
Mining Frequent Itemsets in Large Data Warehouses:  
A Novel Approach Proposed for Sparse Data Sets 

S.M. Fakhrahmad1, M. Zolghadri Jahromi2, M.H. Sadreddini3 

1 Faculty member in Department of Computer Eng., Islamic Azad University of Shiraz 
and PhD student in Shiraz University, Shiraz, Iran   

 2 , 3 Department of Computer Science &Engineering, Shiraz University, Shiraz, Iran 
mfakhrahmad@cse.shirazu.ac.ir ,{zjahromi , sadredin}@shirazu.ac.ir 

Abstract. Proposing efficient techniques for discovery of useful information 
and valuable knowledge from very large databases and data warehouses has 
attracted the attention of many researchers in the field of data mining. The well-
known Association Rule Mining (ARM) algorithm, Apriori, searches for 
frequent itemsets (i.e., set of items with an acceptable support) by scanning the 
whole database repeatedly to count the frequency of each candidate itemset. 
Most of the methods proposed to improve the efficiency of the Apriori 
algorithm attempt to count the frequency of each itemset without re-scanning 
the database. However, these methods rarely propose any solution to reduce the 
complexity of the inevitable enumerations that are inherited within the problem. 
In this paper, we propose a new algorithm for mining frequent itemsets and also 
association rules. The algorithm computes the frequency of itemsets in an 
efficient manner. Only a single scan of the database is required in this 
algorithm. The data is encoded into a compressed form and stored in main 
memory within a suitable data structure. The proposed algorithm works in an 
iterative manner, and in each iteration, the time required to measure the 
frequency of an itemset is reduced further (i.e., checking the frequency of n-
dimensional candidate itemsets is much faster than those of n-1 dimensions). 
The efficiency of our algorithm is evaluated using artificial and real-life 
datasets. Experimental results indicate that our algorithm is more efficient than 
existing algorithms. 
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1   Introduction 

Mining association rules (ARs) is a popular and well researched field in data mining 
for discovery of interesting relations between items in large databases and transaction 
warehouses. Their most popular applications include market basket data analysis, 
cross-marketing, catalog design, information retrieval, clustering and classification 
[1,2,3].  

ARs are represented in the general form of X → Y and imply a co-occurrence 
relation between X and Y, where X and Y are two sets of items (called itemsets). X 
and Y are called antecedent (left-hand-side or LHS) and consequent (right-hand-side 



or RHS) of the rule, respectively. Many evaluation measures are defined to select 
interesting rules from the set of all possible candidate rules. The most widely used 
measures for this purpose are minimum thresholds on support and confidence.  

In most cases, we are just interested in ARs involving itemsets that appear 
frequently. For example, we cannot run a good marketing strategy involving items 
that are infrequently bought. Thus, most of mining methods assume that we only care 
about set of items that appear together in at least an acceptable percentage of the 
transactions, i.e., the minimum support threshold. The support of an itemset X is 
defined as the proportion of transactions in the data set containing X. The term 
frequent itemset is used for itemsets with high value of support.  

The confidence of a rule X → Y is defined as supp(X ∩ Y )/supp(X), i.e., a 
fraction of transactions containing X, which contain Y as well. ARs must satisfy a 
minimum degree of support and confidence at the same time. In this paper, we use the 
short terms MinSupp and MinConf for minimum support and minimum confidence 
thresholds, respectively. 

Most association rule mining (ARM) algorithms generate association rules in two 
steps: (1) Mining all frequent itemsets, and (2) generating all rules using these 
itemsets. The base of such algorithms is the fact that any subset of a frequent itemset 
must also be frequent, and that both the LHS and the RHS of a frequent rule must also 
be frequent. Thus, every frequent itemset of length n can result in n association rules 
with a single item on the RHS [4,5,6,10,11].  

In data mining applications, the data is often too large to fit in main memory. 
Therefore, the first step of mining ARs is expensive in terms of computation, memory 
usage and I/O resources. Much of the research effort in this field has been devoted to 
improving the efficiency of the first step. The main factors used to evaluate these 
algorithms are the time needed to read data from disk and the number of times each 
data item has to be read. There are also some approaches, which consider the memory 
usage as the main factor to be minimized. 

