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Abstract. Classification of micro-array data has been studied extensively but 
only a small amount of research work has been done on classification of micro-
array data involving more than two classes. This paper proposes a learning 
strategy that deals with building a multi-target classifier and takes advantage 
from well known data mining techniques. To address the intrinsic difficulty of 
selecting features in order to promote the classification accuracy, the paper 
considers the use of a set of binary classifiers each of ones is devoted to predict 
a single class of the multi-classification problem. These classifiers are similar 
to local experts whose knowledge (about the features that are most correlated to 
each class value) is taken into account by the learning strategy for selecting an 
optimal set of features. Results of the experiments performed on a publicly 
available dataset demonstrate the feasibility of the proposed approach. 

1   Introduction 

A challenging approach to predict the outcome of certain biological events involves 
using micro-array experimental data for classifying tumors as either benign or malig-
nant. The general goal of this research line is to turn a qualitative diagnosis by a pa-
thologist into a quantitative diagnosis while leading to a finer understanding of cancer 
mechanisms.  

Currently, each and every micro-array experiment requires measuring several 
thousand gene fragments and inducing classifiers over them. The classification diffi-
culty depends greatly on the data provided by DNA micro-arrays as they are of high 
dimensionality while the collected samples are small in number. To simplify, a mi-
cro-array dataset is a matrix of m-dimensional observations (i.e. one for each patient) 
where each dimension is a feature i.e. a measurable property of a specific gene that is 
designed as gene-expression profile. The class is a label associated to the observation 
meaning that all samples can be classified as belonging to one of different classes.  

While significant progress has been made in the development of machine learning 
methods for binary classification [1] [2] [3], finding good classifiers is known to be a 
difficult task when gene expression profiles are used as complex biomarkers defining 
many different classes of cancer (multi-target classification) and only a small amount 
of research work has been done on classification involving more than two classes.  



Specifically, difficulties arise when the micro-array dataset exhibits one class that 
is much more clearly characterized than others (such as [4] or [5] which analyze dif-
ferent tumor types). This makes it impossible to determine which genes are responsi-
ble of each single pathology (class value) because the feature selection results in a set 
that might be most representative of only one (or some, not all) class value. 

The purpose of this paper is to present a method for micro-array multi-target clas-
sification that tries to overcome the above problems by taking into account two major 
concerns: the learning strategy and the acquisition of knowledge from specialized 
binary classifiers. The paper separates these concerns by proposing a learning strat-
egy that deals with building a multi-target classifier and takes advantage from well 
known data mining techniques (Naïve Bayes [6], Support Vector Machines [7], k-
Nearest Neighbor [8]). Focused on the feature selection process, this strategy pro-
vides an iterative method that determines at each step which features to acquire next 
in order to find an optimal set of features. A major contribute of this paper is in the 
second concern that deals with proposing  the use of a set of binary classifiers each of 
ones is devoted to predict a single class of the multi-classification problem. From this 
point of view, the binary classifiers are similar to local experts whose knowledge is 
taken into account by the learning process that collects and takes benefit of informa-
tion concerning the optimal set of features that each single binary classifier selects. 

The paper is organized as follows. Section 2 briefly summarizes some related 
works. Section 3 illustrates our learning strategy, whose validation is asserted by 
experiments presented in Section 4. Finally, Section 5 presents a brief discussion as 
well as concluding remarks. 

2   Related Work 

Building a predictive model (i. e. a classifier that is expected to discriminate normal 
from cancer tissues or to distinguish among different classes of tumors) presents 
multiple challenges, because the micro-array data include a large number of gene 
expression values per experiment (several thousands of features), and a relatively 
small number of samples (a few dozen of patients). Most features being irrelevant to 
the problem at hand, the micro-array data exhibit a high degree of noise: a large num-
ber of features in input to the learning algorithms may turn them to build inefficient 
classifiers with the additional charge of memory and time consumption. Moreover, 
correlation between feature sets results in the counter effect of over-fitting [3]: that is 
creating classifiers that may not generalize well to new data from the same type and 
distribution, despite their excellent accuracy on the training set.  

A number of studies have shown that accurate classification of micro-array data 
can be made using a reduced number of genes [3][4][9] indicating that it is more 
important to explore data and utilize independent features to train classifiers, rather 
than increase the number of features we use. Additionally, the identification of dis-
criminatory genes is of fundamental and practical interest since medical diagnostic 
tests may benefit from the examination of a small subset of relevant genes. 

