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Abstract. We review a new form of self-organizing map which is based
on a nonlinear projection of latent points into data space, identical to
that performed in the Generative Topographic Mapping (GTM) [1]. But
whereas the GTM is an extension of a mixture of experts, this model
is an extension of a product of experts [6]. We show visualisation and
clustering results on a data set composed of video data of lips uttering
5 Korean vowels and show that the new mapping achieves better results
than the standard Self-Organizing Map.

1 Introduction

This paper constitutes a part of a much larger study into whether video data
which contains both visual and audio information can be used to better tran-
scribe speech data than with audio data alone. Both video and audio data can
be very high dimensional - visual data is captured at 20+ frames per second and
each frame may contain 10000+ pixels; audio information is generally captured
at 8KHz upwards. Both therefore give high dimensional data and we generally
wish to process this information in real time. This suggests the need for some
form of dimensionality reduction.

We have previously [3, 2] investigated linear projections of data sets but such
global linear projections may not be able to capture the structure of a data set
when the data is either locally low dimensional but globally high dimensional
or when the data lies on a nonlinear manifold. We therefore consider nonlinear
projections in this paper.

A topographic mapping (or topology preserving mapping) is a transformation
which captures some structure in the data so that points which are mapped close
to one another share some common feature while points which are mapped far
from one another do not share this feature. The most common topographic
mappings are Kohonen’s self-organizing map (SOM) [10] and varieties of multi-
dimensional scaling [5]. The SOM was introduced as a data quantisation method
but has found at least as much use as a visualisation tool. It does have the
disadvantage that it retains the quantisation element so that while its centres
may lie on a manifold, the user must interpolate between the centres to infer the
shape of the manifold.



In this paper, we review two topology preserving mappings, the familiar Self-
Organizing Map [10] and the second we call the Topographic Products of Experts
(ToPoE)[4]. Based on a generative model of the experts, we show how a topology
preserving mapping can be created from a product of experts in a manner very
similar to that used by [1] to convert a mixture of experts to the Generative
Topographic Mapping (GTM).

We begin with a set of experts who reside in some latent space and take
responsibility for generating the data set. In a mixture of experts [8, 9], the
experts divide up the data space between them, each taking responsibility for a
part of the data space. This division of labour enables each expert to concentrate
on a specific part of the data set and ignore those regions of the space for which it
has no responsibility. The probability associated with any data point is the sum
of the probabilities awarded to it by the experts. There are efficient algorithms,
notably the Expectation-Maximization algorithm, for finding the parameters
associated with mixtures of experts. [1] constrained the experts’ positions in
latent space and showed that the resulting mapping also had topology preserving
properties.

In a product of experts, all the experts take responsibility for all the data:
the probability associated with any data point is the (normalised) product of the
probabilities given to it by the experts. As pointed out in e.g. [7] this enables
each expert to waste probability mass in regions of the data space where there
is no data, provided each expert wastes his mass in a different region. The most
common situation is to have each expert take responsibility for having informa-
tion about the data’s position in one dimension while having no knowledge about
the other dimensions at all, a specific case of which is called a Gaussian pancake
in [11]: a probability density function which is very wide in most dimensions but
is very narrow (precisely locating the data) in one dimension. It is very elegantly
associated with Minor Components Analysis in [11].

In this paper, we review a method of creating a topology preserving mapping
from a product of experts, ToPoE. The resulting mapping is neither a true
product of experts nor a mixture of experts but lies somewhere in between.

