
weights and patterns are appropriately extended. The second advantage is that
the coefficients of the support vectors obtained have a direct relationship with
the width of the tube where these support vectors will fall in. Moreover, and
as demonstrated with our numerical experiments, both linear and square penal-
ties seem to give quite similar test errors, while the second models tend to give
a smaller number of support vectors (resulting in a faster application on new
data).

As pointers to further study, more experimental work is needed for a more
precise comparison on linear and square penalty SVR performance. Moreover,
the standard SVR formulation has the drawback of having to decide on the extra
ε parameter on top of the other two usual SVM parameters, namely the penalty
factor C and the kernel width σ. For linear penalties, the so–called ν–SVR [8]
allows to simultaneously get rid of the C and ε parameters by introducing a
new parameter ν that, moreover, can be used to control some aspects of the
SVM obtained. It may be possible that appropriate square penalty extensions of
ν–SVR provide the same benefits. These and similar topics are presently under
consideration.
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