The underlying distribution of the features being not known, the feature selection 
process originates ambiguity in deciding which group of features constitutes an opti-



mal set. The central question of the “minimum informative subset problem” still re-
mains an active focus of micro-array research and is a challenging task because the 
number of possible feature subsets increases exponentially with the number of fea-
tures, making exhaustive search impractical.  

Along with this central question there is a range of other questions, compactly 
summarized in [10], and it is not clear how to proceed with feature selection, know-
ing that under different conditions the selected feature subsets will likely be different 
depending on sample sizes for the validation process and on different selection meth-
ods. Furthermore, the small sample size and high dimensionality of the data constrain 
the possibility of properly validating the chosen classification model and different 
classifiers perform differently on micro-arrays, with dataset sparsity as the major 
contributor for the differences [11]. Selecting simple classifiers that need minimal 
parameter tuning seems to be the appropriate approach, independently of data com-
plexity and especially for small sample sizes.  

3   The learning strategy 

A multi-target classification problem can be treated directly or decomposed into sev-
eral binary classification problems. However, it has been observed [12] that the direct 
application of a learning strategy to the multi-target problem may result in an over-
representation of the abundant and/or easily separable classes. To circumvent the 
above mentioned limitation, we consider breaking the original M-class problem into a 
set of binary sub-problems (one for each class) and performing classification by train-
ing and combining these binary classifiers with respect to some criterion. 

Because we are interested in separating each pathology from all the others, the 
proposed strategy adopts the one-versus-rest (1-vs-r) classification schema that pro-
vides M binary classifiers, each of ones is trained for distinguishing between a given 
class and the M-1 other remaining classes whose instances are considered as negative 
examples. According to this schema, the first step of the learning strategy decom-
poses the original dataset into M sub-datasets, each separating the instances of a 
given class from the rest of the classes. Then, a filter is applied to each sub-dataset 
that orders the features by their rank within each class, a high score being indicative 
of a relevant variable. Specifically, the ranking procedure concentrates on the correla-
tion of each gene with only one class value at a time, against all the others, and origi-
nates M sets of ranked genes, each of ones is correlated only with one given pathol-
ogy (this is much more interesting also from a medical point of view): irrelevant 
features are excluded from the classification task, thereby reducing both the noise of 
the dataset as well as the time needed to perform the classification. 

This pre-processing step, which is independent from the classification task, is 
based on some statistical criteria (i.e. MDL, χ2) and provides a basis for numerically 
weighting the variables individually, but the next crucial step is the selection of a 
smaller number of highly specific features, i.e. an “optimal” set of features to employ 
in learning each binary classifier. The classification process dealing with a large 
number of variables, it is computationally intractable to search the whole space of 
feature subsets and one has to settle for approximations of the minimal optimal set of 



features that significantly improves the learning algorithm’s performance. Conse-
quently, a feature selection process defines both a strategy to search the space of 
possible feature subsets and a measure for assessing the goodness of the selected 
subset. 

Our approach considers each binary class decision as problem instance and selects 
features for it separately. It results in M-separated processes of feature selection each 
of ones first considers the N top-ranked attributes for the sub-dataset under examina-
tion. The basic idea is to select variables step by step according to their predictive 
power and using a sequential forward selection that starts the search with an empty 
variable subset. During each single step, one or more variables are considered for the 
inclusion in the subset using as criterion the performance of a classifier built with a 
new subset that is obtained by the inclusion of the considered variables.  

Table 1 depicts a general schema of the learning strategy that is applied to each 
single sub-dataset. 

Table 1. A general schema of the learning strategy 

1 Consider a single sub-dataset R and rank all its features according to  
a statistical criterion 

2 Select the N top-ranked features (e.g. start with N = 1) 

3 Build a binary classifier with the N top-ranked features 

4 Test classifier accuracy (on an independent test dataset) 

5 Extend the feature subset by adding the next k top-ranked features  
(e.g. k = 1) and put N = N + k 

6 Repeat steps 2 to 5 and stop if the accuracy has not increased according to 
some stopping criterion or after a fixed number of  iterations 

 
Because just a small number of variables is needed for separating the micro-array 

data, a ranking criterion based on classification success rate can distinguish between 
the top-ranked variables [3]. However, the filter methods and the classification algo-
rithms are not directly relevant for this study: the question we address here is that of 
comparing the above mentioned nested classifiers and proposing a stopping criterion 
for halting iterations.  