2 SOM

Kohonen’s algorithm is exceedingly simple - the network is a simple 2-layer net-
work and competition takes place between the output neurons; however now not
only are the prototypes into the winning neuron updated but also the proto-
types of its neighbours. Kohonen defined a neighbourhood function f(i, i∗) of
the winning neuron i∗. The neighbourhood function is a function of the distance
between i and i∗. A typical function is the Difference of Gaussians function; thus
if unit i is at point ri in the output layer then

f(i, i∗) = a exp(
−|ri − ri∗ |2

2σ2
)− b exp(

−|ri − ri∗ |2
2σ2

1

)

The algorithm is



1. Select at random an input point.
2. There is a competition among the output neurons. That neuron whose

protype is closest to the input data point wins the competition:

winning neuron, i∗ = arg min(‖ x−wi ‖)

3. Now update all neurons’ prototypes using

∆wij = α(xj − wij) ∗ f(i, i∗)

4. Go back to the start.

Kohonen typically keeps the learning rate constant for the first 1000 iterations
or so and then slowly decreases it to zero over the remainder of the experiment.
Two dimensional maps can be created by imagining the output neurons laid out
on a rectangular grid or sometimes a hexagonal grid.

3 Topographic Products of Experts

Hinton [6] investigated a product of K experts with

p(xn|Θ) ∝
K∏

k=1

p(xn|k) (1)

where Θ is the set of current parameters in the model. Hinton notes that us-
ing Gaussians alone does not allow us to model e.g. multi-modal distributions,
however the Gaussian is ideal for our purposes. Thus our base model is

p(xn|Θ) ∝
K∏

k=1

(
β

2π

)D
2
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−β

2
||mk − xn||2

)
(2)

We will, as with the GTM, allow latent points to have different responsibilities
depending on the data point presented:

p(xn|Θ) ∝
K∏

k=1

(
β

2π

)D
2

exp
(
−β

2
||mk − xn||2rkn

)
(3)

where rkn is the responsibility of the kth expert for the data point, xn. Thus
all the experts are acting in concert to create the data points but some will
take more responsibility than others. Note how crucial the responsibilities are
in this model: if an expert has no responsibility for a particular data point, it
is in essence saying that the data point could have a high probability as far as
it is concerned. We do not allow a situation to develop where no expert accepts
responsibility for a data point; if no expert accepts responsibility for a data



point, they all are given equal responsibility for that data point (see below). For
comparison, the probability of a data point under the GTM is

p(x) =
K∑

i=1

P (i)p(x|i) =
K∑

i=1

1
K

(
β

2π

)D
2

exp
(
−β

2
||mi − x||2

)
(4)

We wish to maximise the likelihood of the data set X = {xn : n = 1, · · · , N}
under this model. The ToPoE learning rule (6) is derived from the minimisation
of − log(p(xn|Θ)) with respect to a set of parameters which generate the mk.

We now turn our attention to the nature of the K experts which are going
to generate the K centres, mk. We envisage that the underlying structure of
the experts can be represented by K latent points, t1, t2, · · · , tK . To allow local
and non-linear modeling, we map those latent points through a set of M basis
functions, f1(), f2(), · · · , fM (). This gives us a matrix Φ where φkj = fj(tk).
Thus each row of Φ is the response of the basis functions to one latent point, or
alternatively we may state that each column of Φ is the response of one of the
basis functions to the set of latent points. One of the functions, fj(), acts as a
bias term and is set to one for every input. Typically the others are gaussians
centered in the latent space. The output of these functions are then mapped by
a set of weights, W , into data space. W is M×D, where D is the dimensionality
of the data space, and is the sole parameter which we change during training.
We will use wi to represent the ith column of W and Φj to represent the row
vector of the mapping of the jth latent point. Thus each basis point is mapped
to a point in data space, mj = (ΦjW )T .

We may update W either in batch mode or with online learning. To change
W in online learning, we randomly select a data point, say xi. We calculate the
current responsibility of the jth latent point for this data point,

rij =
exp(−γd2

ij)∑
k exp(−γd2

ik)
(5)

where dpq = ||xp − mq||, the euclidean distance between the pth data point
and the projection of the qth latent point (through the basis functions and then
multiplied by W). If no centres are close to the data point (the denominator of
(5) is zero), we set rij = 1

K , ∀j.
Now we wish to maximise (4) so that the data is most likely under this

model. We do this by minimising the -log() of that probability: define m
(k)
d =∑M

m=1 wmdφkm, i.e. m
(k)
d is the projection of the kth latent point on the dth

dimension in data space. Similarly let x
(n)
d be the dth coordinate of xn. These

are used in the update rule

∆nwmd =
K∑

k=1

ηφkm(x(n)
d −m

(k)
d )rkn (6)

where we have used ∆n to signify the change due to the presentation of the nth

data point, xn, so that we are summing the changes due to each latent point’s



response to the data points. Note that, for the basic model, we do not change
the Φ matrix during training at all.

