
Mining Frequent Itemsets in Large Data Warehouses:
A Novel Approach Proposed for Sparse Data Sets

S.M. Fakhrahmad1, M. Zolghadri Jahromi2, M.H. Sadreddini3

1 Faculty member in Department of Computer Eng., Islamic Azad University of Shiraz
and PhD student in Shiraz University, Shiraz, Iran

 2 , 3 Department of Computer Science &Engineering, Shiraz University, Shiraz, Iran
mfakhrahmad@cse.shirazu.ac.ir ,{zjahromi , sadredin}@shirazu.ac.ir

Abstract. Proposing efficient techniques for discovery of useful information
and valuable knowledge from very large databases and data warehouses has
attracted the attention of many researchers in the field of data mining. The well-
known Association Rule Mining (ARM) algorithm, Apriori, searches for
frequent itemsets (i.e., set of items with an acceptable support) by scanning the
whole database repeatedly to count the frequency of each candidate itemset.
Most of the methods proposed to improve the efficiency of the Apriori
algorithm attempt to count the frequency of each itemset without re-scanning
the database. However, these methods rarely propose any solution to reduce the
complexity of the inevitable enumerations that are inherited within the problem.
In this paper, we propose a new algorithm for mining frequent itemsets and also
association rules. The algorithm computes the frequency of itemsets in an
efficient manner. Only a single scan of the database is required in this
algorithm. The data is encoded into a compressed form and stored in main
memory within a suitable data structure. The proposed algorithm works in an
iterative manner, and in each iteration, the time required to measure the
frequency of an itemset is reduced further (i.e., checking the frequency of n-
dimensional candidate itemsets is much faster than those of n-1 dimensions).
The efficiency of our algorithm is evaluated using artificial and real-life
datasets. Experimental results indicate that our algorithm is more efficient than
existing algorithms.

Keywords: Data Mining, Frequent Itemset, Association Rule Mining,
Transactional Database, Logical Operations

1 Introduction

Mining association rules (ARs) is a popular and well researched field in data mining
for discovery of interesting relations between items in large databases and transaction
warehouses. Their most popular applications include market basket data analysis,
cross-marketing, catalog design, information retrieval, clustering and classification
[1,2,3].

ARs are represented in the general form of X → Y and imply a co-occurrence
relation between X and Y, where X and Y are two sets of items (called itemsets). X
and Y are called antecedent (left-hand-side or LHS) and consequent (right-hand-side

or RHS) of the rule, respectively. Many evaluation measures are defined to select
interesting rules from the set of all possible candidate rules. The most widely used
measures for this purpose are minimum thresholds on support and confidence.

In most cases, we are just interested in ARs involving itemsets that appear
frequently. For example, we cannot run a good marketing strategy involving items
that are infrequently bought. Thus, most of mining methods assume that we only care
about set of items that appear together in at least an acceptable percentage of the
transactions, i.e., the minimum support threshold. The support of an itemset X is
defined as the proportion of transactions in the data set containing X. The term
frequent itemset is used for itemsets with high value of support.

The confidence of a rule X → Y is defined as supp(X ∩ Y)/supp(X), i.e., a
fraction of transactions containing X, which contain Y as well. ARs must satisfy a
minimum degree of support and confidence at the same time. In this paper, we use the
short terms MinSupp and MinConf for minimum support and minimum confidence
thresholds, respectively.

Most association rule mining (ARM) algorithms generate association rules in two
steps: (1) Mining all frequent itemsets, and (2) generating all rules using these
itemsets. The base of such algorithms is the fact that any subset of a frequent itemset
must also be frequent, and that both the LHS and the RHS of a frequent rule must also
be frequent. Thus, every frequent itemset of length n can result in n association rules
with a single item on the RHS [4,5,6,10,11].

In data mining applications, the data is often too large to fit in main memory.
Therefore, the first step of mining ARs is expensive in terms of computation, memory
usage and I/O resources. Much of the research effort in this field has been devoted to
improving the efficiency of the first step. The main factors used to evaluate these
algorithms are the time needed to read data from disk and the number of times each
data item has to be read. There are also some approaches, which consider the memory
usage as the main factor to be minimized.