Measured in terms of false positive (FP) classification rate and false negative (FN) 
classification rate, the classification accuracy is usually still the only measure used for 
evaluating the performance of micro-array classifiers that are based on data mining 
techniques. As well, measures such recall and precision are popular metrics employed 
in data mining applications. Moreover, it is quite common to monitor the tradeoff 
between true positives (TP) and false positives (FP) by graphical means such as the 
Receiver Operating Characteristic (ROC) curve that shows FP on the x-axis while TP 
is plotted along the y-axis. The visualization of the classifier performance is one of 
the attractive features of ROC analysis that is useful for comparing the relative per-
formance among different classifiers while the area under the ROC curve (AUC) 
provides another approach for evaluating which model is better on average.  



A recent work [13] outlines that ROC curves are inadequate for the needs of data 
mining research in several significant respects and demonstrate the validity of the 
cost curves [14] as a graphical mean for overcoming these deficiencies. Based on the 
point/line duality between ROC space and cost space, this graphical technique (best 
detailed in [15]) plots, along the x-axis, the probability cost pC[+], defined as  

pC[+] = p[+]C[+|-] / (p[+]C[+|-] + p[-]C[-|+]) (1) 

and, along the y-axis, the normalized expected cost NEC, defined as  

NEC = FN ∙ pC[+] + FP ∙ (1 - pC[+]) (2) 

By p[+] we denote the probability of the positive class, and by C[+|-] the cost of pre-
dicting + when the instance is actually - (and by C[-|+] the reverse). Basically, the 
probability cost pC[+] is a distorted version of p[+] based on the cost notion, while the 
normalized expected cost measures the classifier performance weighting each classi-
fication error by the corresponding cost. Both the probability cost and the normalized 
expected cost range from 0 to 1.  

We experimented cost curves as a measure for comparing the performance of a 
family of nested classifiers and for selecting the classifier that has the lowest cost. 
Specifically, we modified the proposed strategy by evaluating, at the end of each step, 
the cost curves of the actual and the previous classifier: the vertical distance between 
the cost curves directly indicates the performance difference between them. The itera-
tion is carried on as long as the cost difference is greater than a fixed threshold and 
the variable subset corresponding to the lowest cost classifier is assumed as optimal 
subset.  

This approach assumes that each binary classifier is best inside certain subsets of 
the whole feature domain. However, the problem is to integrate this information com-
ing from multiple independent binary classifiers that are similar to specialized local 
experts. To this end, a new approach is here explored that considers to treat directly 
the multi-class problem by a multi-classifier learnt on a “globally optimal” subset of 
features that results by joining all the optimal subsets generated by the presented 
learning strategy.  

This “knowledge-based” multi-classifier is a mechanism to combine information 
received from several sources while the learning strategy is employed just for feature 
selection i.e. and for achieving knowledge about genes featuring each single class. 
Because only the genes really relevant to each pathology are involved in multi-
classification, it is expected that the accuracy of a “knowledge-based” multi-classifier 
may be increased by the knowledge of local binary classifiers that are most reliable 
for specific domains. 

4   Experiments 

The Acute Lymphoblastic Leukaemia dataset [16] (ALL, from now) has been used as 
a test-bed for the experiments presented in this section. ALL consists of 327 samples 
(specifically, 215 training and 112 test samples), each one described by the expres-



sion level of 12558 genes. 7 classes are involved in total, i.e. all known ALL sub-
types (T-ALL, E2A-PBX1, TEL-AML1, BCR-ABL, MLL, Hyperdip > 50) and a 
generic class OTHERS, that groups all samples not belonging to any of the previous 
sub-types.  

For all the experiments we carried on, we applied the χ2 statistics, as a ranking cri-
terion, and the following popular classification algorithms: Naïve Bayes (NB) [6], 
Support Vector Machines (SVM) [7], k-Nearest Neighbor (k-NN) [8]. All the ex-
periments have been carried out using the Weka machine learning software package 
[15] and a software tool based on cost curves [13]. 