3.1 Comparison with the GTM

The Generative Topographic Mapping (GTM) [1] is a mixture of experts model
which treats the data as having been generated by a set of latent points. These
K latent points are also mapped through a set of M basis functions and a set of
adjustable weights to the data space. The parameters of the combined mapping
are adjusted to make the data as likely as possible under this mapping. The
GTM is a probabilistic formulation so that if we define y = ΦW = Φ(t)W,
where t is the vector of latent points, the probability of the data is determined
by the position of the projections of the latent points in data space and so we
must adjust this position to increase the likelihood of the data. More formally,
let

mi = Φ(ti)W (7)

be the projections of the latent points into the feature space. Then, if we assume
that each of the latent points has equal probability

p(x) =
K∑

i=1

P (i)p(x|i) =
K∑

i=1

1
K

(
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)D
2

exp
(
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where D is the dimensionality of the data space. i.e. all the data is assumed to
be noisy versions of the mapping of the latent points. This equation should be
compared with (3) and (4).

In the GTM, the parameters W and β are updated using the EM algorithm
though the authors do state that they could use gradient ascent. Indeed, in
the ToPoE, the calculation of the responsibilities may be thought of as being
a partial E-step while the weight update rule is a partial M-step. The GTM
has been described as a “principled alternative to the SOM” however it may be
criticised on two related issues:

1. it is optimising the parameters with respect to each latent point indepen-
dently. Clearly the latent points interact.

2. using this criterion and optimising the parameters with respect to each latent
point individually does not necessarily give us a globally optimal mapping
from the latent space to the data space.

The ToPoE will overcome the second of these shortcomings in that all data
points are acting together. Specifically if no latent point accepts responsibility
for a data point, the responsibility is shared equally amongst all the latent points.

The GTM, however, does have the advantage that it can optimise with re-
spect to β as well as W . However note that, in (3) and (4), the variance of
each expert is dependent on its distance from the current data point via the
hyper-parameter, γ. Thus we may define

(βk)|x=xn
= βrkn = β

exp(−γd2
nk)∑

t exp(−γd2
nt)

(9)



Therefore the responsibilities are adapting the width of each expert locally de-
pendent on both the expert’s current projection into data space and the data
point for which responsibility must be taken. Initially, rkn = 1

K , ∀k, n and so
we have the standard product of experts. However during training, the respon-
sibilities are refined so that individual latent points take more responsibility
for specific data points. We may view this as the model softening from a true
product of experts to something between that and a mixture of experts.

A model based on products of experts has some advantages and disadvan-
tages. The major disadvantage is that no efficient EM algorithm exists for op-
timising parameters. [6] suggests using Gibbs sampling but even with the very
creative method discussed in that paper, the simulation times were excessive.
Thus we have opted for gradient descent as the parameter optimisation method.

The major advantage which a product of experts method has is that it is
possible to get very much sharper probability density functions with a product
rather than a sum of experts.

4 Visualising and Clustering Voice data

This work is part of a larger body of work in which we wish to combine audio
and video data in order to better transcribe speakers audio utterances. As part
of this work, we investigated clustering and visualisation of the video data alone.

4.1 The data and pre-processing

14 speakers were asked to utter each of 5 Korean vowels and were videoed while
doing so. The five vowels were approximately

1. ’ah’ as in the English word, ’cat’
2. ’eh’ as in the English word, ’bed’
3. ’ee’ as in the English word, ’feel’
4. ’oh’ as in the English word, ’door’
5. ’wu’3 as in the English word, ’wood’

Each speaker spoke for approximately 1 second on each vowel and between 21
and 27 frames were taken. The video sequences were cropped to a 71× 71 pixel
region round the mouth so that we have 5041 dimensional data, each pixel of
which is in a range from 0 to 255.