Different algorithms use some key principles and tricks to mine frequent itemsets 
more efficiently. Most of these algorithms try to present a solution to the problem of 
finding frequent itemsets by reducing the number of times the whole database has to 
be scanned (i.e., reduce the number of times that the occurrences of itemsets has to be 
counted). In the literature, many efficient solutions have already been proposed for 
this problem. However, one key issue, which has rarely been addressed by other 
researchers in this field is how to compute the frequency of itemsets in an efficient 
manner. Finding the frequency of an itemset is carried out by counting the number of 
occurrences of the itemset, which is a very time consuming process due to the large 
volume of data in data mining applications. In this paper, we focus our attention on 
how to present an efficient solution for this problem. In our approach, the database is 
scanned only once and the data is encoded into a compressed form and stored in main 
memory within a suitable data structure. The proposed algorithm works in an iterative 
manner, where by each iteration, the time required to measure the frequency of 
itemsets, is reduced further. 

The rest of the paper is organized as follows: Section 2 introduces some efficient 
ARM algorithms from the literature. In Section 3, we describe our approach and give 
the detail of the algorithm, FastARM. Experimental results using artificial and real-
life data sets are presented in Section 4. Finally, we give the conclusion in Section 5. 



2   Related Work 

Many algorithms that have already been proposed for ARM, use a two step process 
for generating ARs: 1) mining frequent itemsets, 2) generating ARs from frequent 
itemsets. The main focus of many of these proposed algorithms is over the first step, 
where they try to improve the efficiency of the mining process for finding frequent 
itemsets by reducing the number of read operations from disk, as much as possible. 
For this purpose, some methods propose solutions to compute the support of some 
itemsets in order to avoid a number of unnecessary data re-scans. Some others build a 
special data structures in main memory for this purpose.  

Apriori [4] is the most well-known ARM method. The concepts and principles of 
this method are the basis of many other proposed algorithms. Many improved 
versions or efficient implementations of the primary Apriori have also been proposed 
by different researchers. VIPER [5] and ARMOR1 [6] are two relatively new 
algorithms which use the Apriori approach, but are much more efficient. VIPER uses 
a similar data presentation to our proposed method, but it is not efficient because of 
its need for multiple data re-scans. ARMOR can be considered as the improved 
version of another efficient algorithm, Oracle [6]. Oracle and ARMOR use a data 
structure called DAG to optimize their counting operations of itemset occurrences. 
FP-Growth [7] is another well-known algorithm, which works differently from others. 
It discovers frequent itemsets without generating any candidate itemset. In this 
algorithm, the data is read three times from disk and a hash tree structure is built in 
memory. All frequent itemsets can be found by traversing the hash tree. The main 
problem of FP-Growth is its heavy utilization of main memory, which is very 
dependent on the size of database. Running this algorithm for huge data sets is almost 
impossible due to the limitation of main memory.  

The major problems of many ARM methods are their need to read data from the 
disk iteratively and the time consuming operation of counting the frequency of each 
itemset [4,5,6,8,10]. The method proposed in this paper attempts to provide a solution 
for these problems. 

3   The Proposed Algorithm 

For ease of illustration, we assume the transaction data warehouse as a binary-valued 
data set having a relational scheme. Each column in this scheme stands for a possible 
item that can be found in any transaction of the data warehouse and each tuple 
represents a transaction. Each 0 or 1 value indicates the presence or absence of an 
itemset in a transaction, respectively. As an example the relation shown in Fig. 1.(b) 
is the structured form of the data set of Fig. 1.(a), which contains four transactions. 
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Cheese, Coke, Egg 
Cheese, Egg 
Coke, Cheese, Beer 
Coke, Beer 
 

    a) A transactional data set                                      b) A structured presentation of transactions 

Fig. 1.  A data set containing some transactions of a market basket 

3.1   Mining Frequent Itemsets  

As the first step of the algorithm, we divide the relation horizontally into some equi-
size partitions, each containing k tuples. We comment on choosing the best value for k 
later in this section. In this relation, each column contains k bits in each partition, thus 
the group of bits in each column within each partition can be viewed as a k-bit binary 
code, which is equivalent to a decimal number between 0 and 2k-1. These decimal 
numbers are the major elements of our algorithm. 

The partitioned relation is scanned just once and the supports of singletons (1-
itemsets) are measured to find 1-frequent itemsets. Meanwhile, for each partition, all 
nonzero decimal values are extracted. For any column of the data set, which 
represents a frequent singleton, we build a hash table in memory. Each value in this 
hash table, is a non-zero decimal value extracted from a partition and its access key is 
the number of that partition (an integer number between 1 and m, where m is the 
number of partitions). Since we do not insert zero values into the hash tables, then the 
values recorded in the hash table indicate the regions of the itemset occurrences and 
limits the search space for the next steps.  
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Cheese Coke Egg Beer 
1 1 1 0 
1 0 1 0 
1 1 0 1 
0 1 0 1 

Fig. 2.  An Example data set 



As an example, consider the data set r with 24 transactions, shown in Fig. 2, where 
A, B and C are three different items. Assume the value of k is set to 4. Thus, the 24 
transactions are divided into 6 partitions, each containing 4 tuples. The proposed 
algorithm with MinSupp set to 0.4, searches for frequent itemsets as follows. The first 
step involves counting the occurrences of all singletons and constructing the hash 
tables for the frequent ones. The calculated values for the supports of A,B and C are 
0.45, 0.41 and 0.33, respectively.  