Fig. 1 shows the accuracy of SVM, NB and k-NN multi-classifiers as a function of 
the number of features when the multi-target classification problem is treated directly. 
This means that feature selection is performed by measuring the correlation of each 
gene simultaneously with all class values.  As can we see, the behavior of all classifi-
ers is similar: the accuracy has some initial oscillation and a large number of features 
(between 750 and 1500) is necessary to reach a plateau and achieve the maximum 
accuracy, in agreement with recent literature [17] [18]. Additionally, we cannot dis-
criminate which features are mostly correlated to a specific class value.   
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Fig. 1. Accuracy of SVM, NB and k-NN multi-classifiers. 

In the following, results are presented using the proposed learning strategy. As a 
first step, the original training set was decomposed into 6 binary sub-datasets by sepa-
rating the instances of each single sub-type from the rest whose instances were con-
sidered negative examples. After data preparation, we applied the ranking procedure 
that discriminates, for each sub-dataset, the set of features most strongly related to 
each target class. This resulted in 6 sets of ranked features ordered by their rank 
within each class. Then, for each classification algorithm (i.e. SVM, NB and k-NN), 
we applied the learning strategy described in Section 3.  

Fig. 2 shows, in the left panel, the cost curves for two nested binary classifiers 
learnt with 3 (dashed line) and 9 features (solid line) when the SVM algorithm is 
applied to the sub-dataset that separates the class BCR-ABL. The cost difference is 
clearly observable and shows that the accuracy increases while augmenting the num-
ber of features. On the contrary, the right panel in Fig. 2 shows an accuracy reduction 



when a new feature is added in building the family of nested classifiers for the sub-
dataset that separates the class T-ALL. Specifically, the cost curves depict the per-
formance of the SVM classifier learnt with the first top-ranked feature (dashed line) 
and the first two top-ranked features (solid line).  

 

 

Fig. 2. Cost curves for two SVM nested classifiers learnt on the sub-dataset that separates the 
class BCR-ABL (left panel) and the class T-ALL (right panel). 

Table 2 shows the resulting optimal number of features respective of each single 
class as well as the accuracy of the binary classifiers built on these optimal subsets (in 
brackets). 

Table 2. Optimal number of features for each ALL sub-type and best accuracy for each binary 
classifier (in brackets). 

  T-ALL E2A-PBX1 TEL-AML1 BCR-ABL MLL Hyperdip>50 

SVM 1 (100 %) 1 (100 %) 12 (100 %) 9 (99,1 %) 3 (100 %) 5 (96,4 %) 

NB 1 (100 %) 1 (100 %) 14 (100 %) 10 (97,3 %) 16 (99,1 %) 12 (96,4 %) 

k-NN 1 (100 %) 1 (100 %) 12 (100 %) 3 (97,3%) 3 (100 %) 9 (95,5 %) 

 
Results in Table 2 show that binary classifiers achieve their maximum accuracy 

with very few features, in that outperforming standard multi-classifiers (Fig. 1). In 
particular, only one gene is sufficient to perfectly discriminate T-ALL and E2A-
PBX1 sub-types, irrespective of the adopted classification algorithm. No error occurs 
in TEL-AML1 classification too, even if a higher number of features (12-14) is re-
quired. Most misclassifications occur in discriminating BCR-ABL and Hyperdyp>50, 
suggesting a less sharp genetic characterization of these sub-types.  

Finally, Table 3 summarizes results when the proposed “knowledge-based” ap-
proach is applied, i.e. when the multi-class problem is treated directly using a “glob-
ally optimal” subset of features that results by joining all the optimal subsets previous 
generated.  



Table 3. Optimal number of features and classification accuracy for SVM, NB and k-NN 
knowledge-based multi-classifiers.  

 Number of features Accuracy 

SVM 31 96,4 % (91,1 ÷ 98,6%) 

NB 54 86,6 % (79,1 ÷ 91,7%) 

k-NN 29 93,8 % (87,7 ÷ 97,0%) 

 
To approximately evaluate the statistical significance of the above accuracy meas-

ure, we constructed a binomial confidence interval as suggested in [19]; specifically, 
last column of Table 3 reports, in brackets, the intervals relative to a 95% confidence 
level. As shown by these results, the proposed “knowledge-based” approach turns out 
to be much more accurate than standard multi-classifiers depicted in Fig.1. Indeed, 
the accuracy of a standard SVM multi-classifier is only 80,4% (72,1 ÷ 86,7%) with 30 
features, while a knowledge-based multi-classifier achieves 96,4% (91,1 ÷ 98,6%) with 
31 features, as witnessed by confusion matrices in Tables 4. The statistical signifi-
cance of the observed difference has been further proved by the application of the 
McNemar’test [20], which is recommended [19][21] for the cases where the learning 
algorithm is run only once (i.e. without any form of resampling).  