The lighting conditions were very different from speaker to speaker and so
we first normalised each video so that the pixels varied from -1 to 1 (this is a
very crude way to perform this but we wished to minimise the pre-processing
requirements). We then performed a principal component analysis of the data
and, based on the variances, opted to investigate further processing based on
the projection of the data onto 4 and 10 principal components. In practise, there
was little difference in the results and in this paper we use the first 10 principal
components. Thus we have compressed our 5041 dimensional data down to 10
dimensions and it is in this data that we look for structure.
3 The Korean language does have an initial ’w’ associated with this sound.



4.2 Experiments

We first use each frame as a separate sample: in Figure 1, we show the projections
of the data found by ToPoE. We see that there is some structure in the mapping
- the top half is dominated by the open lip data (’ah’,’eh’ and ’ee’) and the
bottom half is dominated by the closed lip data (’oh’ and ’wu’). However there
is a great deal of overlap between these. This is caused by the fact that in
all videos the subjects began the vocalisation in a similar pose. Also a nearest
neighbour investigation in this space showed that often the nearest neighbour
was a frame of the same person but speaking a different vowel. We therefore
subsequently selected the first 21 frames of each of the videos and concatenated
these to form one data sample of dimensionality 210 (21 frames of the 10 principal
components). Note that this is not the same as performing a principal component
analysis of the completed data set (which would have involved a PCA of 21*5041
dimensional data) but is an attempt to capture some essential features of the
data.
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Fig. 1. The ToPoE projection of the visual projections of the lips data. The black stars
are ’ah’, the red asterisks are ’eh’, black dots ’ee’, green circles ’oh’ and green crosses
’wu’.

Therefore we now have 70 samples (14 speakers each saying 5 vowels) of 210
dimensional data. The SOM projection of this data is shown in Figure 2: we
see a very good separation of the open mouth vowels from the rounded mouth
vowels but it is not perfect - there is some overlap between the two groups.



0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9
SOM − 70 samples of 21 frames projected onto first 10 pcs

Fig. 2. The SOM projection of the video data when we use 21 frames of the first 10
principal components as 1 data sample. We now have 70 samples = 14 speakers of 5
vowels.

We can alleviate this by using the audio data too. Each audio signal consisted
of between 10000 and 16000 samples. We therefore select the first 10000 samples
of the audio signal of each video and concatenate these to create a 10000 × 70
data set. We again performed a PCA on this data set and projected each sample
onto the first 10 principal components.

Figure 3 shows the SOM projection when we use 70 samples (14 speakers of 5
vowels) with the combined audio and video data. We see a far better separation
of the two groups of vowels; note that treating this data as two separate data
streams which can be subsequently conjoined means that we do not have to
worry about the problem of matching the audio and visual data streams in
time. However this process left us somewhat dissatisfied in that our original
investigation was into utilising the information from the visual data to assist the
transcription of the audio data. The results here certainly show that we can use
one to assist in differentiating the other but we are actually using the audio data
to assist in optimising the projection of the visual data.

We therefore investigate the use of the ToPoE on only the visual data as
above. The results are shown in Figure 4: the two groups of vowels are clearly
separated using only the visual data.
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70 samples using video sequences of 21 frames projected onto 10pcs

Fig. 3. The SOM projection of the combined audio and visual data. A clearer separa-
tion of the two groups of vowels is achieved.
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70 samples using video sequences of 21 images projected onto 10 pcs

Fig. 4. The ToPoE clearly separates the two groups of vowels very clearly.



5 Conclusion

We investigated the task of finding a good projection of visual data so that
different classes of visual data can be clearly identified. We have shown that
the Topographic Product of Experts gives a better projection than the standard
Self-Organizing Map, though if we add audio information the difference between
the mappings is much less.

Future work will continue on these lines with a larger data set, the current
work being only a proof of concept. We will also investigate other projections of
these data sets such as principal curves, isomap and so on.
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