Different algorithms use some key principles and tricks to mine frequent itemsets
more efficiently. Most of these algorithms try to present a solution to the problem of
finding frequent itemsets by reducing the number of times the whole database has to
be scanned (i.e., reduce the number of times that the occurrences of itemsets has to be
counted). In the literature, many efficient solutions have already been proposed for
this problem. However, one key issue, which has rarely been addressed by other
researchers in this field is how to compute the frequency of itemsets in an efficient
manner. Finding the frequency of an itemset is carried out by counting the number of
occurrences of the itemset, which is a very time consuming process due to the large
volume of data in data mining applications. In this paper, we focus our attention on
how to present an efficient solution for this problem. In our approach, the database is
scanned only once and the data is encoded into a compressed form and stored in main
memory within a suitable data structure. The proposed algorithm works in an iterative
manner, where by each iteration, the time required to measure the frequency of
itemsets, is reduced further.

The rest of the paper is organized as follows: Section 2 introduces some efficient
ARM algorithms from the literature. In Section 3, we describe our approach and give
the detail of the algorithm, FastARM. Experimental results using artificial and real-
life data sets are presented in Section 4. Finally, we give the conclusion in Section 5.

2 Related Work

Many algorithms that have already been proposed for ARM, use a two step process
for generating ARs: 1) mining frequent itemsets, 2) generating ARs from frequent
itemsets. The main focus of many of these proposed algorithms is over the first step,
where they try to improve the efficiency of the mining process for finding frequent
itemsets by reducing the number of read operations from disk, as much as possible.
For this purpose, some methods propose solutions to compute the support of some
itemsets in order to avoid a number of unnecessary data re-scans. Some others build a
special data structures in main memory for this purpose.

Apriori [4] is the most well-known ARM method. The concepts and principles of
this method are the basis of many other proposed algorithms. Many improved
versions or efficient implementations of the primary Apriori have also been proposed
by different researchers. VIPER [5] and ARMOR1 [6] are two relatively new
algorithms which use the Apriori approach, but are much more efficient. VIPER uses
a similar data presentation to our proposed method, but it is not efficient because of
its need for multiple data re-scans. ARMOR can be considered as the improved
version of another efficient algorithm, Oracle [6]. Oracle and ARMOR use a data
structure called DAG to optimize their counting operations of itemset occurrences.
FP-Growth [7] is another well-known algorithm, which works differently from others.
It discovers frequent itemsets without generating any candidate itemset. In this
algorithm, the data is read three times from disk and a hash tree structure is built in
memory. All frequent itemsets can be found by traversing the hash tree. The main
problem of FP-Growth is its heavy utilization of main memory, which is very
dependent on the size of database. Running this algorithm for huge data sets is almost
impossible due to the limitation of main memory.

The major problems of many ARM methods are their need to read data from the
disk iteratively and the time consuming operation of counting the frequency of each
itemset [4,5,6,8,10]. The method proposed in this paper attempts to provide a solution
for these problems.

3 The Proposed Algorithm

For ease of illustration, we assume the transaction data warehouse as a binary-valued
data set having a relational scheme. Each column in this scheme stands for a possible
item that can be found in any transaction of the data warehouse and each tuple
represents a transaction. Each 0 or 1 value indicates the presence or absence of an
itemset in a transaction, respectively. As an example the relation shown in Fig. 1.(b)
is the structured form of the data set of Fig. 1.(a), which contains four transactions.

1 Association Rule Mining based on ORacle

Cheese, Coke, Egg
Cheese, Egg
Coke, Cheese, Beer
Coke, Beer

 a) A transactional data set b) A structured presentation of transactions

Fig. 1. A data set containing some transactions of a market basket

3.1 Mining Frequent Itemsets

As the first step of the algorithm, we divide the relation horizontally into some equi-
size partitions, each containing k tuples. We comment on choosing the best value for k
later in this section. In this relation, each column contains k bits in each partition, thus
the group of bits in each column within each partition can be viewed as a k-bit binary
code, which is equivalent to a decimal number between 0 and 2k-1. These decimal
numbers are the major elements of our algorithm.