Here, only the hash tables of A and B (frequent singletons) are constructed. The 
hash table for C is not constructed because its support is less than the MinSupp 
threshold. 

 
Hash table of A: 
 

Keys I II III V 
Values 9 7 14 11 

 
 (9 = (1001)2, 7 = (0111)2, 14 = (1110)2, 11 = (1011)2) 
 
Hash table of B: 
 

Keys I IV VI 
Values 7 13 15 

 
(7 = (111)2, 13 = (1101)2, 15 = (1111)2) 
 
The support of a compound itemset such as AB, is easily measured by using the 

hash tables of its elements (i.e., A and B), instead of scanning the whole database 
again. In order to calculate the support of a compound itemset, we begin with the 
smaller hash table (i.e., the one having fewer values). For each key of this hash table, 
we first verify if it also exists in the other hash table. This verification does not 
involve any search due to the direct access structure of hash table. If a key exists in 
both hash tables, then we perform a logical AND operation between the the 
corresponding values related to that key.        

The result of the AND operation is another integer value, which gives the co-
occurrences of A and B in that partition. If the result is zero, it means that there is no 
simultaneous occurrence of A and B in that partition. We build a similar hash table 
for the compound itemset, AB, and insert the non-zero integer values resulted from 
AND operations in this table. The size of this hash table is at most equal to the size of 
the smaller hash table of the two elements. Each number stored in this hash table is 
equivalent to a binary number, which contains some 1's. The total number of 1's 
indicates the co-occurrence frequency of A and B. Thus we should just enumerate the 
total number of 1's for all integer values, instead of scanning the whole database. This 
measurement can be done using logical Shift Left (SHL) or Shift Right (SHR) 
operations over each value and adding up the carry bits until the result is zero (i.e., 
there is no other 1-bits to be counted).  



The SHR operation is preferred to SHL in cases where the decimal number under 
investigation has a value less than 2k/2. The reason is that the equivalent binary codes 
for such cases do not contain any 1-bit in their left-hand side half, and selecting SHR 
will make enumeration at least two times faster than using SHL. 

The efficiency of this structure becomes clearer for measuring the support of 
higher dimensional itemsets. As we proceed to higher dimensional itemsets, the size 
of hash tables becomes smaller due to new zeros emerging from AND operations. 
These zeros are not inserted into the result hash table. 

Let us refer to the above example and continue the mining process. According to 
the frequent singletons found, the only candidate for 2-frequent itemsets (pairs) is the 
itemset AB. In order to build the hash table of AB, each value stored in the hash table 
of B (i.e., the smaller hash table) is selected for logical AND operation with a value 
having the same key stored in A's hash table. The only key present in both hash tables 
is I, thus the result is a hash table having just one item, as follows. 

 
Hash table of AB: (9 & 7 = 1) 
 

Keys I 
Values 1 

 
To measure the support of AB, the number of 1's in the value field of this hash 

table (in the binary form) has to be counted. Since this value is equal to 1 (i.e., 0001), 
just one SHR operation and thus one comparison is enough to count 1's. However, if 
we had searched all the data to find the co-occurrences of A and B, the number of 
required comparisons would have been 48 (for reading the value of A and B in all 24 
tuples). In general, this improvement is much more apparent for itemsets of higher 
dimensions.  

In a same way, the hash tables of 2-frequent itemsets are then used to mine 3-
frequent itemsets and in general, n-frequent itemsets are mined using (n-1)-frequent 
itemsets. However, we do not use all combinations of frequent itemsets to get (n+1)-
frequent itemsets. The Apriori principle [4] is used to avoid verifying useless 
combinations: "An n-dimensional itemset can be frequent if all of its (n-1)-
dimensional subsets are frequent". Thus, for example if AB and AC are two frequent 
itemsets, their combination is ABC, but we do not combine their hash tables unless 
the itemset BC is also frequent. If all the n-1 subsets of an n-dimensional itemset are 
frequent, combining two of them is enough to get the hash table of the itemset.     