Table 4. Confusion matrices of standard (A) and knowledge-based (B) SVM multi-classifiers. 

A. Standard multi-classification 

predicted class 
 a b c d e f g 
a 1 0 0 0 3 0 2 
b 0 9 0 0 0 0 0 
c 0 0 12 0 10 0 0 
d 0 0 1 4 1 0 0 
e 2 0 1 0 22 0 2 
f 0 0 0 0 0 15 0 

ac
tu

al
 c

la
ss

 

g 0 0 0 0 0 0 27 

    30 features, accuracy = 80,4% 

B. “Knowledge-based” multi-classification 

predicted class 
 a b c d e f g 
a 5 0 1 0 0 0 0 
b 0 9 0 0 0 0 0 
c 0 0 21 0 1 0 0 
d 0 0 0 6 0 0 0 
e 0 0 1 0 26 0 0 
f 0 0 0 0 0 15 0 

ac
tu

al
 c

la
ss

 

g 0 0 0 0 1 0 26 

   31 features, accuracy = 96,4% 

a = BCR-ABL, b = E2A-PBX1, c = Hyperdip>50, 

d = MLL, e = OTHERS, f = T-ALL, g = TEL-AML1 
 

Analogously, the performance of NB and k-NN multi-classifiers (whose confusion 
matrices are omitted for sake of space) greatly improves when the knowledge-based 
approach is adopted. Specifically, NB achieves 55,4% (46,2 ÷ 64,3%) with 50 features 
selected in the standard way, while its accuracy is 86,6% (79,1 ÷ 91,7%) when an op-
timal set of 54 features is selected according to the proposed knowledge-based heuris-
tic. Similarly, the standard k-NN multi-classifier achieves 82,1% (74,0 ÷ 88,1%) with 
30 features, while the accuracy of the knowledge-based k-NN multi-classifier is 
93,8% (87,7 ÷ 97,0%) with 29 features. 



5   Discussion and Concluding Remarks 

The presented learning strategy has been validated by different experiments. The first 
experiment (Fig.1), here referred to as standard multi-classification, highlights the 
intrinsic weakness of a feature selection process where the correlation of each gene 
with all class values is simultaneously measured. Related difficulties are also reported 
by recent literature [17] [18] [22]. 

The second experiment (Fig. 2 and Table 2) reveals that a 1-vs-r decomposition is 
much more effective than a single multi-classifier. Our results can be compared with 
[4] where six different heuristics for feature selection are explored by learning NB, 
SVM and k-NN binary classifiers on the ALL dataset. In [4] the best feature selection 
heuristic ranks attributes according to their entropy and selects features “having an 
entropy value less than 0.1 if these exist, or the 20 features with the lowest entropy 
values otherwise”, up to a maximum of 20 features for each binary classifier. The 
resulting NB, SVM and k-NN models are then combined according to a hierarchical 
scheme and respectively misclassify 7, 5 and 4 samples. It is important to observe 
that in [4] the threshold of 20 used to cut off top-ranked features is an arbitrary num-
ber, whereas our learning strategy enables to find, for a given ranking method and a 
given classification algorithm, the “optimal” cut off point. 

The paper goes further in this improving classification by proposing a new ap-
proach referred to as “knowledge-based” multi-classification. As shown by the third 
experiment (Table 3 and Table 4), this approach turns out to be much more accurate 
than standard multi-classifiers, with the same number of features. [5] is the only work 
where a similar heuristic is adopted, but on a different case study. However, in [5] the 
global subset of features is built by taking an equal number of genes for each class, 
hence requiring more genes than in our approach. Indeed, as witnessed by our analy-
sis, the optimal number of features can be different for different class values, suggest-
ing a different strength in genetic characterization of cancer sub-types.  

Our approach is tailored to capture genetic sub-type specificity, enabling to sensi-
bly reduce the total number of features involved in multi-classification and returning 
only the features that are really relevant. As future extension, we plan to validate our 
strategy on different multi-cancer datasets, to obtain more insights on genetic mecha-
nisms underlying cancer sub-type differentiation. In particular, the effectiveness of 
the proposed knowledge-based approach will be further investigated in the context of 
poorly differentiated cancer-sub-types, where the identification on the genes respon-
sible of each sub-type is of crucial importance. 
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