The partitioned relation is scanned just once and the supports of singletons (1-
itemsets) are measured to find 1-frequent itemsets. Meanwhile, for each partition, all
nonzero decimal values are extracted. For any column of the data set, which
represents a frequent singleton, we build a hash table in memory. Each value in this
hash table, is a non-zero decimal value extracted from a partition and its access key is
the number of that partition (an integer number between 1 and m, where m is the
number of partitions). Since we do not insert zero values into the hash tables, then the
values recorded in the hash table indicate the regions of the itemset occurrences and
limits the search space for the next steps.

 A B C

I

1
0
0
1

0
1
1
1

0
0
0
0

II

0
1
1
1

0
0
0
0

1
0
0
0

III

1
1
1
0

0
0
0
0

1
1
0
1

IV

0
0
0
0

1
1
0
1

1
0
1
0

V

1
0
1
1

0
0
0
0

0
1
0
0

VI

0
0
0
0

1
1
1
1

1
0
0
0

Cheese Coke Egg Beer
1 1 1 0
1 0 1 0
1 1 0 1
0 1 0 1

Fig. 2. An Example data set

As an example, consider the data set r with 24 transactions, shown in Fig. 2, where
A, B and C are three different items. Assume the value of k is set to 4. Thus, the 24
transactions are divided into 6 partitions, each containing 4 tuples. The proposed
algorithm with MinSupp set to 0.4, searches for frequent itemsets as follows. The first
step involves counting the occurrences of all singletons and constructing the hash
tables for the frequent ones. The calculated values for the supports of A,B and C are
0.45, 0.41 and 0.33, respectively.

Here, only the hash tables of A and B (frequent singletons) are constructed. The
hash table for C is not constructed because its support is less than the MinSupp
threshold.

Hash table of A:

Keys I II III V
Values 9 7 14 11

 (9 = (1001)2, 7 = (0111)2, 14 = (1110)2, 11 = (1011)2)

Hash table of B:

Keys I IV VI
Values 7 13 15

(7 = (111)2, 13 = (1101)2, 15 = (1111)2)

The support of a compound itemset such as AB, is easily measured by using the

hash tables of its elements (i.e., A and B), instead of scanning the whole database
again. In order to calculate the support of a compound itemset, we begin with the
smaller hash table (i.e., the one having fewer values). For each key of this hash table,
we first verify if it also exists in the other hash table. This verification does not
involve any search due to the direct access structure of hash table. If a key exists in
both hash tables, then we perform a logical AND operation between the the
corresponding values related to that key.

The result of the AND operation is another integer value, which gives the co-
occurrences of A and B in that partition. If the result is zero, it means that there is no
simultaneous occurrence of A and B in that partition. We build a similar hash table
for the compound itemset, AB, and insert the non-zero integer values resulted from
AND operations in this table. The size of this hash table is at most equal to the size of
the smaller hash table of the two elements. Each number stored in this hash table is
equivalent to a binary number, which contains some 1's. The total number of 1's
indicates the co-occurrence frequency of A and B. Thus we should just enumerate the
total number of 1's for all integer values, instead of scanning the whole database. This
measurement can be done using logical Shift Left (SHL) or Shift Right (SHR)
operations over each value and adding up the carry bits until the result is zero (i.e.,
there is no other 1-bits to be counted).

The SHR operation is preferred to SHL in cases where the decimal number under
investigation has a value less than 2k/2. The reason is that the equivalent binary codes
for such cases do not contain any 1-bit in their left-hand side half, and selecting SHR
will make enumeration at least two times faster than using SHL.

The efficiency of this structure becomes clearer for measuring the support of
higher dimensional itemsets. As we proceed to higher dimensional itemsets, the size
of hash tables becomes smaller due to new zeros emerging from AND operations.
These zeros are not inserted into the result hash table.

Let us refer to the above example and continue the mining process. According to
the frequent singletons found, the only candidate for 2-frequent itemsets (pairs) is the
itemset AB. In order to build the hash table of AB, each value stored in the hash table
of B (i.e., the smaller hash table) is selected for logical AND operation with a value
having the same key stored in A's hash table. The only key present in both hash tables
is I, thus the result is a hash table having just one item, as follows.

Hash table of AB: (9 & 7 = 1)

Keys I
Values 1

To measure the support of AB, the number of 1's in the value field of this hash

table (in the binary form) has to be counted. Since this value is equal to 1 (i.e., 0001),
just one SHR operation and thus one comparison is enough to count 1's. However, if
we had searched all the data to find the co-occurrences of A and B, the number of
required comparisons would have been 48 (for reading the value of A and B in all 24
tuples). In general, this improvement is much more apparent for itemsets of higher
dimensions.