4   Experimental Results 

We conducted two experiments to evaluate the performance of our algorithm, 
FastARM in comparison with four well-known ARM methods, Apriori, VIPER, 
ARMOR and FP-Growth. We implemented the algorithms in C++ on a 3GHz Intel 
system with 1 GB RAM. We performed experiments on synthetic and real-life data. 
In all of the experiments we used k = 32 for the size of partitions.  



4.1   Experiment 1: Synthetic Data 

We used 10 data sets each containing 2*106 transactions in this experiment to 
evaluate the performance of Apriori, VIPER, ARMOR and FastARM algorithms. We 
generated synthetic data sets randomly for 500 distinct items such that the probability 
of an item being presenct in a transaction is 0.1. In this experiment, we could not 
evaluate the performance of FP-Growth due to its heavy utilization of main memory. 
The reason for this is that FP-Growth stores the database in a condensed form in main 
memory (using a data structure called FP-tree).  

The results are shown in Fig. 3. The x-axis in these graphs represents the MinSupp 
threshold values and the y-axis represents the run times of different algorithms. For 
each specified value of MinSupp, the average run time of each algorithm over 10 data 
sets is measured and displayed. In this graph, we observe that the execution time of 
FastARM is relatively less than all of the other algorithms. This relative efficiency is 
more sensible where the value of MinSupp is very low. We also see that there is a 
considerable improvement in the performance of FastARM with respect to both 
Apriori and VIPER and also a relative improvement with respect to ARMOR. 

Table 1 shows the memory consumption of the algorithm throughout each part of 
the experiment. The values shown in this table represent the amount of memory 
required for hash tables in each case. Since the hash tables contain the whole 
information of the primary database (in another format), we can find out the 
compression rate of the algorithm by comparing these values with the size of database 
(which is about 100 MB). 

 

Table 1.   The memory consumption of the algorithm through each part of the experiment  

 
 

Consumed Memory (MB) Probability of 1-bit 
6.8  0.005  
11.3 0.01  
47.6  0.05 
88.7 0.1  
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Fig. 3.  Performance of different methods on synthetic data for different Minsupp values 

4. 2   Experiment 2: Real Databases 

Our second set of experiments involved real data sets extracted from the Frequent 
Itemset Mining Dataset Repository, namely BMS-POS, BMS-WebView-1 and BMS-
WebView-2. 

The BMS-POS dataset contains sales data of several years from a large electronics 
retailer. Since this retailer has so many different products, product categories are used 
as items. Each transaction in this dataset is a customer’s purchase transaction 
consisting of all product categories purchased at one time. The goal for this dataset is 
to find associations between product categories purchased by customers in a single 
visit to the retailer. This data set contains 515,597 transactions and 1,657 distinct 
items. The BMS-WebView-1 and BMS-WebView-2 datasets contain several months 
worth of clickstream data from two e-commerce web sites. Each transaction in these 
data sets is a web session consisting of all the product detail pages viewed in that 
session. That is, each product detail view is an item. The goal for both of these 
datasets is to find associations between products viewed by visitors in a single visit to 
the web site. These two data sets contain 59,602 and 77,512 transactions, respectively 
(with 497 and 3,340 distinct items). 

We set the MinConf threshold value to zero and evaluated the performance of 
different algorithms using the MinSupp value varying within the range of (0.02%–
0.1%). The results of these experiments are shown in Figures 4a–c. We see in these 
graphs that for lower values of MinSupp, the performance of FastARM is significantly 
better than other methods. 
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a) Running times of various methods on the BMS-POS data set 
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b) Running times of various methods on the BMS-WebView-1 data set 
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c) Running times of various methods on the BMS-WebView-2 data set 

  
Fig. 4.  Performance of algorithms over some real-life data sets 



5   Conclusion  

 In this paper, we proposed an efficient ARM algorithm called the FastARM that 
partitions the data and constructs hash tables to count the frequency of itemsets. Only 
a single scan of the database is required in this approach and all the necessary 
information is stored in hash tables. Frequent itemsets are computed by performing 
the logical AND operations on values from individual hash tables.  

We used two experiments on artificial and real-life data sets to evaluate the run 
time of FastARM in comparison with Apriori, FP-Growth, VIPER and ARMOR as 
four well-known ARM algorithms proposed in the literature. The experiments were 
conducted to investigate the effect of MinSupp and the database size on the execution 
time of each algorithm. The results of these experiments clearly indicated that 
FastARM performs better specially for lower values of MinSupp. It should be noticed 
that as we increase the value of MinSupp, the number of frequent itemsets and 
generated ARs decreases rapidly. That is why FastARM performs similar to the other 
methods when higher values for MinSupp are used. 
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