In a same way, the hash tables of 2-frequent itemsets are then used to mine 3-
frequent itemsets and in general, n-frequent itemsets are mined using (n-1)-frequent
itemsets. However, we do not use all combinations of frequent itemsets to get (n+1)-
frequent itemsets. The Apriori principle [4] is used to avoid verifying useless
combinations: "An n-dimensional itemset can be frequent if all of its (n-1)-
dimensional subsets are frequent". Thus, for example if AB and AC are two frequent
itemsets, their combination is ABC, but we do not combine their hash tables unless
the itemset BC is also frequent. If all the n-1 subsets of an n-dimensional itemset are
frequent, combining two of them is enough to get the hash table of the itemset.

4 Experimental Results

We conducted two experiments to evaluate the performance of our algorithm,
FastARM in comparison with four well-known ARM methods, Apriori, VIPER,
ARMOR and FP-Growth. We implemented the algorithms in C++ on a 3GHz Intel
system with 1 GB RAM. We performed experiments on synthetic and real-life data.
In all of the experiments we used k = 32 for the size of partitions.

4.1 Experiment 1: Synthetic Data

We used 10 data sets each containing 2*106 transactions in this experiment to
evaluate the performance of Apriori, VIPER, ARMOR and FastARM algorithms. We
generated synthetic data sets randomly for 500 distinct items such that the probability
of an item being presenct in a transaction is 0.1. In this experiment, we could not
evaluate the performance of FP-Growth due to its heavy utilization of main memory.
The reason for this is that FP-Growth stores the database in a condensed form in main
memory (using a data structure called FP-tree).

The results are shown in Fig. 3. The x-axis in these graphs represents the MinSupp
threshold values and the y-axis represents the run times of different algorithms. For
each specified value of MinSupp, the average run time of each algorithm over 10 data
sets is measured and displayed. In this graph, we observe that the execution time of
FastARM is relatively less than all of the other algorithms. This relative efficiency is
more sensible where the value of MinSupp is very low. We also see that there is a
considerable improvement in the performance of FastARM with respect to both
Apriori and VIPER and also a relative improvement with respect to ARMOR.

Table 1 shows the memory consumption of the algorithm throughout each part of
the experiment. The values shown in this table represent the amount of memory
required for hash tables in each case. Since the hash tables contain the whole
information of the primary database (in another format), we can find out the
compression rate of the algorithm by comparing these values with the size of database
(which is about 100 MB).

Table 1. The memory consumption of the algorithm through each part of the experiment

Consumed Memory (MB) Probability of 1-bit
6.8 0.005
11.3 0.01
47.6 0.05
88.7 0.1

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 1 2 3 4

MinSupp (%)

R
un

 T
im

e
(S

ec
)

FastARM

ARMOR

VIPER

Apriori

Fig. 3. Performance of different methods on synthetic data for different Minsupp values

4. 2 Experiment 2: Real Databases

Our second set of experiments involved real data sets extracted from the Frequent
Itemset Mining Dataset Repository, namely BMS-POS, BMS-WebView-1 and BMS-
WebView-2.

The BMS-POS dataset contains sales data of several years from a large electronics
retailer. Since this retailer has so many different products, product categories are used
as items. Each transaction in this dataset is a customer’s purchase transaction
consisting of all product categories purchased at one time. The goal for this dataset is
to find associations between product categories purchased by customers in a single
visit to the retailer. This data set contains 515,597 transactions and 1,657 distinct
items. The BMS-WebView-1 and BMS-WebView-2 datasets contain several months
worth of clickstream data from two e-commerce web sites. Each transaction in these
data sets is a web session consisting of all the product detail pages viewed in that
session. That is, each product detail view is an item. The goal for both of these
datasets is to find associations between products viewed by visitors in a single visit to
the web site. These two data sets contain 59,602 and 77,512 transactions, respectively
(with 497 and 3,340 distinct items).

We set the MinConf threshold value to zero and evaluated the performance of
different algorithms using the MinSupp value varying within the range of (0.02%–
0.1%). The results of these experiments are shown in Figures 4a–c. We see in these
graphs that for lower values of MinSupp, the performance of FastARM is significantly
better than other methods.

0

500

1000

1500

2000

2500

3000

3500

4000

0 0.02 0.04 0.06 0.08 0.1

MinSupp (%)

R
un

 ti
m

e
(S

ec
)

FastARM

FP-growth
ARMOR

Viper
Apriori

a) Running times of various methods on the BMS-POS data set

0

500

1000

1500

2000

0 0.02 0.04 0.06 0.08 0.1

MinSupp (%)

R
un

 ti
m

e
(S

ec
)

FastARM

FP-growth
ARMOR
VIPER
Apriori

b) Running times of various methods on the BMS-WebView-1 data set

0

500

1000

1500

2000

2500

0 0.02 0.04 0.06 0.08 0.1

MinSupp (%)

R
un

 ti
m

e
(S

ec
)

FastARM

FP-growth
ARMOR

Viper
Apriori

c) Running times of various methods on the BMS-WebView-2 data set

Fig. 4. Performance of algorithms over some real-life data sets

5 Conclusion

 In this paper, we proposed an efficient ARM algorithm called the FastARM that
partitions the data and constructs hash tables to count the frequency of itemsets. Only
a single scan of the database is required in this approach and all the necessary
information is stored in hash tables. Frequent itemsets are computed by performing
the logical AND operations on values from individual hash tables.

We used two experiments on artificial and real-life data sets to evaluate the run
time of FastARM in comparison with Apriori, FP-Growth, VIPER and ARMOR as
four well-known ARM algorithms proposed in the literature. The experiments were
conducted to investigate the effect of MinSupp and the database size on the execution
time of each algorithm. The results of these experiments clearly indicated that
FastARM performs better specially for lower values of MinSupp. It should be noticed
that as we increase the value of MinSupp, the number of frequent itemsets and
generated ARs decreases rapidly. That is why FastARM performs similar to the other
methods when higher values for MinSupp are used.

References

1. Zamiri, M. J. and A.A. Rezaei- Roodbari.: Relationship between blood physiological
attributes and carcass characteristics in Iranian fat-tailed sheep, Iranian Journal of Science
and Technology, Transactions A, Vol. 28, No. A, 97--06 (2004)

2. Ghassem-Sani, G. and Halavati, R.: Employing Domain Knowledge to Improve AI Planning
Efficiency, Iranian Journal of Science and Technology, Transaction B, Vol. 29, No. B1
(2005)

3. Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules in Large Databases,
In: 20th International Conference on Very Large Data Bases, pp. 487--499 (1994)

4. Shenoy, P., Haritsa J., Sudarshan S., Bhalotia G., Bawa M., and Shah D.: Turbo-charging
vertical mining of large databases. In: ACM SIGMOD Intl. Conf. on Management of Data,
ACM Press, Vol. 29 , No. 2, pp. 22--33, 2000.

5. Pudi, V., Haritsa, J.R..: ARMOR: Association Rule Mining based on ORacle. In: ICDM
Workshop on Frequent Itemset Mining Implementations, Florida, USA (2003)

6. Han, J., Pei, J., Yin Y., and Mao R.: Mining frequent patterns without candidate generation:
A frequent –pattern tree approach. Data Minning and Knowledge Discovery, Vol. 8, No. 1,
pp. 53—87 (2004)

7. Zheng, Z., Kohavi, R. and Mason L.: Real world performance of association rule algorithms.
In: Intl. Conf. on Knowledge Discovery and Data Mining (KDD) (2001)

8. Michie, D., Spiegelhalter, D.J., and Taylor, C.C., (eds.). Machine Learning, Neural and
Statistical Classification (STATLOG Project), Herfordshire: Ellis Horwood.

9. Pei, J., Han, J., and Mao, R.: CLOSET. An efficient algorithm for mining frequent closed
itemsets. In: ACM_SIGMOD International Workshop on Data Mining and Knowledge
Discovery (2003)

10. Webb., G.I.: OPUS: An efficient admissible algorithm for unordered search. JAIR, Vol. 3,
431—465 (2004)

11. Webb., G.I., Efficient search for association rules. In: Sixth ACM-SIGKDD International
Conference on Knowledge Discovery and Data Mining, New York, NY: ACM, pp. 99--107.

